

3rd Generation Synchrotron Light Sources

Francis Perez

Advanced School - oPAC

3rd Generation Synchrotron Light Sources

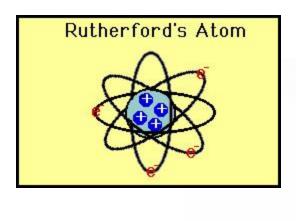
Synchrotron Radiation

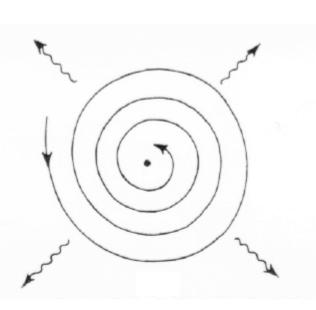
Synchrotron Light Sources 1st, 2nd, 3rd and Next Generation

Enabling technologies

Insertion devices Vacuum (NEG coating) Electronics (BPMs, LLRF, FOFB) Top UP Simulation tools

Advanced School - oPAC 3rd Generation Synchrotron Light Sources


. . .



The *theoretical basis for synchrotron radiation* traces back to the time of Thomson's discovery of the electron. In **1897**, Larmor derived an expression from classical electrodynamics for the instantaneous total power radiated by an accelerated charged particle. The following year, Liénard extended this result to the case of a relativistic particle undergoing centripetal acceleration in a circular trajectory. Liénard's formula showed the radiated power to be proportional to $(E/mc^2)^4/R^2$, where E is particle energy, m is the rest mass, and R is the radius of the trajectory

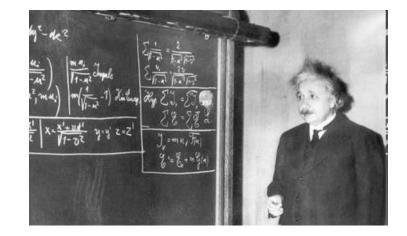
Arthur L. Robinson

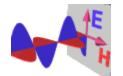
According to classical physics, an electron in orbit around an atomic nucleus should emit electronmagnetic radiation (photons) continuously, because it is continually accelerating in a curved path. The resulting loss of energy implies that the electron should spiral into the nucleus in a very short time (i.e. atoms can not exist).

Early 20th century

Advanced School - oPAC 3rd Generation Synchrotron Light Sources

Radiation from the Crab Nebulae is actually the synchrotron radiation of ultra relativistic electrons in interstellar magnetic fields *Recorded by Chinese astronomers in 1054*


Advanced School - oPAC 3rd Generation Synchrotron Light Sources



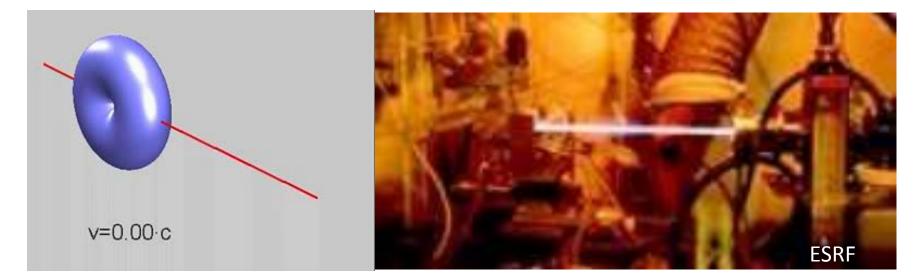
"Synchrotron radiation are the electromagnetic waves emitted by a charged particle that moves in a curved trajectory at a speed close to the speed of light"

 $\nabla \cdot \mathbf{D} = \rho$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$

