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Accelerator Evolution

Early accelerators
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Accelerator Evolution
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RF Technology Requirements

* Accelerating gradient is the
energy gain per acceleration
length

 To achieve higher beam energies

= Longer accelerators (linear)
= Space and cost are issues

= Improvements in accelerating
gradients
» Technology limitations
* RF technology requirements:
— Operation at the required frequency
— Accelerate to the required voltage
— Suppress HOM instabilities
— Operate efficiently

— Deliver the required RF power to the
beam

— Control amplitude and phase
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Compact LInear Collider (CLIC@CERN)
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Parameter Units
Length (km) 48.3
Physics Beam Energy (TeV) 3
RF Frequency (MHz) 12000
Number of RF Cavities 140000
Cavity Field (MV/m) 100
¢ Q-Factor (bulk Cu) 44 x 103 _—
O Luminosity (cm2s1) 5.9 x 1034 bp

http://nome.web.cern. ch/about/accelerators/compact -linear-collider
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International Linear Collider (ILC@Japan?)

Length (km) 31
Physics Beam Energy (TeV) 0.5
RF Frequency (MHz) 1300
Number of RF Cavities 16000
Cavity Field (MV/m) 31.5
Q-Factor (bulk Nb) 1 x 1010
RF Operating Temperature (K) 2

0 Luminosity (cm2s?) 2 x 1034

O http://www.linearcollider.org/ILC OPA
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LCLS-Il (@SLAC)

RF Frequency (MHz) 1300
Operating Temperature (K) 2
Average Operating Gradient (MV/m) ~16
Average Q, 2.7x1010
Cavity Length (m) 1.038
R/Q (Q, Q/m) 1036, 998
HOM damped Q (Monopole & Dipole) <10’
No. of Cavities per Cryomodule 8
RF Power per Cavity (kW) 6.3
for late 2019 Cavity Dynamic Load (W) 10
Cavity Amplitude Stability (%) 0.01
0 Cavity Phase Stability (°) 0.01
o https://portal.slac.stanford.edu/sites/Icls_public/lcls_ii/Pages/default.aspx
il Science & Technology
L2 @ Facilities Council
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Total Length 3.4 km
Energy 17.5 GeV
Beam Current 5 mA
Accelerating Gradient 23.6 MV/m
Quality Factor Qo 1010
Repetition rate 10 Hz

@ Number of Cavities 824

o Number of Cryomodules 103 P

http://lwww.xfel.eu/
8th July 2014
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Basic Concepts
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The RF Cavity

-
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The resonant frequency is f, = L
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Accelerating Voltage, V..

CST e

Computer Simulation
Technology -37e+887

-.8Z2e+887
Witle+00 7

Tvpe = E-Field (peak)
Monitor = Mode 1

Plane at = = @

Frequency = 1.78858

Phase = B degrees

Maximum-2d 4.36809=+0887 V/m at —41.8665 / 19.37 7 -Z2.8B82872=-815
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RF Technology Parameters

VZ P — Power dissipated in cavity wall
Pi... = __acc R V,.. —Accelerating voltage
diss - Ng o~
R/ G R/Q — Constant dependant on cell shape
Q- G — Geometry constant

R, - Surface resistance
Normal Conducting Superconducting RF

1 ,n,uourf 1 f 17.76
Typically several mQ for OFE copper Typically several nQ for high purity

Nb @ 2K.
§ = Skin depth (m) @ Stored energy
o = Conductivity (S/m) Q-Factor, QO WW —
1, = Free-space Permeability (H/m) Q 0= Power dissipated in
1, = Relative permeability (H/m) P¢ cavity wall
f = Frequency (Hz) 1 1 ]
T = Temperature (K) W ==ug fv|H|2 dV = =g, jV|E|2 dV
W = Stored energy (J) ] 2 2
U, = Effective voltage (V) Shunt impedance, R, U2
R, =—
Pe
D
A\ | \
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RF Power Considerations

Dictated by:

» Accelerating Gradient, E_..

