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Photodetector #1 * 
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Adaptive focusing & trichromatic / monochromatic vision  

High sensitivity due to 100 million rod cells (10-40 photons) 

High resolution & double dynamic range due to 5 million cone cells 

High readout rate of 30 frame/s 

Internal signal processing (100M cells to 1M nerves @30fps) 

540 million years old design 
(*) Yu. Musienko, NDIP 2011 



CCD/CMOS approach – toward to #1 
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Trichromatic / monochromatic vision  

Number of pixels up to ~ 50 M  

Sensitivity from ~ 10 -100 photons 

Dynamic range up to ~ 50K 

Readout up to ~ 1000 frame/s 

40 years old design 



SiPM approach – toward to ideal  

low photon detection 
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Silicon Photomultipliers (SiPM) as new 

photon number resolving detectors 

◙ 1. Introduction: the best photodetectors 

 

◙ 2. Silicon Photomultipliers (SiPM) as new photon number resolving 

detectors 

 

◙ 3. Benefits, drawbacks, and typical applications of SiPM 

 

◙ 4. Evaluation studies of SiPMs for Beam Loss Monitoring 

 

◙ 5. Modelling and analysis of comparative performance: SiPM vs 

PMT and APD 

 

◙ 6. Trends and prospects of SiPM technology for BLM and 

accelerator applications 
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Concept of ideal detector: 

first step to SiPM 

◙ Ideal detector: conversion of any input signal starting 
from single photon to recognizable output without noise 
and distortion in amplitude and timing of the signal 

W. Farr, SPIE LEOS 2009 

Ideal photon detector 

Real photon detector 
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Single photon detection 

in 1 GHz BW with electronic noise 104 e 
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Avalanche with negative feedback:  

main step to SiPM 

Strong negative feedback = fast quenching & small charge fluctuations 
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Multi-pixel design & feedback resistor: 

final step to SiPM 

Fig. 1-4: Sadygov, NDIP 2005                    Fig. 5-7: B. Dolgoshein et al., 2001-2005  
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SiPM: photon number resolution 

B. Kardinal et al., Nat. Photonics, 2008 

R. Mirzoyan et al., NDIP, 2008 

A. Barlow and J. Schilz, SiPM matching event, 

CERN, 2011 

APD (self-differencing mode) VLPC SiPM (MEPhI/Pulsar) 

SiPM (Excelitas) 
PMT (Hamamatsu R5600) 

I. Chirikov-Zorin et al, NIMA 2001 

MPPC (Hamamatsu) 

S. Vinogradov, SPIE 2011 
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Sergey Vinogradov Seminars on SiPM at the Cockcroft Institute   2 December 2013   13 G. Collazuol, PhotoDet, 2012 



Benefits, drawbacks,  

and typical applications of SiPM 

◙ 1. Introduction: the best photodetectors 

 

◙ 2. Silicon Photomultipliers (SiPM) as new photon number resolving 

detectors 

 

◙ 3. Benefits, drawbacks, and typical applications of SiPM 

 

◙ 4. Evaluation studies of SiPMs for Beam Loss Monitoring 

 

◙ 5. Modelling and analysis of comparative performance: SiPM vs 

PMT and APD 

 

◙ 6. Trends and prospects of SiPM technology for BLM and 

accelerator applications 
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SiPM: photon number resolution 

◙ SiPM looks like  ~ ideal detector 

Near-ideal amplification:  

―  Gain > 105, ENF < 1.01 

Room temperature 

Low bias (<100 V) 

Large area (6x6 mm2) 

Good timing (jitter < 200 ps) 

Fast response (rise <1 ns, fall~20 ns) 

 

 

◙ In fact, not a photon spectrum 
Photoelectrons 

Dark electrons 

Crosstalk & Afterpulses 

◙ In fact, non-Poissonian distribution 
Why?  

How much?  

Distribution? 

Resolution?  
P. Finocchiaro et al., IEEE TNS, 2009 

A. Barlow and J. Schilz, SiPM matching event, CERN, 2011 

SiPM (Excelitas) 
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SiPM drawbacks: crosstalk 

◙ Crosstalk: hot carrier photon emission + detection = false event 

A. Lacaita et al., IEEE TED, 1993 

R. Mirzoyan, NDIP, 2008 

Yu. Musienko, NDIP, 2005  
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SiPM drawbacks: afterpulsing 

◙ Afterpulsing: trapping + detrapping + detection  =  false event 

primary 

avalanche 

afterpulses 

Δ time 

Output  

G. Collazuol, PhotoDet, 2012 C. Piemonte et al., Perugia, 2007 
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SiPM drawbacks: nonlinearity 

◙ Limited number of pixels = losses of photons 

◙ Dead time of pixels during recovery = losses of photons 

Plot details: 