Maxwell equations

+

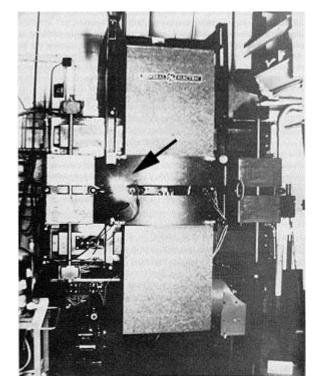
Relativity equations


Advanced School - oPAC

3rd Generation Synchrotron Light Sources

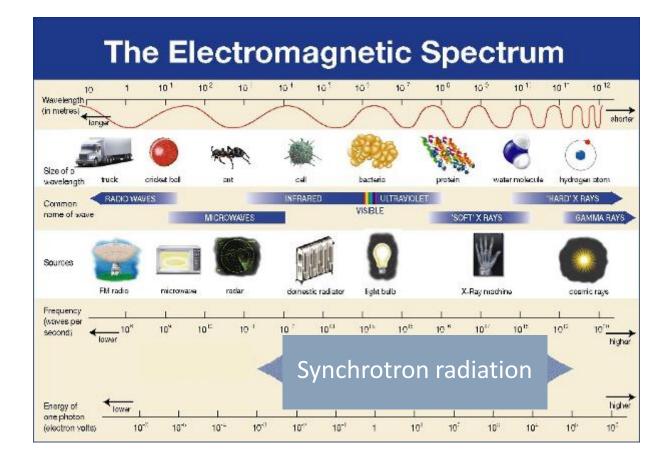
And combine both in an **accelerator**!

$$P(\lambda,\gamma,\psi_{0},\rho,\Delta\lambda,I_{\mathrm{B}},\Delta\psi,\Delta\theta) = \int_{-\psi_{0}+\Delta\psi}^{+\psi_{0}+\Delta\psi} \frac{e_{0}\Delta\lambda\Delta\theta I_{\mathrm{B}}\rho^{2}}{\varepsilon_{0}\beta\lambda^{4}\gamma^{4}} \left[1+(\gamma\psi)^{2}\right]^{2} \\ \times \left[K_{2/3}\left[\xi\left(\lambda,\psi\right)\right]^{2} + \frac{(\gamma\psi)^{2}}{1+(\gamma\psi)^{2}}K_{1/3}\left[\xi\left(\lambda,\psi\right)\right]^{2}\right] .$$

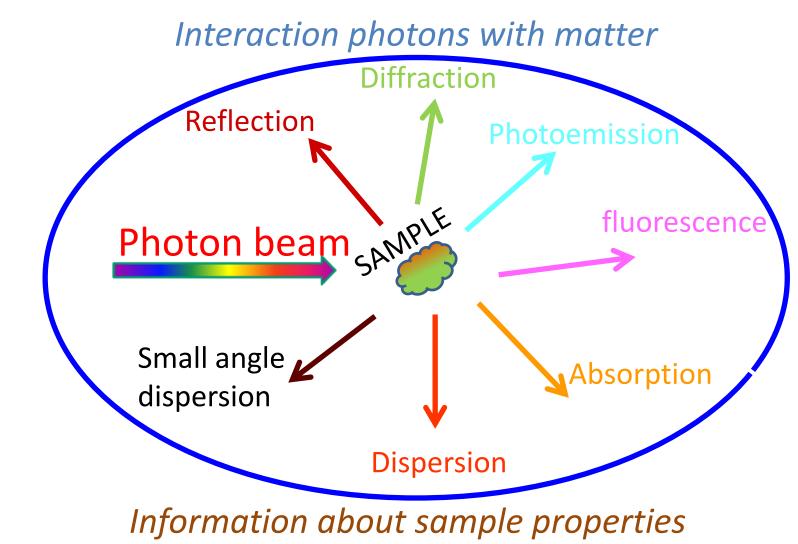


Advanced School - oPAC

3rd Generation Synchrotron Light Sources


Synchrotron light from the 70-MeV electron synchrotron at GE

Synchrotron radiation was named after its discovery in a General Electric synchrotron accelerator built in **1946** and announced in May 1947 by Frank Elder, Anatole Gurewitsch, Robert Langmuir, and Herb Pollock in a letter entitled "Radiation from Electrons in a Synchrotron".