* Beam Current, I,

« Shunt Impedance, R,

» Duty factor, DF

« RF Amplifier Efficiency, n,

» Cryogenic Carnot Efficiency (SC), ngy,

oPAC
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Basic Cavity Comparison

Parameter Unit NC SC
Frequency (MHz) f 1500 1500
Accelerating Voltage (MV) U, 3 3
Temperature (K) T 300 4.2
Surface Resistance (Q) R, 0.0037 60x10°
Quality Factor Q, 20000 6 x 10°
Shunt Impedance (MQ) R, 40 12 x 10°
Ra/Qo (Q2) 2000 2000
Cavity Power (W) P. 225000 3.6
% ~ 63000

PSC

MDD
S /N
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AC Power Comparison (CW-No beam)

Parameter Unit NC SC

Frequency (MHz) f 1500 1500

Accelerating Voltage (MV) U, 3 3

Temperature (K) T 300 4.2

Surface Resistance (Q) R, 0.0037 60x 107

Quality Factor Q, 20000 6 x 10°

Shunt Impedance (MQ) R, 40 12 x 10°

Ra/Qo (Q2) 2000 2000

Cavity Power (W) P, 225000 3.6

Cryogenic Static Load (W) 15

RF Amplifier Efficiency P 0.6

Cryogenic Carnot Efficiency Neryo 0.003

AC Cavity Power (kW) 375 6.2

nc OFA Science & Technol

—_— cience ecnhnolo

gth July 2014P SC ~60 Advanced School on Accelerator OptimizationH 'Ath:eaeﬁSI)tliJiizcounCil N




AC Power Comparison (CW+Beam)

Parameter Unit NC SC
Accelerating Voltage (MV) U, 3 3
Cavity Power (W) P. 225000 3.6
Cryogenic Static Load (W) 15
RF Amplifier Efficiency P 0.6 0.6
Cryogenic Carnot Efficiency e 0.003
AC Cavity Power (kW) 375 6.2
Beam Current (mA) l, 20 20
Beam Power (kW) P, 60 60
AC Beam Power (kW) 100 100
Total AC Power (Cavity + Beam) (kW) P 475 106.2
— ~ 45

i OPy
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AC Power Comparison (DF+Beam)

Parameter Unit NC SC
Duty Factor (%) 1 1
Cavity Power (W) P. 225000 3.6
Cryogenic Static Load (W) 15
RF Amplifier Efficiency up 0.6 0.6
Cryogenic Carnot Efficiency M 0.003
AC Cavity Power (kW) 375 6.2
Pulsed Cavity Power (kW) 3.75 5.0
Beam Current (mA) l, 20 20
Beam Power (kW) P, 60 60
AC Beam Power (kW) 100 100
Pulsed Beam Power (kW) 1 1
Total Pulsed AC Power (Cavity + Beam) (kW) P, 4.75 6.0
~nc ~ (0.8 R_ef: Holger Podlech (IAP Frankfurt), EERI\/I\ACC(Qato_r School: C_:ourse on
 [yc014 o S ey -2 Jun 207, B0, P




RF Technology Preference

Normal Conducting Superconducting

* Low Energy * High Energy

* High Beam Power  Low Beam Power

* Low Duty Factor * High Duty Factor
CPAC
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Gradient Limitations
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Breakdown

* The maximum achievable gradient in RF
structures Is limited by the breakdown
ohenomenon

* Physics not yet fully understood quantitatively

» Developing an understanding will impact on
— The design
— Material choice
— Construction of rf structures

= Therefore, understanding breakdowns has

great importance to reaching higher gradients
with an acceptable breakdown probability

oPAC
Science & Technology
Bl S railities Council
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Surface Impurities

* The surface of an accelerating structure will have
a number of imperfections at the surface caused

by:-
— Grain boundaries
— Impurities
— Inclusions
— Scratches
— Surface localised peaks
* As the surface Is an equipotential the electric

flelds at these small imperfections can be greatly
enhanced causing field emission

Grain  peaks .
boundaries __Oxides

Cracks Inclusions

MDD
/N

Science & Technology

(suggested by Wuenseh and colleagues) m S ol
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Field Emission

