

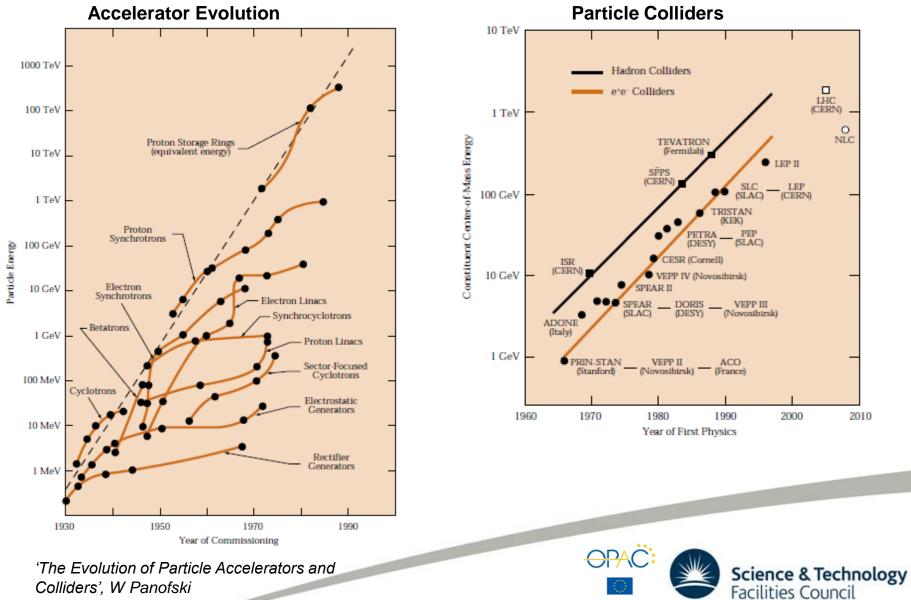
High(er) Accelerating Gradients

A. Wheelhouse ASTeC, STFC Daresbury Laboratory

Advanced School on Accelerator Optimization at Royal Holloway University of London, 7th – 11th July 2014

Outline

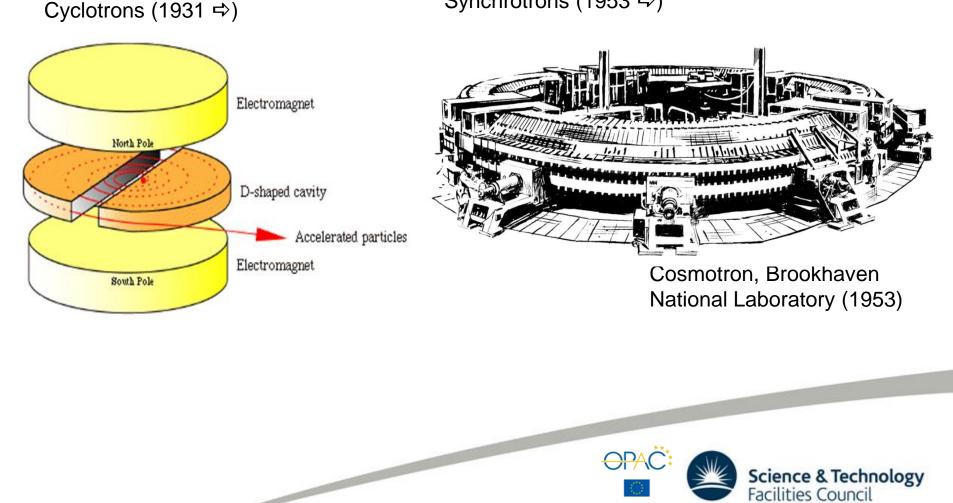
- Introduction
- Basic concepts
 - Superconducting RF cavities
 - Normal conducting RF cavities
- Gradient Limitations
- Current Challenges & R&D



Introduction

8th July 2014

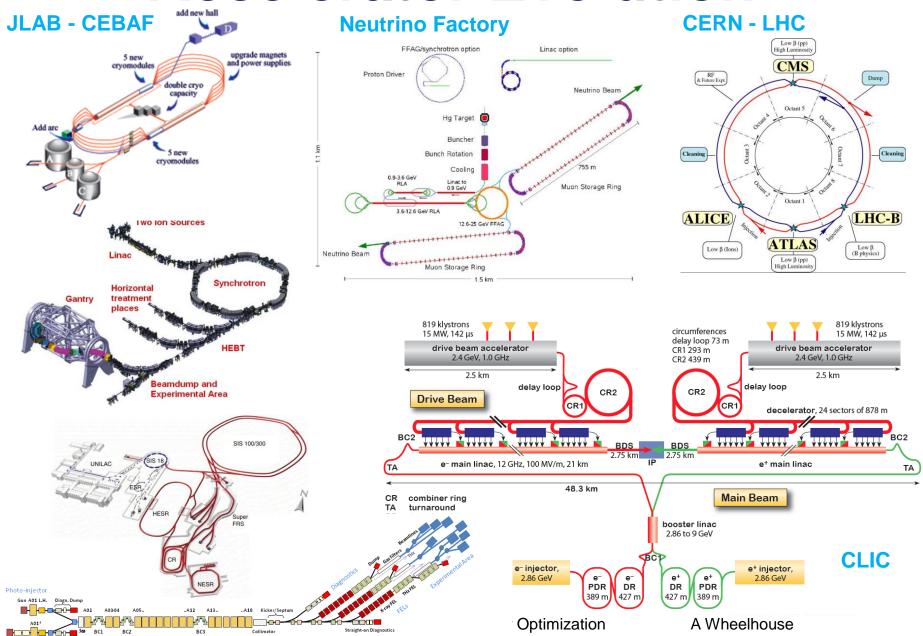
Accelerator Evolution

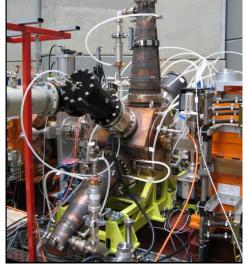

8th July 2014

Advanced School on Accelerator Optimization

Accelerator Evolution

Early accelerators

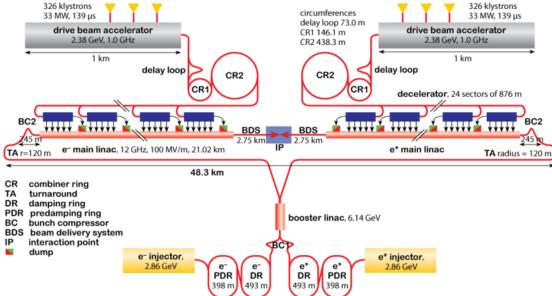

Synchrotrons (1953 ⇒)

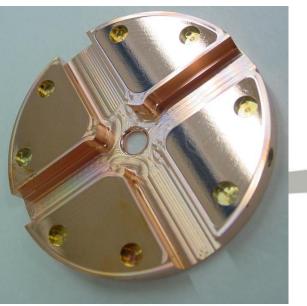

8th July 2014

Advanced School on Accelerator Optimization

Accelerator Evolution

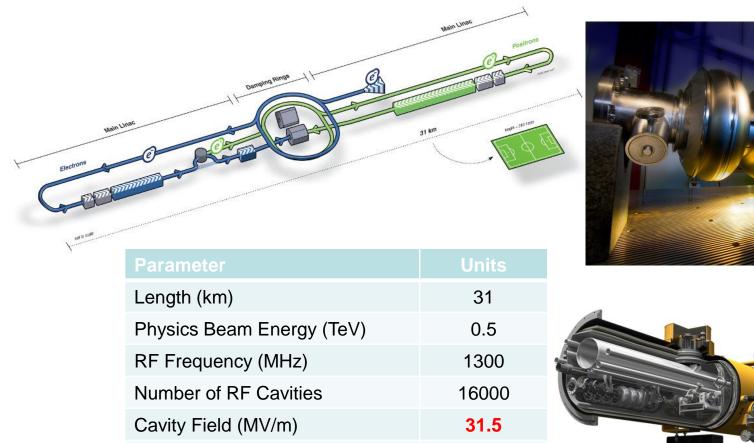
RF Technology Requirements


- Accelerating gradient is the energy gain per acceleration length
- To achieve higher beam energies
 - ⇒ Longer accelerators (linear)
 - Space and cost are issues
 - ➡ Improvements in accelerating gradients
 - Technology limitations
- RF technology requirements:
 - Operation at the required frequency
 - Accelerate to the required voltage
 - Suppress HOM instabilities
 - Operate efficiently
 - Deliver the required RF power to the beam
 - Control amplitude and phase