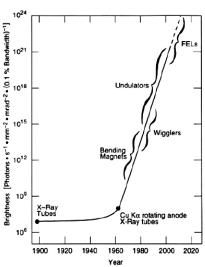

Advanced School - oPAC 3rd Generation Synchrotron Light Sources

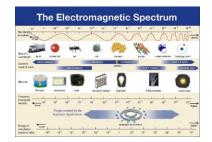
Advanced School - oPAC 3rd Generation Synchrotron Light Sources

Advanced School - oPAC 3rd Generation Synchrotron Light Sources

Why Synchrotron Radiation

Continuous Spectrum: From infrared to X-rays


E_{crit} (keV) = 0.665 E² (GeV) B(T)


Intense

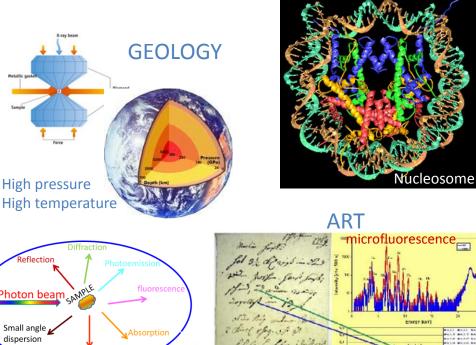
□ Highly collimated: as a narrow stable beam $\Theta(rad) = 0.51/E$ (MeV)

Polarized in the orbital plane

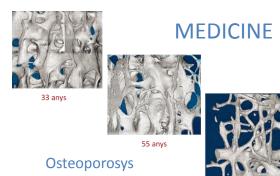
With temporal structure

Huge range of scientific disciplines,

including condensed matter physics, chemistry, nanophysics, structural biology, engineering, environmental science and cultural heritage.

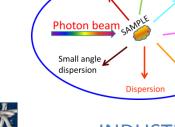

Diamond Light Source dixit

Advanced School - oPAC 3rd Generation Synchrotron Light Sources



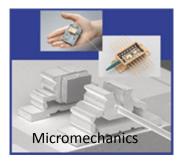
Catalysis

72 anys



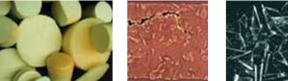
BIOLOGY

CHEMISTRY


...and more

eflectio

High pressure


INDUSTRY

Manuscript 1679 MATERIAL SCIENCE

0.02

0.02 3.05 0.61

Advanced School - oPAC

3rd Generation Synchrotron Light Sources

July 9th, 2014

6.04 0.04

Synchrotron Generations

1st generation light sources (1956 -

Accelerator built for High Energy Physics used parasitically for synchrotron radiation

2nd generation light sources (1981 -

Accelerators built as synchrotron light sources

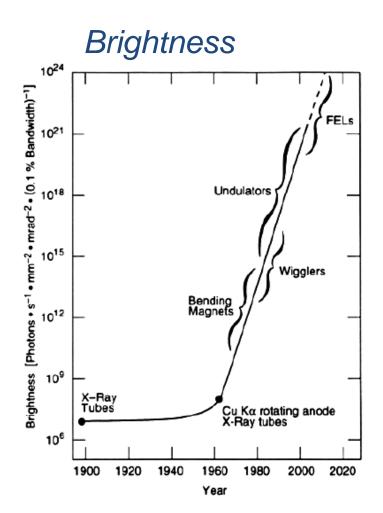
3rd generation light sources (1994 -

Optimised for high brilliance with low emittance beam and Insertion Devices

Synchrotron landmarks

- **1946** First synchrotron operates in Woolwich, UK.
- **1947** First observation of synchrotron light.
- **1956** First experiments using synchrotron light take place at Cornell, US.
- **1964** The DESY synchrotron in Germany begins operation for both high-energy physics and synchrotron-light experiments.
- **1966** First experiments in the UK at Glasgow synchrotron.
- **1968** Tantalus, 1st synchrotron light facility
- 1981 The Synchrotron Radiation Source (SRS) starts operating in Daresbury, UK. It is the first dedicated X-ray producing synchrotron source.
- 1994 The first third-generation synchrotron source, the ESRF in Grenoble, France, goes into operation.
- **2000** The SASE principle for an FEL is successfully demonstrated at DESY.
- **2001** Swiss Light Source introduce Top Up for users
- **2005** FLASH, the first FEL in the soft X-ray range, goes into operation at DESY (4th Generation LS, but not a "synchrotron"...)