 Surface impurities are more problematic for SC cavities, due to low
intrinsic losses

« Cavity power increases faster than the stored energy, due to non-
ohmic losses:
— Acceleration of field-emitted electrons
— Electrons hitting cavity walls — generates X-rays

— Causes localised heating
= Leading to thermal breakdown, when T>T,
= Leading to a quench

Cavity Q-factor drops at high voltages
» SC cavities require careful preparation:
= Chemical polishing, HP water rinsing and cleanroom assembly

« Maximum surface magnetic field limitation for Nb of ~ 200mT
(geometry dependent)
e

Science & Technology
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Field Emission

Fowler Nordheim Law (RF fields): « High field enhancements
(B) can field emission

1.75

12 -0.5 2.5 . 9 15 . .
[ = 579x10*exp(9.350,°*)A (KE, ) exp( 0530 %} Low work function (¢,) in

Do

PE,

small areas can cause

field emission

As the surface is an equipotential the electric fields at these small
imperfections can be greatly enhanced

Typically B is between 50 - 100
In some cases the field can be increase by a factor of several hundred

EIocaI:B EO
h
2b

8th July 2014
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Buffered Chemical PO|ISh‘

* In order to remove any defects or
damage to the surface, an acid etch
IS applied to the cavities

= Buffer Chemical Polish (BCP)
removes 100-150um

* Acid mixture
» Hydrofluoric acid; HF (49%)
= Nitric Acid; HNO; (65%)
= Phosphoric Acid; H;PO, (85%)
* |nal:1:1 mixture
* Risk of hydrogen contamination
— Correct mixture should be used

— Temperature of acid should be kept below
<18 °C, to control the exothermic reaction

— Vacuum processing required

» Cavity is the high pressure rinsed_ .= ——
(HPR) with ultrapure water™ Vi Science & Technology
@ Facilities Council
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Electropolish (EP)

. Electrolshﬁing hieva smoother
finish than BCP and typically higher
gradients

* The cavity is an anode and an
aluminium cathode is immersed in an §
electrolyte

« Again hydrogen is produced so
vacuum processing and HPR.are AP

AN

. Science & Technology
required B S Failities Council
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Vacuum Processing

« High temperature vacuum baking of the cavity
IS another method of reducing surface
contamination

— Reduction of hydrogen from chemical etching

 Numerous recipes
— 600°C for 8 hours
— 800°C for 2 hours
— Even 1000°C for ~2 hours

MP9 and IB4 Vacuum Furnacesat FermiLabop C ,
Science & Technology
B @ Facilities Council
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After etching it is necessary to
perform a high pressure rinse (HPR)
the cavity using ultra pure water, in
a cleanroom

The rinsing facility uses small
nozzles to direct the water

Performs an aggressive removal of
particulates

— High pressure (~100 bar) rinsing is
often performed in a clean room.

Care must be taken not to use metal
parts as UPW is highly corrosive.

MDD
- & Science & Technology
L W@ Facilities Council
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RF Conditioning

» As after manufacture and processing of a cavity there still
remains a number of nucleation sites for breakdown it is
necessary to condition the cavity

« Typically the RF power and RF pulse width are gradually
Increased over a period of hours/days

« The conditioning consists of a number of semi-controlled
RF breakdowns as the RF power Is increased

A plasma discharge is generated in the cavity causing
vaporisation of the nucleation site just above the breakdown
threshold causing a minimum amount of damage

10 < 100 J stored energy

E Field

/ Stress ~ 300 MPa

Fracture Field emission heating Discharge MN
v N .
@ Science & Technology
@ Facilities Council
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= Helium processing 21
%1

Helium Processing

Additional RF processing can be performed

Before I

v processing

In the presence of a partial pressure of

helium (1x10- torr), the cavity can be RF

conditioned

Reduction in field emission ;5
1 C

Electric field performance gains of 10—-20% H

have been achieved ;:mé

The mechanism is not yet clearly understood
It is believed:-
= The FE current locally ionizes the helium gas