8th July 2014

Compact Linear Collider (CLIC@CERN)

Parameter	Units
Length (km)	48.3
Physics Beam Energy (TeV)	3
RF Frequency (MHz)	12000
Number of RF Cavities	140000
Cavity Field (MV/m)	100
Q-Factor (bulk Cu)	44 x 10 ³
Luminosity (cm ⁻² s ⁻¹)	5.9 x 10 ³⁴

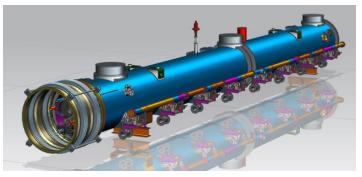


http://home.web.cern.ch/about/accelerators/compact-linear-collider

1

Advanced School on Accelerator Optimization

International Linear Collider (ILC@Japan?)



A Wheelhouse

8th July 2014

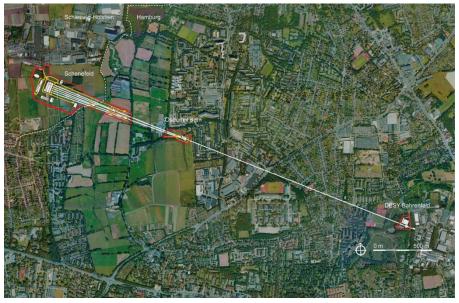
LCLS-II (@SLAC)

Commissioning planned for late 2019

Parameter	
RF Frequency (MHz)	1300
Operating Temperature (K)	2
Average Operating Gradient (MV/m)	~16
Average Q _o	2.7x10 ¹⁰
Cavity Length (m)	1.038
R/Q (Ω, Ω/m)	1036, 998
HOM damped Q (Monopole & Dipole)	≤10 ⁷
No. of Cavities per Cryomodule	8
RF Power per Cavity (kW)	6.3
Cavity Dynamic Load (W)	10
Cavity Amplitude Stability (%)	0.01
Cavity Phase Stability (°)	0.01

S

https://portal.slac.stanford.edu/sites/lcls_public/lcls_ii/Pages/default.aspx



Advanced School on Accelerator Optimization

8th July 2014

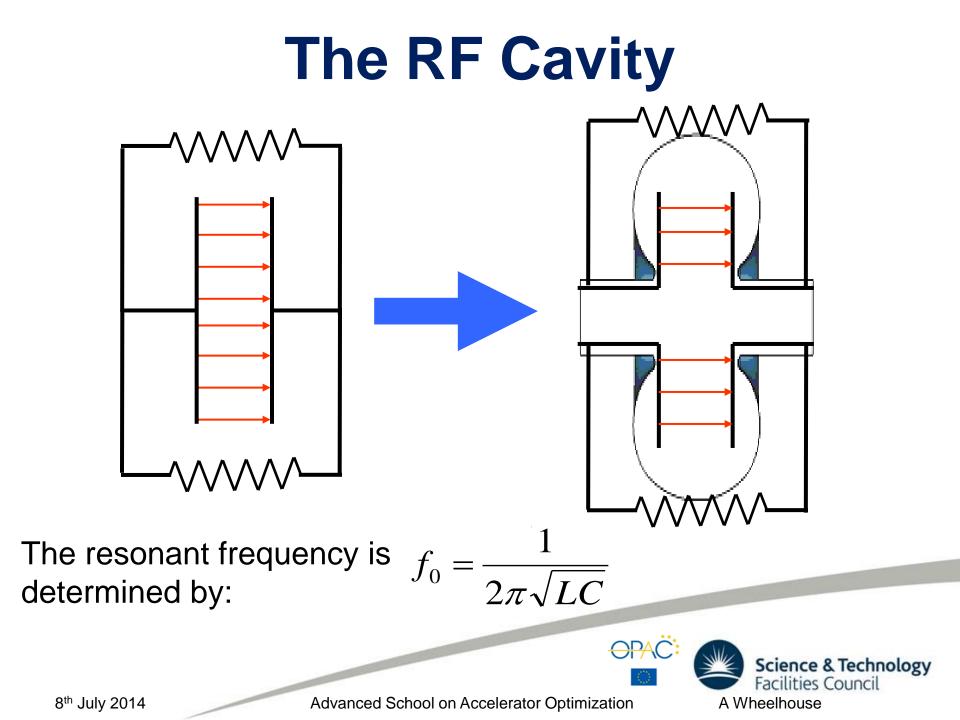
X-Ray Free Electron Laser (XFEL@DESY)

Total Length	3.4	km
Energy	17.5	GeV
Beam Current	5	mA
Accelerating Gradient	23.6	MV/m
Quality Factor Qo	10 ¹⁰	
Repetition rate	10	Hz
Number of Cavities	824	
Number of Cryomodules	103	

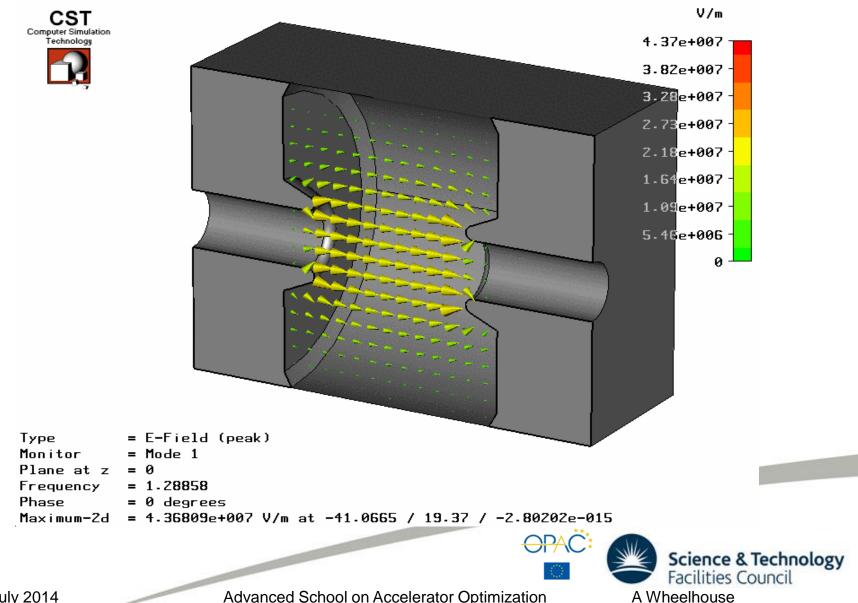
Science & Technology Facilities Council

A Wheelhouse

http://www.xfel.eu/


8th July 2014

Advanced School on Accelerator Optimization


Basic Concepts

8th July 2014

Accelerating Voltage, V_{acc}

8th July 2014

RF Technology Parameters

$$P_{diss} = \frac{V_{acc}^2}{R/Q \cdot G} \cdot R_s$$

Ν

 $R_s = \frac{1}{\sigma \delta} = \sqrt{\frac{\pi \mu_o \mu_{rf}}{\sigma}}$

- P_{diss} Power dissipated in cavity wall
- V_{acc} Accelerating voltage
- R/Q Constant dependant on cell shape
- Geometry constant G
- R_s Surface resistance

Superconducting RF

$$R_s(BCS) = 2.10^4 \frac{1}{T} (\frac{f}{1.5})^2 e^{-\frac{17.76}{T}}$$

 $Q_0 = \frac{\omega W}{P_c}$

Typically several m Ω for OFE copper Typically several n Ω for high purity Nb @ 2K.