2014 Max IV, "next generation" under construction

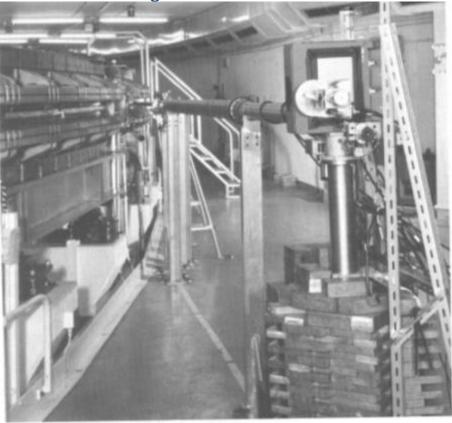

. . .

Emittance

1980	100	nmrad
1990	10	nmrad
2000	3	nmrad
2010	1	nmrad

2020 0.1 nmrad




Advanced School - oPAC

3rd Generation Synchrotron Light Sources

1st Generation LS (1956 – ...)

1968 Synchrotron Light experiment at NINA Jan Munro + Scott Hamilton (Manchester University)

1968 - First SRF experiment inside the NINA ring

Advanced School - oPAC

3rd Generation Synchrotron Light Sources

1968 Tantalus

1st Synchrotron Light Facility

"Tantalus not only pioneered the use of synchrotron radiation, but created a *research facility* where both scientists and graduate students could perform hands-on work" A. Oswald

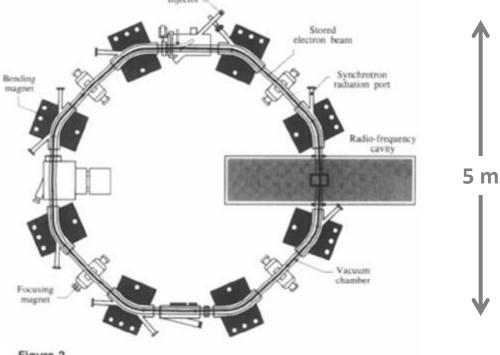


Figure 2 Schematic drawing of Tantalus without beamlines or injector.

Advanced School - oPAC 3rd Generation Sy

3rd Generation Synchrotron Light Sources

First experiments with the use of SR were started at Novosibirsk in 1973.

At the 1st Meeting on Using Electron Storage Rings - SR Sources for Experiments in Biology, Chemistry and Physics" (SR-75, December 16-18, 1975).

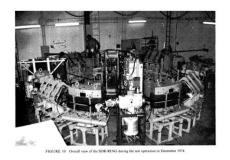
V.I. Bukhtiyarov

2nd Generation LS (1981 – ...)

SRS at Daresbury, UK 1st built accelerator for production of Synchrotron Light in the *XR energy range*

Initially conceived for using the light from the bending magnets

Bending magnet at SRS


Advanced School - oPAC

3rd Generation Synchrotron Light Sources

SOR-Ring	Токуо	Japan	1976
SRS	Daresbury	UK	1981
DCI – LURE	Orsay	France	1981
NSLS	Brookhaven	USA	1982
BESSY	Berlin	Germany	1982
Photon Factory at KEK	Tsukuba Japan	1982	
MAX-I	MAX-lab	Sweden	1986

Particle Accelerators 1976, Vol. 7, pp. 163-175 © Gordon and Breach, Science Publishers Ltd. Printed in the United Kingdom

SOR-RING An Electron Storage Ring Dedicated to Spectroscopy

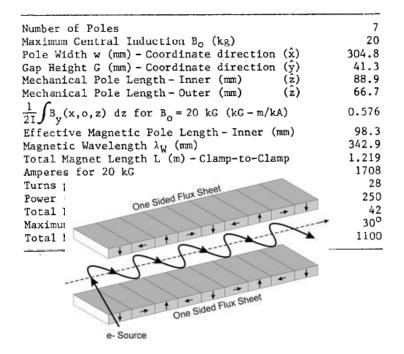
T. MIYAHARA,†§ H. KITAMURA,†¹⁾ S. SATO,‡ M. WATANABE,‡ S. MITANI,²⁾ E. ISHIGURO,³⁾ T. FUKUSHIMA, T. ISHII,⁴⁾ SHIGEO YAMAGUCHI,⁵⁾ M. ENDO,§⁶⁾ Y. IGUCHI,⁷⁾ H. TSUJIKAWA, T. SUGIURA,§ T. KATAYAMA, T. YAMAKAWA, SEITARO YAMAGUCHI and T. SASAKI§⁸⁾

Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo, Japan

(Received February 25, 1976; in final form June 1, 1976)

Advanced School - oPAC

3rd Generation Synchrotron Light Sources



SLAC-PUB-2289 March 1979 (I/A)

INITIAL OPERATION OF SSRL WIGGLER IN SPEAR*

M. Berndt,^a W. Brunk,^a R. Cronin,^b D. Jensen,^a R. Johnson,^a A. King,^a J. Spencer,^{a,b} T. Taylor,^a and H. Winick^b

Table I - SPEAR Wiggler (3) Summary

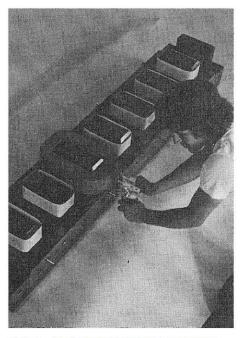


Figure 5 — Wiggler magnet for SPEAR (lower half) with seven full poles and two end half poles. Each pole is powered by a coil, only one of which is shown. (Photo by J. Faust, SLAG)

Advanced School - oPAC

3rd Generation Synchrotron Light Sources

Two examples of this impact are:

- User interest in the first SSR great that plans to build addi from bending magnets were emphasis at SSRL is now on gler lines.
- The design group planning the European Synchrotron Radiation Facility originally conceived of a 5-GeV, 565 mA machine to meet certain intensity and spectral specifications. The group is now considering an "all-wiggler machine"³ in which virtually all of this radiation used by experimenters would be produced by wigglers (up to 40 of them). With wigglers, the ring would only have to operate at 3.5 GeV with 100 mA to meet the same intensity and spectral-range specifications as the bending-magnet beams on the higher energy, higher-current ring.

³ D. Thompson, R. Coisson, J. Le Duff, F. Dupont, M. Erickson, Albert Hofmann, D. Husmann, G. Mulhaupt, M. Poole, M. Renard, M. Sommer, V. Suller, S. Tazzari, F. Wang; "The 'all Wiggler' Synchrotron Radiation

Source," IEEE Transactions on Nuclear Science, Volume 28, Issue 3, June 1981, doi: 10.1109/TNS.1981.4332037

ESRF

By Herman Winick, George Brown, Klaus Halbach and John Harris Physics Today, May 1981, Volume 34, Issue 5, pp. 50-63, doi: 10.1063/1.2914568

Advanced School - oPAC 3rd Generation Synchrotron Light Sources

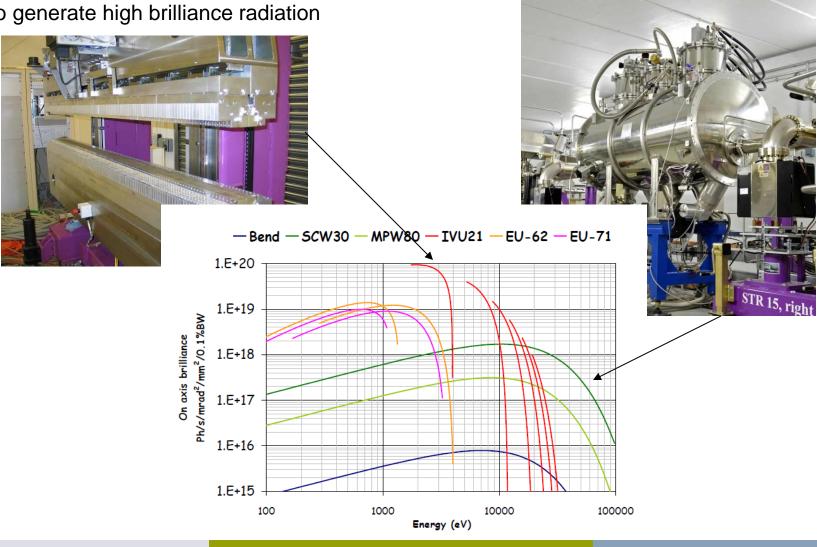
1993	ESRF	EU (France)	6 GeV
	ALS	US	1.5-1.9 GeV
1994	TLS	Taiwan	1.5 GeV
	ELETTRA	Italy	2.4 GeV
	PLS	Korea	2 GeV
	MAX II	Sweden	1.5 GeV
1996	APS	US	7 GeV
	LNLS	Brazil	1.35 GeV
1997	Spring-8	Japan	8 GeV