= Forming a local plasma
= This heats and melts the emission source

I
After
processing

_ | TLimitation

Arcing

FE loading
& radiation

IZ‘ Vacuum
|:| Quench
|:| Other

2

4

8 10

12 14

Maximum Accelerating Gradient (MV/m)

Helium processing performed at
JLab on the CEBAF 1.5GHz SRF

= Provides microscopically directed helium ion cavities
bombardment of the source, or enhances the
local field to the point of drawing out current
densities sufficient to explode the emitter
D
. Science & Technology
Bl S railities Council
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Thermal Limitations

« For CW cavities, the cavity temperature
reaches steady state when the water cooling
removes as much power as is deposited In
the RF structure

« Temperature rises can cause surface
deformation, surface cracking, outgassing or
even melting

* Pulsing the RF can enable much higher
gradients as the average power is reduced

MDD
/N
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Thermal Limitations

Normal conducting:

 Thermal dissipation at high duty factors:

— Becomes difficult to remove heat above a limit of ~
100kW/m (material conductivity dependent).

— Not an issue for SC, as thermal losses are much lower

1.3GHz, 1kHz rep-rate photo-
gun (BESSY)
= Pc ~ 75 kW

MDD
S /N
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Pulsed Heating

Original Surface

Thermal Expansion [
/ Pﬂl 1.._,-“? D In'll kT PdDd 1)
ST 5 o1 d = 1 § T 5 /—I.!
VACUUM , + 2v/mpke, \ pe. 2./
I \\\ where p = 8.95 - 103%. k= 391 ”E‘ﬁ and ¢, = 385 k;ﬁ.
Power are the density. the heat conductivity and the specific heat
r—— for OFC copper.
! : : : : : : : ' '
I : : : : : : : — 01 ps
! L E E E E E E "~ 10ps
: : : : : : : + 100us
]NERT[AL CONFINEMENT OFk - e . ....... . ....... . ........ . ....... . ....... . ................ . ...... .

&
m
- T

Pulsed RF however has problems due to
heat diffusion effects

Over short timescales (<10ms) the heat R S e E S S S
doesn’t diffuse far enough into the material 2§ oo S
to reach the water cooling Al RN

0

This means that all the heat is deposited in = 'c © 2 = o = &% %
a small volume with no cooling

=
e

Mormalized Temperature Rise
(o] o
w n
T
1

Cyclic heating can lead to surface damage OPAC

= Science & Technology
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Cavity Design

* Further gains in attainable accelerating gradient have been
achieved through alteration of cavity geometry

« Minimize the ratio of peak surface field to accelerating gradient

« Maximising the accelerating gradient with respect to the
maximum surface electric field and magnetic field

_ M E Eacc
acc d E Bmax

S0 T !
Y | - A

1288
1 0

Type H-Field {peak) N
Monitor Mode 2 .
— Component fib:
171.215 / -93.75

[ ! l |
8 / 85.8943 7/ -15.8943 ! / Frequency 0.559434
/ X _Phase 908 degrees . . ]
2l Magnetic Field Magnitude
Electric Field Magnitude
D
Ay | \
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Cavity Design
« Accelerating voltage for a cavity:

+L/2 o E,,= Peak electric field
V=9t [ E (2t)e"" dz = E, LT cos(et) T= Transit time factor

-L/2

» Decreasing the accelerating gap, whilst maintaining the
same voltage between the gap,

= Increases the effective accelerating voltage due to the
transit time factor

Directed Water Flow
into Cavity

« However surface electric fields are
¢ Increased

« To minimise effects the nose cone is
only decreased

OPA
Science & Technology

[ Bl 'S Fcilities Council
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Lorentz Force Detuning

« EM fields induce a pressure resulting in a cavity
field level deformation and frequency shift.