Stored energy

cavitv wall

Power dissipated in

Q-Factor, Qo

 σ = Conductivity (S/m) $\mu_{o} =$ Free-space Permeability (H/m)

$$\mu_0 = \Gamma$$
 lee-space Fernieability (1)/T

 μ_r = Relative permeability (H/m) f = Frequency (Hz)

T = Temperature (K)

 $\delta =$ Skin depth (m)

W = Stored energy (J)

 $U_a = Effective voltage (V)$

Shunt impedance, R_a

 $W = \frac{1}{2}\mu_0 \int_V |H|^2 \ dV = \frac{1}{2}\varepsilon_0 \int_V |E|^2 \ dV$

 $R_a = \frac{U_a^2}{P_c}$

RF Power Considerations

Dictated by:

- Accelerating Gradient, E_{acc}
- Beam Current, I_b
- Shunt Impedance, R_a
- Duty factor, DF
- RF Amplifier Efficiency, η_{rf}
- Cryogenic Carnot Efficiency (SC), η_{cryo}

Basic Cavity Comparison

Parameter	Unit	NC	SC
Frequency (MHz)	f	1500	1500
Accelerating Voltage (MV)	Ua	3	3
Temperature (K)	Т	300	4.2
Surface Resistance (Ω)	R_{s}	0.0037	60 x 10 ⁻⁹
Quality Factor	Q_{o}	20000	6 x 10 ⁹
Shunt Impedance (M Ω)	R_{a}	40	12 x 10 ⁶
Ra/Qo (Ω)		2000	2000
Cavity Power (W)	P _c	225000	3.6

$$\frac{P_{nc}}{P_{sc}} \approx 63000$$

Advanced School on Accelerator Optimization

OP\Ĉ

Science & Technology Facilities Council

AC Power Comparison (CW-No beam)

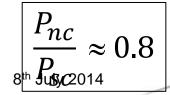
Parameter	Unit	NC	SC
Frequency (MHz)	f	1500	1500
Accelerating Voltage (MV)	U_a	3	3
Temperature (K)	Т	300	4.2
Surface Resistance (Ω)	R_{s}	0.0037	60 x 10 ⁻⁹
Quality Factor	Q_{o}	20000	6 x 10 ⁹
Shunt Impedance (M Ω)	R_a	40	12 x 10 ⁶
Ra/Qo (Ω)		2000	2000
Cavity Power (W)	Pc	225000	3.6
Cryogenic Static Load (W)			15
RF Amplifier Efficiency	η_{rf}	0.6	
Cryogenic Carnot Efficiency	η_{cryo}		0.003
AC Cavity Power (kW)		375	6.2
$\frac{P_{nc}}{P_{sc}} \approx 60$ Advanced School on Acceler	rator Optim	ization	Science 8 Facilities C A Wheelhouse

AC Power Comparison (CW+Beam)

Parameter	Unit	NC	SC
Accelerating Voltage (MV)	U_a	3	3
Cavity Power (W)	P_{c}	225000	3.6
Cryogenic Static Load (W)			15
RF Amplifier Efficiency	η_{rf}	0.6	0.6
Cryogenic Carnot Efficiency	η_{cryo}		0.003
AC Cavity Power (kW)		375	6.2
Beam Current (mA)	l _b	20	20
Beam Power (kW)	P_b	60	60
AC Beam Power (kW)		100	100
Total AC Power (Cavity + Beam) (kW)	Pt	475	106.2

$$\frac{P_{nc}}{P_{sc}} \approx 4.5$$

8th July 2014


Advanced School on Accelerator Optimization

OPAC

Science & Technology Facilities Council

AC Power Comparison (DF+Beam)

Parameter	Unit	NC	SC
Duty Factor (%)		1	1
Cavity Power (W)	P _c	225000	3.6
Cryogenic Static Load (W)			15
RF Amplifier Efficiency	η_{rf}	0.6	0.6
Cryogenic Carnot Efficiency	η_{cryo}		0.003
AC Cavity Power (kW)		375	6.2
Pulsed Cavity Power (kW)		3.75	5.0
Beam Current (mA)	l _b	20	20
Beam Power (kW)	P_{b}	60	60
AC Beam Power (kW)		100	100
Pulsed Beam Power (kW)		1	1
Total Pulsed AC Power (Cavity + Beam) (kW)	Pt	4.75	6.0

Ref: Holger Podlech (IAP Frankfurt), CERN Accelerator School: Course on High Power Hadron Machines; 24 May - 2 Jun 2011, Bilbao, Spain Advanced School on Accelerator Optimization A wheelhouse

RF Technology Preference

Normal Conducting

- Low Energy
- High Beam Power
- Low Duty Factor

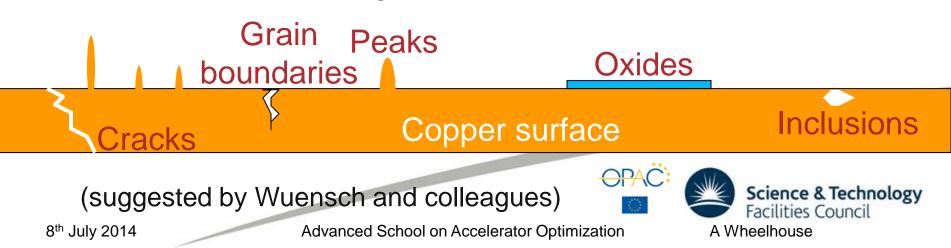
Superconducting

- High Energy
- Low Beam Power
- High Duty Factor

Gradient Limitations

8th July 2014

Breakdown


- The maximum achievable gradient in RF structures is limited by the breakdown phenomenon
- Physics not yet fully understood quantitatively
- Developing an understanding will impact on
 - The design
 - Material choice
 - Construction of rf structures

Therefore, understanding breakdowns has great importance to reaching higher gradients with an acceptable breakdown probability

Surface Impurities

- The surface of an accelerating structure will have a number of imperfections at the surface caused by:-
 - Grain boundaries
 - Impurities
 - Inclusions
 - Scratches
 - Surface localised peaks
- As the surface is an equipotential the electric fields at these small imperfections can be greatly enhanced causing field emission

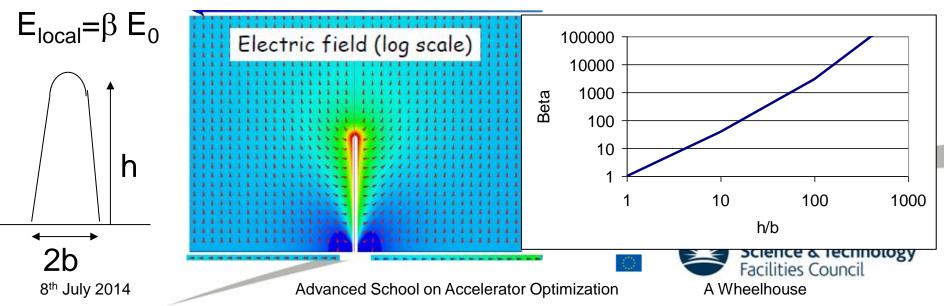
Field Emission

- Surface impurities are more problematic for SC cavities, due to low intrinsic losses
- Cavity power increases faster than the stored energy, due to nonohmic losses:
 - Acceleration of field-emitted electrons
 - Electrons hitting cavity walls generates X-rays
 - Causes localised heating
 - \Rightarrow Leading to thermal breakdown, when T>T_c
 - \Rightarrow Leading to a quench
- Cavity Q-factor drops at high voltages
- SC cavities require careful preparation:
 - Chemical polishing, HP water rinsing and cleanroom assembly
- Maximum surface magnetic field limitation for Nb of ~ 200mT (geometry dependent)