Npixel=100 

PDE=100% 

No Noise (DCR, CT, AP) 
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Application types 

◙ Binary detection of light pulses – “events” (bit error rate) - NA 

◙ Photon number resolution (noise-to-signal ratio, σn/μn) - Calorimetry 

◙ Time-of-flight detection (transit time spread, σt) – TOF PET 

◙ Detection of arbitrary signals starting from photon counting - Iph(t) 

- Beam Loss Monitoring 
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SiPM application examples 

◙ Calorimetry 

SiPM (MEPhI) small HCAL (MINICAL), DESY, 2003 

MPPC (Hamamatsu), T2K, 2005-2009 

MPPC at LHC CMS HCAL 

RICH for ALICE (LHC) 

FermiLab, Jefferson Lab calorimeter upgrade projects 

◙ Astrophysics 

SiPM cosmic ray detection in space (MEPhI, 2005) 

Cherenkov light detection of air showers (CTA, 2013) 

◙ Medical imaging  

Positron Emission Tomography:  

―TOF-PET  

― PET / MRI 

◙ Telecommunication 

Quantum cryptography 

Deep space laser link (Mars exploring program) 
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Evaluation studies of SiPMs  

for Beam Loss Monitoring 

◙ 1. Introduction: the best photodetectors 

 

◙ 2. Silicon Photomultipliers (SiPM) as new photon number resolving 

detectors 

 

◙ 3. Benefits, drawbacks, and typical applications of SiPM 

 

◙ 4. Evaluation studies of SiPMs for Beam Loss Monitoring 

 

◙ 5. Modelling and analysis of comparative performance: SiPM vs 

PMT and APD 

 

◙ 6. Trends and prospects of SiPM technology for BLM and 

accelerator applications 
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Beam Loss Monitoring  

(ref. E. Nebot talk 08-07-14) 

Objectives: 

 

Protect 

Monitor 

Adjust 
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BLM: first evaluation of SiPM 

D. Di Giovenale et al., NIMA, 2011 
 SPARC accelerator, Frascati, INFN 

 FERMI@Elettra, Synchrotrone Trieste 

 

MPPC, 1mm2, 400 pixels 

Quartz fiber 300 μm, 100 m 

Dark count noise: negligible 

Electronic noise: negligible 

Spectral dispersion in fiber: 

n(𝜆) →∆t(𝜆) ~ 3 ns @100 m 

τfall ~ 10 ns → deconvolution 

 

◙Compact low cost BLM 

1m-scale resolution @100 m  
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SiPM performance metrics for BLM 

◙ Loss scenarios reconstruction 

Amplitude → # photons → # particles per location (PNR)  

Transit time to rising edge → single loss location (Time Res.) 

Resolution of multiple loss locations & # particles  

― Modulation transfer function (MTF) ? 

― Nonlinearity has to be accounted ! 

 

PNR 

TTS 

New metrics ? 
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Challenges for SiPM in BLM: 

saturation, recovering, duplications 

◙ Transient nonlinearity of SiPM response 

Large rectangular light pulse: Nph > Npix; Tpulse > Trec 

Peak – initial avalanche events in ready-to-triggering pixels 

Plateau – repetitive recovering and re-triggering of pixels 

Fall – final recovering (without photons, but with afterpulses!) 

  4 us pulse   50 ns pulse 
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MPPC response on rectangular pulse 
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Modelling and analysis of comparative 

performance: SiPM vs PMT and APD 

◙ 1. Introduction: the best photodetectors 

 

◙ 2. Silicon Photomultipliers (SiPM) as new photon number resolving 

detectors 

 

◙ 3. Benefits, drawbacks, and typical applications of SiPM 

 

◙ 4. Evaluation studies of SiPMs for Beam Loss Monitoring 

 

◙ 5. Modelling and analysis of comparative performance: SiPM vs 

PMT and APD 

 

◙ 6. Trends and prospects of SiPM technology for BLM and 

accelerator applications 
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Photon Number Resolution 

◙ Photon Number Resolution & Excess Noise Factor 

Burgess variance theorem 
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Schematics of AP & CT stochastic processes  
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Results Geometric chain process Branching Poisson process 

Primary event 
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Analytical results for CT & AP statistics CT & AP model results 

[1] S. Vinogradov et al., NSS/MIC 2009   λ is a mean number of successors in one branch generation 
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SiPM recovery nonlinearity 
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Performance metrics: ENF and DQE 
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Performance in DQE – various detectors 

SNR performance (relative to ideal) in nanosecond light pulse detection by 1mm
2
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Time resolution 