ESRF Contraction of the second second

Advanced School - oPAC

...

3rd Generation Synchrotron Light Sources

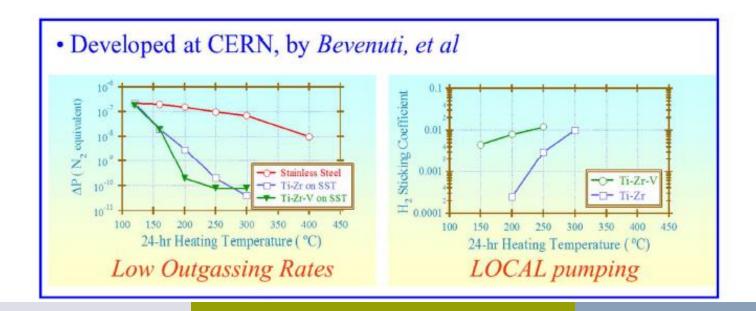


WIGGLER

UNDULATORS

to generate high brilliance radiation

to reach high photon energies


Advanced School - oPAC

3rd Generation Synchrotron Light Sources

Benvenuti C, Chiggiato P, Cicoira F, L'Aminot Y. J Vac Sci Technol A 1998;16:148.

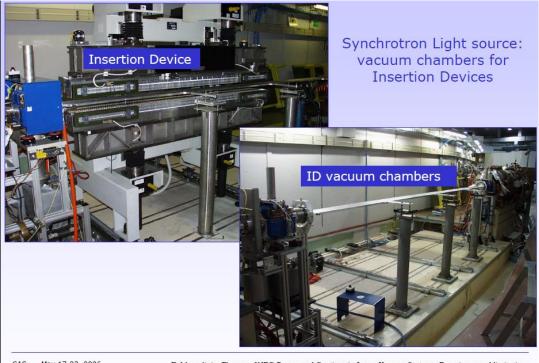
Coating the internal surface of a vacuum chamber with a Non Evaporable Getter (NEG) thin film. After thermal activation the oxide layer present at the NEG surface is dissolved, reducing significantly the secondary electron yield, the photon and the electron induced desorptions, and additionally providing high pumping speeds for the main gas species present in UHV systems.

Advanced School - oPAC 3rd Generation

3rd Generation Synchrotron Light Sources

Figure 1 – Global view of the coating facilities in building 181.

Duke Yulin Li, January 14-18 2013


6)

Advanced School - oPAC

3rd Generation Synchrotron Light Sources

Since 2002, following collaboration and the purchase of a *license from CERN*, which holds the TiZrV NEG coating technology patent, the ESRF has been producing NEG coated vacuum and now many synchrotrons are usign it for narrow gap inserion devices.

CAS May 17-23, 2006

F. Mazzolini – The use of NEG Pumps and Coatings in Large Vacuum Systems: Experience and limitations

Advanced School - oPAC

3rd Generation Synchrotron Light Sources

Design of a Diffraction Limited Light Source (DIFL)

D. Einfeld, J. Schaper, Fachhochschule Ostfriesland, Constantiaplatz 4, D-26723 Emden M. Plesko, Institute Jozef Stefan, Jamova 39, P.O.B. 100, SLO-61111 Ljubljana