8th July 2014

Advanced School on Accelerator Optimization

Science & Technology


Facilities Council

Field Emission

Fowler Nordheim Law (RF fields):

$$\bar{I} = \frac{5.79 \times 10^{-12} \exp(9.35\varphi_0^{-0.5}) A_e (\beta E_0)^{2.5}}{\varphi_0^{1.75}} \exp\left(\frac{-6.53 \times 10^9 \varphi_0^{1.5}}{\beta E_0}\right) \bullet$$

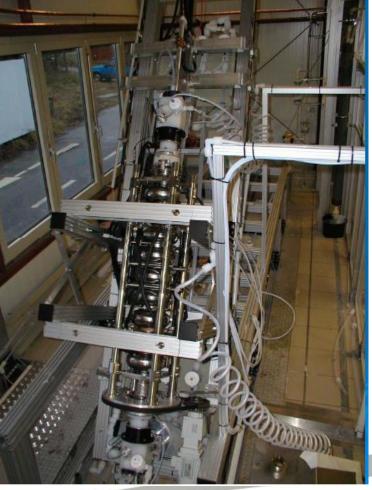
- High field enhancements(β) can field emission
 - Low work function (ϕ_0) in small areas can cause field emission
- As the surface is an equipotential the electric fields at these small imperfections can be greatly enhanced
- Typically β is between 50 100
- In some cases the field can be increase by a factor of several hundred

Buffered Chemical Polish

- In order to remove any defects or • damage to the surface, an acid etch is applied to the cavities
- ⇒ Buffer Chemical Polish (BCP) removes 100-150µm
- Acid mixture ٠

8th July 2014

- Hydrofluoric acid; HF (49%)
- Nitric Acid; HNO₃ (65%)
- Phosphoric Acid; H_3PO_4 (85%)
- In a 1:1:1 mixture
- Risk of hydrogen contamination •
 - Correct mixture should be used
 - Temperature of acid should be kept below <18 °C, to control the exothermic reaction
 - Vacuum processing required
- Cavity is the high pressure rinsed (HPR) with ultrapure water



Electropolish (EP)

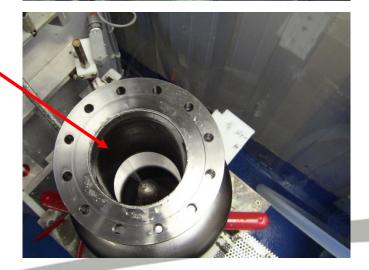
- Electropolishing achieves a smoother finish than BCP and typically higher gradients
- The cavity is an anode and an aluminium cathode is immersed in an electrolyte
- Again hydrogen is produced so vacuum processing and HPR are required

8th July 2014

Vacuum Processing

- High temperature vacuum baking of the cavity is another method of reducing surface contamination
 - Reduction of hydrogen from chemical etching
- Numerous recipes
 - 600°C for 8 hours
 - 800°C for 2 hours
 - Even 1000°C for ~2 hours

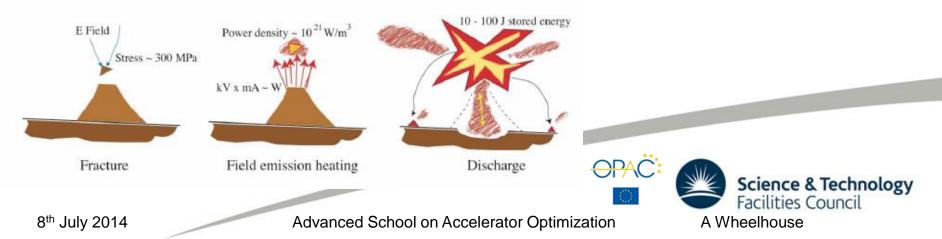
MP9 and IB4 Vacuum Furnaces at FermiLab



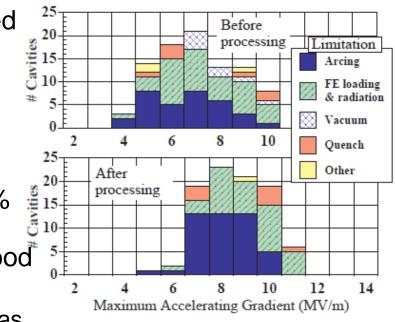
8th July 2014

High Pressure Rinse

- After etching it is necessary to perform a high pressure rinse (HPR) the cavity using ultra pure water, in a cleanroom
- The rinsing facility uses small nozzles to direct the water
- Performs an aggressive removal of particulates
 - High pressure (~100 bar) rinsing is often performed in a clean room.
- Care must be taken not to use metal parts as UPW is highly corrosive.



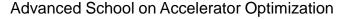
8th July 2014


RF Conditioning

- As after manufacture and processing of a cavity there still remains a number of nucleation sites for breakdown it is necessary to condition the cavity
- Typically the RF power and RF pulse width are gradually increased over a period of hours/days
- The conditioning consists of a number of semi-controlled RF breakdowns as the RF power is increased
- A plasma discharge is generated in the cavity causing vaporisation of the nucleation site just above the breakdown threshold causing a minimum amount of damage

Helium Processing

- Additional RF processing can be performed
- ➡ Helium processing
- In the presence of a partial pressure of helium (1x10⁻⁵ torr), the cavity can be RF conditioned
- Reduction in field emission
- Electric field performance gains of 10–20% have been achieved
- The mechanism is not yet clearly understood
- It is believed:-
 - ⇒ The FE current locally ionizes the helium gas
 - ⇒ Forming a local plasma
 - ⇒ This heats and melts the emission source
 - Provides microscopically directed helium ion bombardment of the source, or enhances the local field to the point of drawing out current densities sufficient to explode the emitter

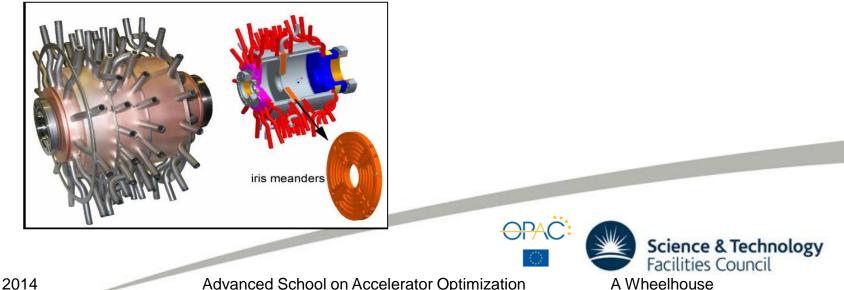


Helium processing performed at JLab on the CEBAF 1.5GHz SRF cavities

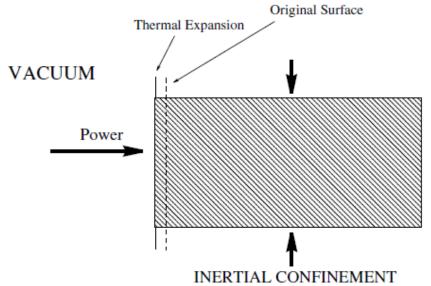
Thermal Limitations

- For CW cavities, the cavity temperature reaches steady state when the water cooling removes as much power as is deposited in the RF structure
- Temperature rises can cause surface deformation, surface cracking, outgassing or even melting
- Pulsing the RF can enable much higher gradients as the average power is reduced