« Mainly problematic for high-field, pulsed, thin-
walled SC cavities

« Fast piezo tuners and feed-forward compensation

te C h n I q u eS e I I I p I Oye O RMS Residual Detuning of SC1G Cavities after Compensation
20 A — B —
@ Slide Jack (Central)
oo TBYAES008 18- ® Slide Jack (End) -
— | @® Blade
—Ccmpensat!on On (35 MV/m) - 16 27 I\:‘V.’m ® DESY/Saclay

s00b —Compensation Off (27MV/m) | L 30 ,\‘wm
- Flat Top 5"
E ,3 '] H E E 10+
E i i E 8 24 I\‘V!m
€ -200 ° &l 18 MV/m i
= & 8734 MV/m ® 27 MV/m
T , @ 18 MVAMV/m o |
D _400 L 1 27 MV/ITI

2 24 F\‘Wm ®
500 a2 A3 A3 c1 ci _63 C3 C3 c4 c4
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Time (ms)
D)
W Schappert (FNAL) oA
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Current Challenges
and R&D
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CLIC Accelerating Structure Development

« CLIC is a 3 TeV concept facility

« Accelerating gradient of x-band structures of ~100 MV/m is
required

* Main linac cavities are required to maintain low beam emittance
and meet the luminosity requirements

= Must be built with a few micron tolerances
= Aligned along 10’s of meters with roughly 10 micron tolerances

= This means that accelerating structures must be equipped with
higher order mode in order to suppress

Courtesy: Walter
Wuensch (CERN)

@ & Science & Technology
@ Facilities Council
8th July 2014 Advanced School on Accelerator Optimization A Wheelhouse



Structure Design

« Design optimised for:-
« Surface electric and magnetic field (pulsed surface heating)

« Global power flow
—— =const
AC

« Local complex power flow

A. Grudiev, S. Calatroni, W. Wuensch (CERN). 20099 pp.
Published in Phys.Rev.ST Accel.Beams.12(2009) 10200100/
Science & Technology

B @ Facilities Council
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Micron Precision Turning & Milling

« Accelerating structure tolerances drive transverse wakefields
and off-axis RF induced kicks
« Leads to emittance growth
= Micron tolerances required
« Multi-bunch trains require HOM wakefield suppression
= Cell design requires milled features
= High-speed diamond machining
= Beneficial for high-gradient performance Development
 Minimises induced surface stresses _ done in industry”

MMC 900H

MDD
I /N
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Cavity Manufacture

Diffusion Bonding of T18 vg2.4 DISC

— * Diffusion bonding

7~ * Vacuum backing
| .. —Temperature
\’ treatment for
high-gradient
developed by
NLC/JLC

Pressure: 60 PSI (60 LB for this structure disks)
Holding for 1 hour at 1020°C

Vacuum Baking of T18_vg2.4_DISC

MDD
/I /N
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Test Performance

KEK production/test

1E-6

&45 .. o

o

TD24] T24)

BDR 1/pulse/m
(o8
m
iy
)l
p
4

HOM damped

| | i
80 90 100 110 120
Status: 4/9/2012 Unloaded Accelerating Gradient MV/m
cience o |ecnn010gy
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DC Breakdown Studies at CLIC

Motivation for DC experiment: * Results show the saturated field of
« Understanding breakdown various materials
mechanism in simpler system  The dislocation motion is strongly
than RF requires: bound to the atomic structure of
— Many tests metals
— Reproducibility checks » In FCC (face-centered cubic) the
— Analysis of various materials dislocations are the most mobile
— Analysis of parameters » HCP (hexagonal close-packed) are

the hardest for dislocation mobility

A. Descoeudres, F. Djurabekova, and K. Nordlund,
DC Breakdown experiments withcobalt electrodes
900

I . |
800 | DC spark test in |
I
700 | UHV |
o |
—_ I
E 600 | B — . I
Z 500 : . WC | |
= ! |
o 400 | a1V --{28nF | |
Ll —— — -
| = :
300 | ;5 f I
200 | v |
100 ] Iprobe ______ |
0 HT oPC Courtesy: M. Taborelli
© &N 3 - Science & Technology
o 3 m iTas :
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Dislocation-based model for electric
field dependence

* Analysis of experimental data
 The result is:

BDR :AegoEZAV/kT

Stress model fit

Power law fit

107 F L AT Y A ] 1017 F T O : T T I 11
I ! i 3 i
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=2 Material Deformation

 Prediction of material

von Mises stress (MPa) Electric field norm (MV/m)

A 715.78

deformation in high
electric field regions

* Voids can be formed in a
region of fragile
Impurities at fields > 400
MV/m

« Material is plastic only in
the vicinity of the defect

 Field enhancement
factor ~2.4
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RF Breakdown Studies at SLAC

 Beam driven tests on FACET (Facility for Advanced Accelerator
Experimental Tests) to determine statistical properties for RF
breakdown properties in 100 GHz structures
— Copper
— Stainless steel
« Examining effect of RF out
— Geometry
— Accelerating gradient
— Pulse length

» Tests on going

V/.A. Dolgashev, SLAC, 17 January 2014

£
oPAC

........

Science & Technology
S i‘.\ M @ Facilities Council
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FACET - Copper Structure in Vacuum
Chamber
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1P330: L120: EX01: CHO1 E-201 energy pyro (V)

Performance Tests
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SLAC Cryo-cooled Structure

« Conductivity increases (by a factor
of 17.6 at 25 K) enough to reduce
cyclic stresses

* Yield strength of copper increases

MDD
DOlgaSheV et al., IPAC 12 ~! \C & Science &Techno[ogy
# @ Facilities Council
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NORCIA Electroforming

o s Hollow of the iris’s cooling | S
Iris thickness 2 mm - g

NORCIA Group
* INFN-LNF
« SLAC

8 70 nm roughness * KEK

i - Single and multi-
PrTET—— layer electroformed
FEFR TR LI T P

cavities
 Alternative to brazing
. * Built iniris cooling
8 ani channels

Bruno Spataro
AD INFN

o Science & Technology
E @ Facilities Council
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Early 9 cell CaV|ty Test Results in US
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SRF Cavity/CM Process and Testing

| Cavity ' . Surface J:}”_Verticalu
i icati " Processing Testing

« Development of a standard process
« Labs and industry

8th July 2014 Advanced School on Accelerator Optimization A Wheelhouse
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ILC Cavity Performance Benchmark

15t pass
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Cavities Bulk-EP at Vendor
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Optically Detection of Defects
® =0 AES001 #3 cell 169°

; Edge of heat-affected zone
Resolution Camera and & :
Observations in TESLA Cavities

Y. Iwashita, Y. Tajima and H. Hayano
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Centrifugal Barrel Polishing (CBP)

Individual
= Barrels rotate
| at 115 RPM__4

Central shaft
rotates up to
115 RPM

SI ||Ca C Coopef, FNAL = & Facilities Council
: Advanced School on Accelerator Optimization A Wheelhouse




CBP - Single Cell Tests

Single cell cavity
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CBP = 9-Cell Tests
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Achieving:- Eace, MVV/m
» Higher gradients
» Higher Qs
» Improved yields oP
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SC Thin Films

Potential breakthrough

Niobium on copper (um):
* New revolutionary deposition techniques developed:

HIPIMS, CVD, ALD

« Great expectations in cost reduction
« Improved performance c.f. bulk Nb
Higher Tc material (nm), multilayer:
« Trapped vortices model (Gurevich)
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~ 25 nm NbN
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http://leucard2.web.cern.ch/activities/wp12-innovative-radio-frequency-rf-technologies
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http://www.helmholtz-berlin.de/index_de.html
http://www.grenoble-inp.fr/grenoble-institute-of-technology-9224.kjsp?RH=INPG_EN&RF=INPG_EN

Summary

« Higher gradients are being achieved through
Improved design optimisation and a better
understanding of dc and RF breakdown

« Material studies are being examined to push
gradients higher

« Great gains have been made through the
optimisation of processes

 Industrial and laboratory partnerships have
successfully aided the development of technology
capabilities

 The RF technology choice is based upon cost
effective delivery for a specific application

* The chosen technology limitations must be
overcome in order to be reliably compliant

oPAC
@ Science & Technology
@ Facilities Council
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Thank you for your attention