◙ Time resolution is combined as a sum of contributions 

Transit time spread of photon arrival, avalanche triggering, 

avalanche development, and single electron response times 

Jitter of signal amplitude fluctuations in a time scale 
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Filtered point process approach to 

amplitude fluctuations & time resolution 

Point Process

Marked Point Process

Filtered Output

Clastered Point Process
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Clastered filtered point process model 

◙ Time resolution includes all essential factors and 

combines performance in time response and PNR (ENF)  
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Time resolution: 

scintillation model & experiment 

asdasd

0 5 10 15

0.14

0.16

0.18

0.2

Poisson with SER filtering (no noise)

+ Gain and electronic noise

+ Scintillator resolution 9%

+ Crosstalk 15%

+ Crosstalk 30%

Trigger threshold (SER amplitudes)

C
R

T
, 

n
s

Most popular & demanded case study: LYSO+MPPC 
LYSO: 0.09 ns rise, 44 ns decay;  9% resolution 

        MPPC: Npe=3900, ENFgain=1.015, Pct=0.14; SPTR=0.124 ns, Vnoise=0.32 mV 

        S. Seifert et al, “A Comprehensive Mode to Predict the Timing Resolution ”, TNS, 2012. 

MPPC SER pulse shape – analytical expression     (~ 1 ns rise, ~ 25 ns decay) 

        D. Marano et al, “Silicon Photomultipliers Electrical Model: Extensive Analytical Analysis” TNS 2014 
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Arbitrary signal detection: 

rectangular pulse response model 
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Trends and prospects of SiPMs  

for BLM and accelerator applications 

◙ 1. Introduction: the best photodetectors 

 

◙ 2. Silicon Photomultipliers (SiPM) as new photon number resolving 

detectors 

 

◙ 3. Benefits, drawbacks, and typical applications of SiPM 

 

◙ 4. Evaluation studies of SiPMs for Beam Loss Monitoring 

 

◙ 5. Modelling and analysis of comparative performance: SiPM vs 

PMT and APD 

 

◙ 6. Trends and prospects of SiPM technology for BLM and 

accelerator applications 
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SiPM trends and advances 

◙ Market leaders 
Hamamatsu 

KETEK 

SensL 

FBK / AdvanSiD 

Excelitas / Perkin Elmer 

Philips (digital SiPM) 

 

◙ Design improvements (~ in a few year time scale) 
Higher Photon Detection Efficiency (30% → 70%) 

Lower crosstalk, lower afterpulsing (30% → 3%) 

Lower dark count rate (1000 → 40 Kcps/mm2) 

Faster SER, smaller pixel size (25 → 10 um) 

Larger area, larger arrays (3x3→10x10mm2, 4x4 → 16x16 channels) 

 

Latest news from 2nd SiPM Advanced Workshop and Conf . on New Development s in Photodetection, 2014 
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Hamamatsu: Through Silicon Vias 
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Hamamatsu: Low Crosstalk & 

Afterpulsing 
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Performance in DQE - MPPC series 

Pulse  duration & detection time = 10 ns 
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KETEK 

◙ Highest PDE @50 um pixels 

◙ Various geometries 

◙ 15 … 100 um pixels 
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SensL 

◙ Fast capacitive output 

FWHM < 3.2 ns @ 6x6 mm2 

◙ Large arrays / modules 

◙ Low cost  
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Philips: Digital SiPM  

(Modern active quenching SPAD array) 

 

Sergey Vinogradov      oPAC Advanced School on Accelerator Optimization       Royal Holloway University, London, UK,      July 9th, 2014  



Summary on BLM with SiPM 

◙ BLM is one of the most challenging application for SiPM 

Benefits 

―Practical & efficient (cost, compactness, Si reliability…) 

―Perfect Transit Time Resolution (as is for now) 

―Acceptable DQE within dynamic range (may be better) 

Drawbacks 

―Upper margin of dynamic range is low (design improvement) 

– Number / density of pixels (↑ 10 times) 

– Pixel recovery time (↓ 10 times) 

―Time response (bandwidth) (external measures) 

– Analog / digital SiPM output signal processing 

 

◙ BLM with SiPM: big problem with a chance to win 

And with a lot of space for new ideas, designs, and fun 
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SNR performance (relative to ideal) in nanosecond light pulse detection by 1mm
2
 PDs
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Summary on SiPM 

◙ SiPM technology: breakthrough in photon detection 

Photon number resolution at room temperature 

Silicon technology / mass production / reliability / price 

Highly competitive in short (< μs) pulse detection 

Fast progress in improvements: DQE, Dynamic range, Timing 

 

◙ Welcome to  

SiPM applications 

Scintillation 

Cherenkov 

Laser pulse 

And much more… 
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The end 

 

 

 

◙ Thank you for your attention 

 

 

◙ Questions? 

 

 

 
Sergey.Vinogradov@liv.ac.uk 
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