Science & Technology

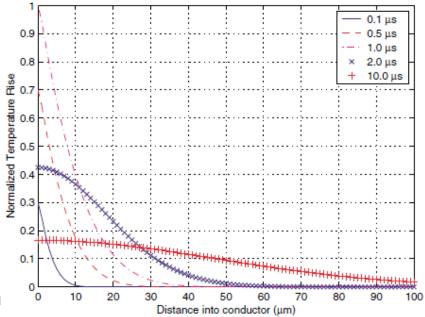

Facilities Council

Thermal Limitations


Normal conducting:

- Thermal dissipation at high duty factors:
 - Becomes difficult to remove heat above a limit of ~ 100kW/m (material conductivity dependent).
 - Not an issue for SC, as thermal losses are much lower

1.3GHz, 1kHz rep-rate photogun (BESSY) ⇒ Pc ~ 75 kW


Pulsed Heating

- Pulsed RF however has problems due to heat diffusion effects
- Over short timescales (<10ms) the heat doesn't diffuse far enough into the material to reach the water cooling
- This means that all the heat is deposited in a small volume with no cooling
- Cyclic heating can lead to surface damage

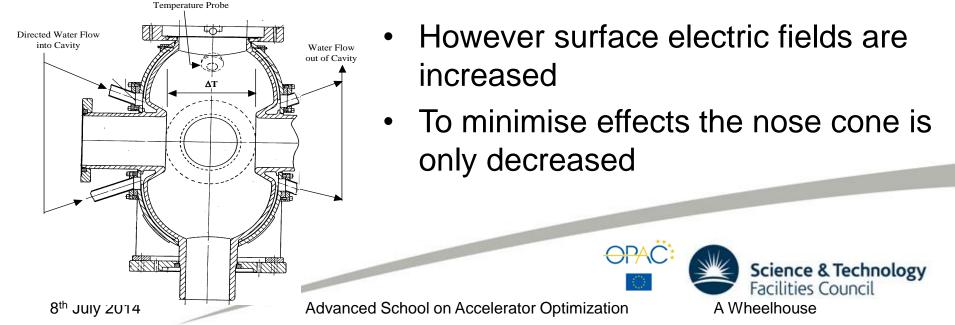
$$T_s = \frac{P_d \sqrt{\tau}}{2\sqrt{\pi\rho k c_{\epsilon}}}, \quad D_d = \sqrt{\frac{k\tau}{\rho c_{\epsilon}}}, \quad T_s = \frac{P_d D_d}{2\sqrt{\pi}k}, \quad (1)$$

where $\rho = 8.95 \cdot 10^3 \frac{kg}{m^3}$, $k = 391 \frac{W}{m \cdot K}$ and $c_{\epsilon} = 385 \frac{J}{kg \cdot K}$ are the density, the heat conductivity and the specific heat for OFC copper.

8th July 2014

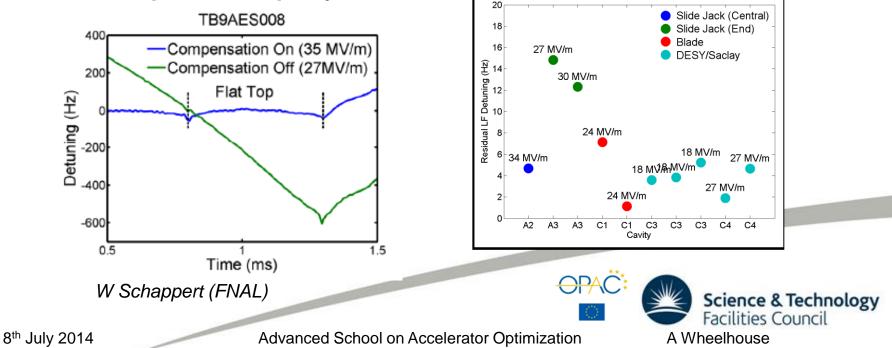
Cavity Design

- Further gains in attainable accelerating gradient have been achieved through alteration of cavity geometry
- Minimize the ratio of peak surface field to accelerating gradient
- Maximising the accelerating gradient with respect to the maximum surface electric field and magnetic field



Cavity Design

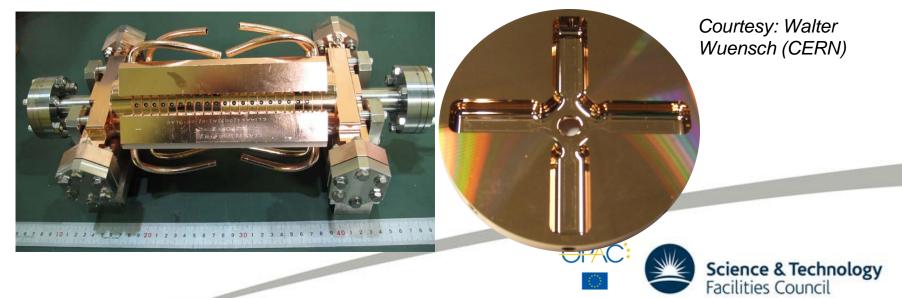
• Accelerating voltage for a cavity:


$$V = \Re \left\{ \int_{-L/2}^{+L/2} E_z(z,t) e^{i\omega z/c} dz \right\} = E_{z0} LT \cos(\omega t) \qquad \begin{array}{l} \mathsf{E}_{z0} = \mathsf{Peak} \text{ electric field} \\ \mathsf{T} = \mathsf{Transit time factor} \end{array} \right\}$$

- Decreasing the accelerating gap, whilst maintaining the same voltage between the gap,
- ➡ Increases the effective accelerating voltage due to the transit time factor

Lorentz Force Detuning

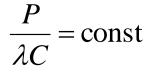
- EM fields induce a pressure resulting in a cavity field level deformation and frequency shift.
- Mainly problematic for high-field, pulsed, thinwalled SC cavities
- Fast piezo tuners and feed-forward compensation techniques employed


Current Challenges and R&D

8th July 2014

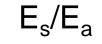
CLIC Accelerating Structure Development

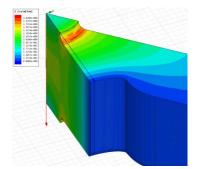
- CLIC is a 3 TeV concept facility
- Accelerating gradient of x-band structures of ~100 MV/m is required
- Main linac cavities are required to maintain low beam emittance and meet the luminosity requirements
- ⇒ Must be built with a few micron tolerances
- ⇒ Aligned along 10's of meters with roughly 10 micron tolerances
- ⇒ This means that accelerating structures must be equipped with higher order mode in order to suppress

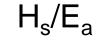


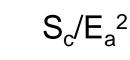
Advanced School on Accelerator Optimization

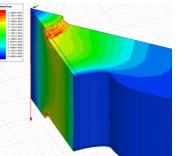
A Wheelhouse


Structure Design


- Design optimised for:-
 - Surface electric and magnetic field (pulsed surface heating)
 - Global power flow




Local complex power flow


$$S_c = \operatorname{Re}(\mathbf{S}) + \frac{1}{6}\operatorname{Im}(\mathbf{S})$$

A. Grudiev, S. Calatroni, W. Wuensch (CERN). 2009. 9 pp. Published in Phys.Rev.ST Accel.Beams 12 (2009) 102001

8th July 2014

Micron Precision Turning & Milling

- Accelerating structure tolerances drive transverse wakefields and off-axis RF induced kicks
 - Leads to emittance growth
 ⇒ Micron tolerances required
- Multi-bunch trains require HOM wakefield suppression
 ⇒ Cell design requires milled features
- ⇒ High-speed diamond machining

8th July 201

- ⇒ Beneficial for high-gradient performance
 - Minimises induced surface stresses

Development done "in industry"

Science & Technology Facilities Council A Wheelhouse

Cavity Manufacture

Pressure: 60 PSI (60 LB for this structure disks) Holding for 1 hour at 1020°C

Vacuum Baking of T18 vg2.4 DISC

TD18#2 at KEK

650° C

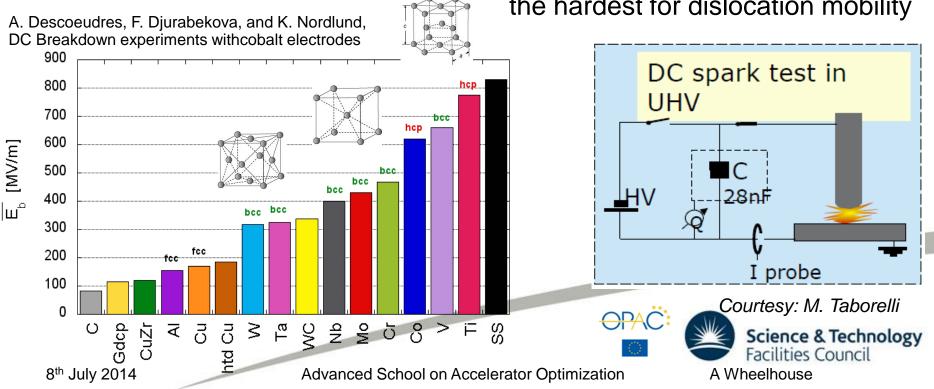
Vacuum backing

- Temperature treatment for high-gradient developed by NLC/JLC

10 days

8th July 2014

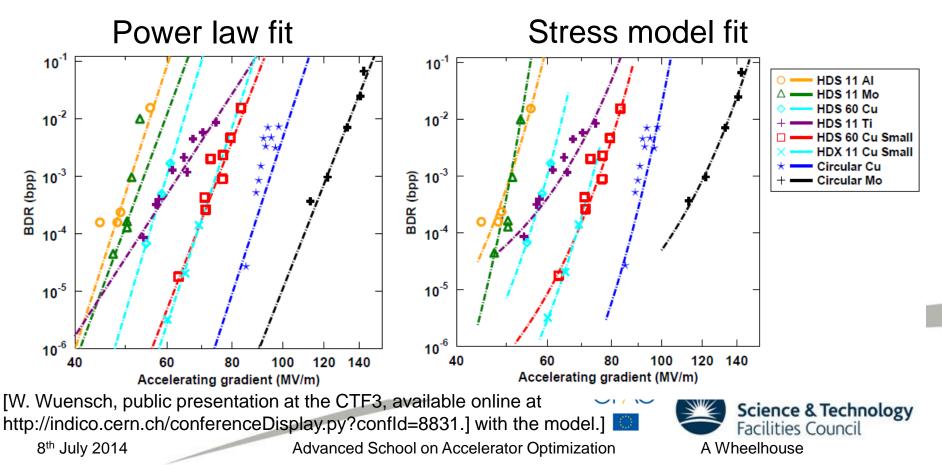
Test Performance



DC Breakdown Studies at CLIC

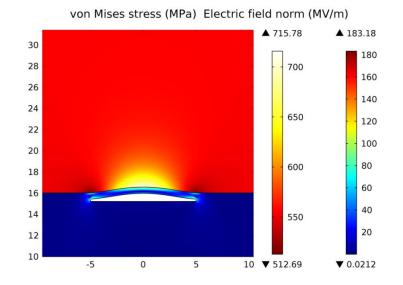
Motivation for DC experiment:

- Understanding breakdown mechanism in simpler system than RF requires:
 - Many tests
 - Reproducibility checks
 - Analysis of various materials
 - Analysis of parameters


- Results show the saturated field of various materials
- The dislocation motion is strongly bound to the atomic structure of metals
- In FCC (face-centered cubic) the dislocations are the most mobile
- HCP (hexagonal close-packed) are the hardest for dislocation mobility

Dislocation-based model for electric field dependence

- Analysis of experimental data
- The result is:


 $BDR = Ae^{\varepsilon_0 E^2 \Delta V/kT}$

Material Deformation

- Prediction of material deformation in high electric field regions
- Voids can be formed in a region of fragile impurities at fields > 400 MV/m
- Material is plastic only in the vicinity of the defect
- Field enhancement factor ~2.4

RF Breakdown Studies at SLAC

- Beam driven tests on FACET (Facility for Advanced Accelerator Experimental Tests) to determine statistical properties for RF breakdown properties in 100 GHz structures
 - Copper
 - Stainless steel
- Examining effect of
 - Geometry
 - Accelerating gradient
 - Pulse length
- Tests on going

Stainless

Steel

RF out

RF out

V.A. Dolgashev, SLAC, 17 January 2014

Electron beam

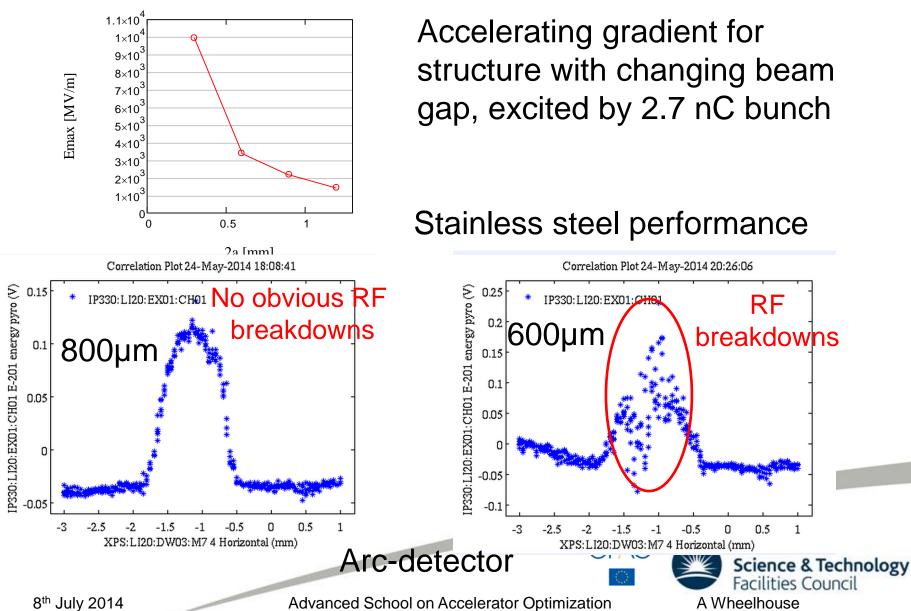
8th July 2014

opper

FACET - Copper Structure in Vacuum Chamber

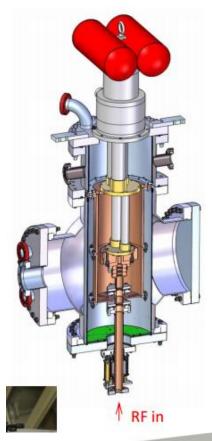
Vertical moving stag Right forward RF horn

63


Upper half of accelerating E structure

> Transparent for RF vacuum window

Phosphor screen or beam alignment

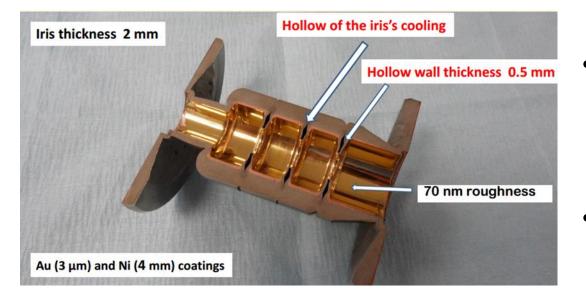

V.A. Dolgashev, SLAC, 17 January 2014

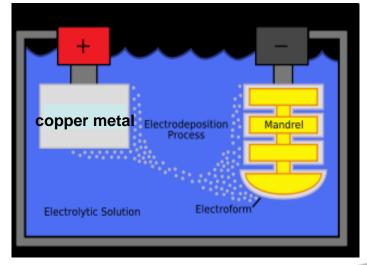
Performance Tests

SLAC Cryo-cooled Structure

- Conductivity increases (by a factor of 17.6 at 25 K) enough to reduce cyclic stresses
- Yield strength of copper increases

Dolgashev et al., IPAC 12


Advanced School on Accelerator Optimization


OPA

8th July 2014

NORCIA Electroforming

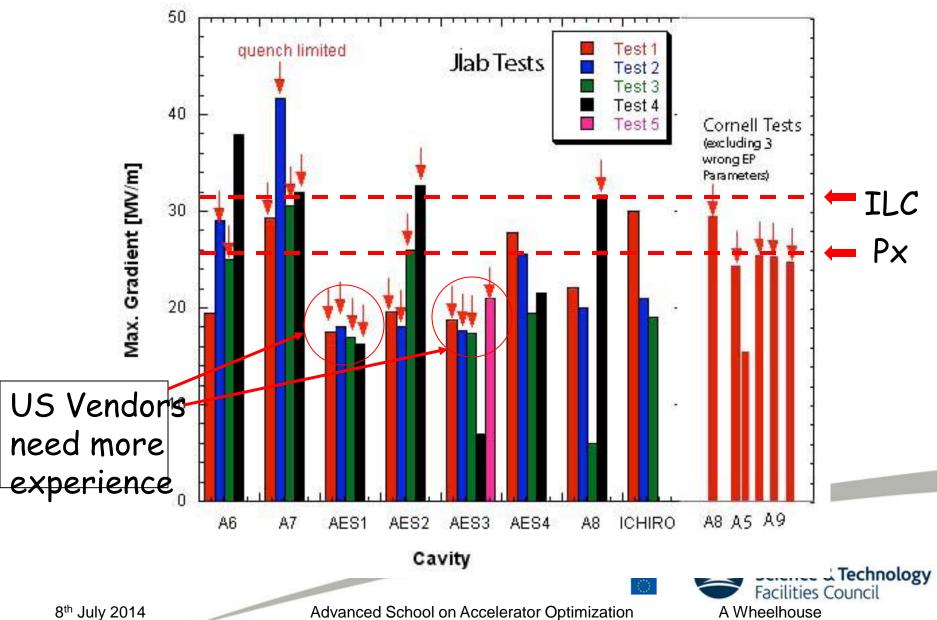
NORCIA Group

- INFN-LNF
- SLAC
- KEK

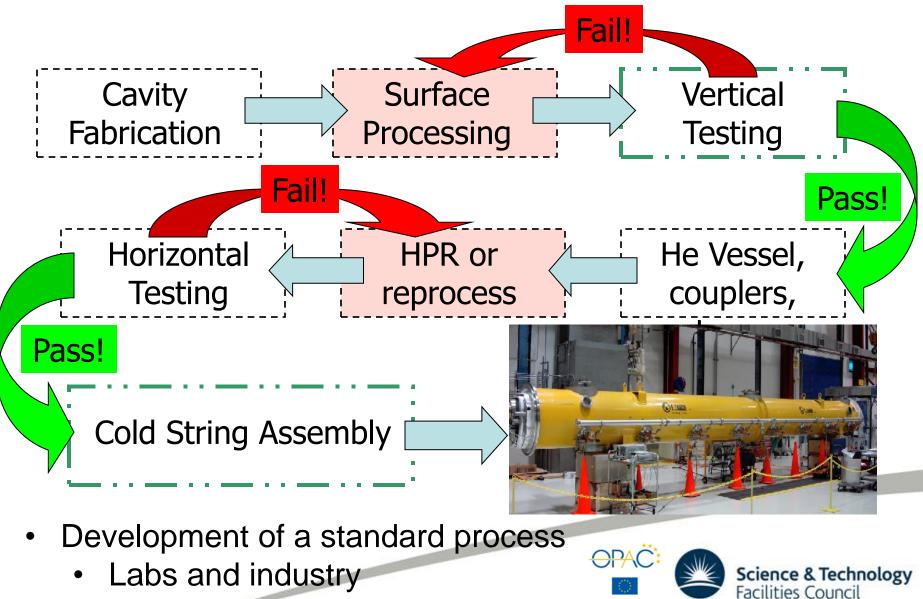
OPA

- Single and multilayer electroformed cavities
- Alternative to brazing
- Built in iris cooling channels

8th July 2014

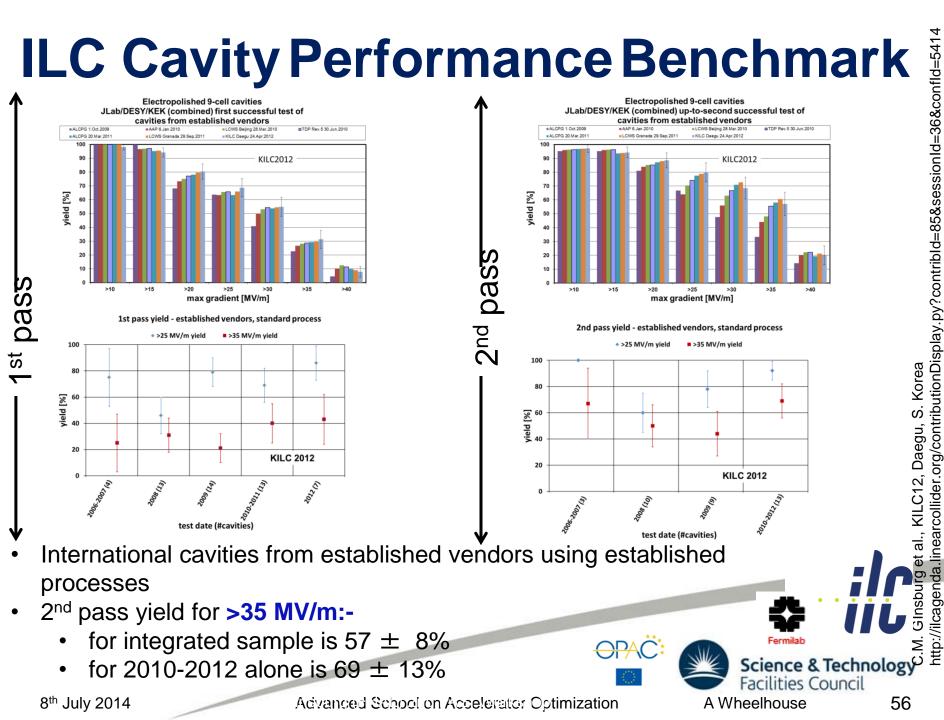

Advanced School on Accelerator Optimization

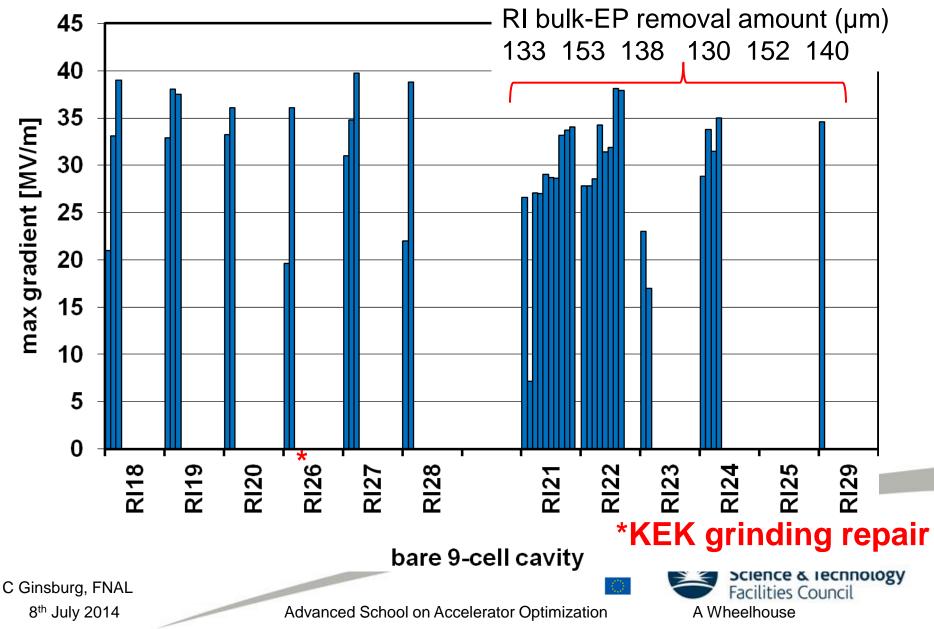
Science & Technology Facilities Council A Wheelhouse


INFN

Bruno Spataro

Early 9-cell Cavity Test Results in US

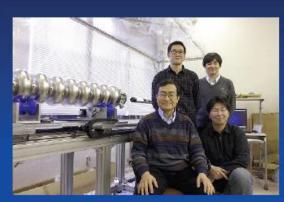

SRF Cavity/CM Process and Testing


8th July 2014

Advanced School on Accelerator Optimization

A Wheelhouse

Cavities Bulk-EP at Vendor



Optically Detection of Defects

Development of High Resolution Camera and Observations in TESLA Cavities

Y. Iwashita, Y. Tajima and H. Hayano

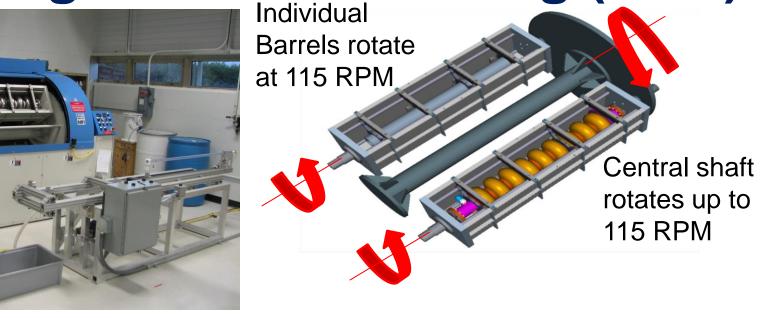
AES001 #3 cell 169° Edge of heat-affected zone

to quenches

8th July 2014

C Ginsburg, FNAL

Advanced School on Accelerator Optimization


le Electro-

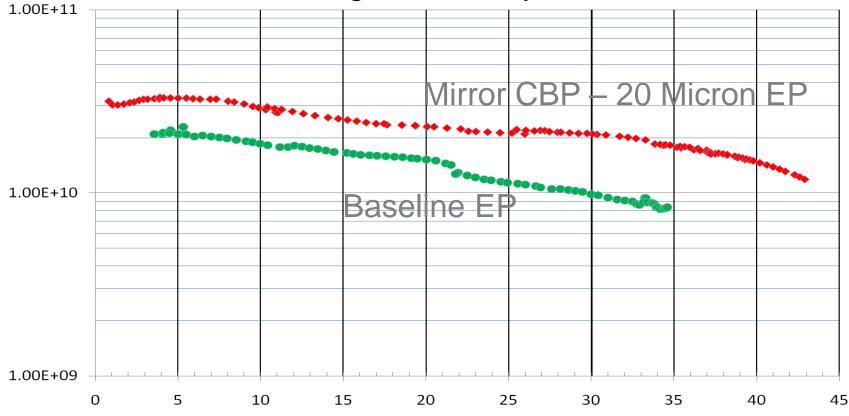
ror: ~40de

Luminescence

Science & Technology Facilities Council A Wheelhouse

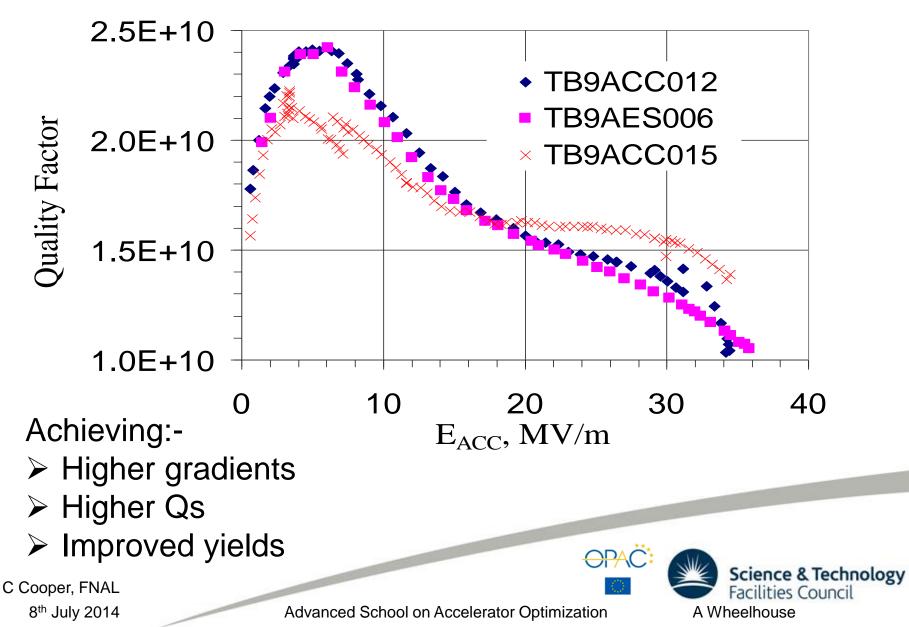
Centrifugal Barrel Polishing (CBP)

Inclusion not removed by EP, completely removed by CBP


Silica C Cooper, FNAL

Advanced School on Accelerator Optimization

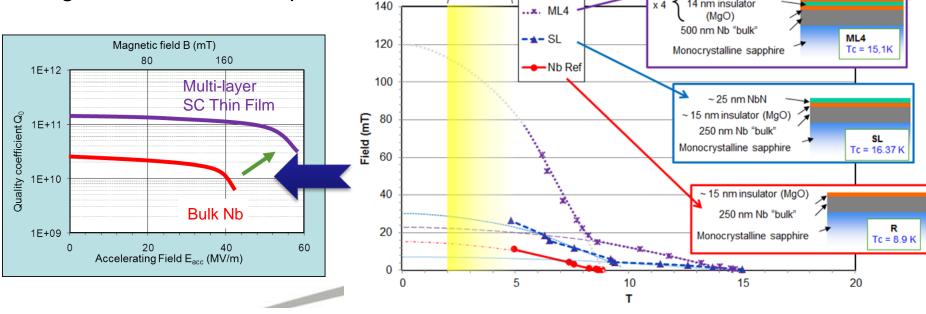
Facilities Council A Wheelhouse


CBP – Single Cell Tests

Single cell cavity

CBP – 9-Cell Tests

SC Thin Films


Potential breakthrough

Niobium on copper (µm):

- New revolutionary deposition techniques developed:
 - HIPIMS, CVD, ALD
- Great expectations in cost reduction
- Improved performance c.f. bulk Nb

Higher Tc material (nm), multilayer:

- Trapped vortices model (Gurevich)
- Higher field and Qo expected

http://eucard2.web.cern.ch/activities/wp12-innovative-radio-frequency-rf-technologies

~ 25 nm NbN 14 nm insulator

Summary

- Higher gradients are being achieved through improved design optimisation and a better understanding of dc and RF breakdown
- Material studies are being examined to push gradients higher
- Great gains have been made through the optimisation of processes
- Industrial and laboratory partnerships have successfully aided the development of technology capabilities
- The RF technology choice is based upon cost effective delivery for a specific application
- The chosen technology limitations must be overcome in order to be reliably compliant

Science & Technology Facilities Council A Wheelhouse

Thank you for your attention