In 1995, Einfeld et al. PAC

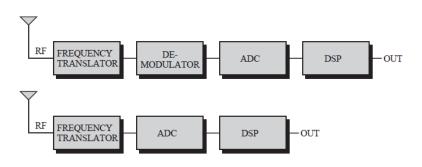
Three synchrotron light source of the third generation have been commissioned (ESRF, ALS and ELETTRA). All machines have reached their target specifications without any problems. Hence it should be possible to run light sources with a smaller emittance, higher brilliance and emitting coherent radiation. A first disign of a Diffraction Limited Light Source has been performed. It is a 3 GeV storage ring with a modified multiple bend achromat (MBA) optics as a lattice leading to a normalized emittance of $\varepsilon_x = 0.5$ nmrad.

Advanced School - oPAC 3rd Generation Synchrotron Light Sources

Several developments were needed before considering it possible, since **micron beam size required submicron beam stability**

- Orbit measurement
- Beam stability
- Beam lifetime
- Reliable simulations

-...


Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

DIGITAL RECEIVERS OFFER NEW SOLUTIONS FOR BEAM INSTRUMENTATION

R. Ursic, Instrumentation Technologies, Srebrnicev Trg 4a, 5250 Solkan, Slovenia R. De Monte, Sincrotrone Trieste

Abstract

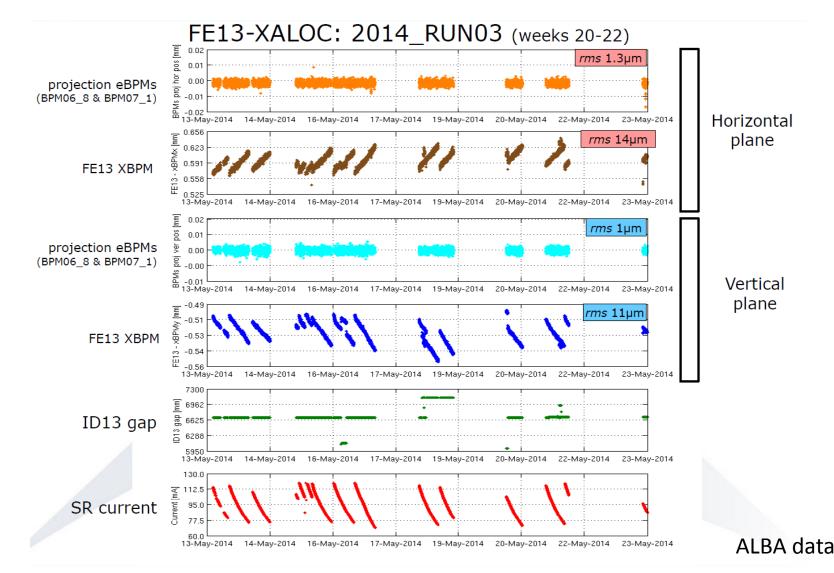
Digital receivers revolutionize today's telecommunication industry. In this article we examine the features, the applications and the opportunities of this new and promising technology from the beam instrumentation point of view.

2 THE DIGITAL RECEIVER CONCEPT

Advanced School - oPAC 3rd Generation Synchrotron Light Sources

COMMISSIONING OF THE SLS DIGITAL BPM SYSTEM

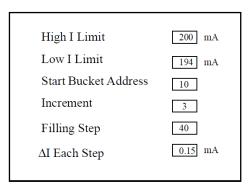
V. Schlott, M. Dach, M. Dehler, R. Kramert, P. Pollet, T. Schilcher, PSI, Villigen, Switzerland; M. Ferianis, R. DeMonte, Sincrotrone Trieste, Italy;


> Power Level [dBm] -50 -30 -80 -60 -40 -20 0 -70 -10 Resolution [mm] 0.1 turn-by-turn mode 0.01 "ramp-250ms" mode closed orbit feedback mode 0.001 10 100 0.1 1 100C Beam Current [mA]

A. Kosicek, R. Ursic, Intrumentation Technologies, Slovenia.

Figure 1: Measurement of DBPM resolution for different bandwidths: 500 kHz (green dots), 15 kHz (red squares) 2 kHz (blue triangles). Gain levels of the system are kept constant for the marked beam current ranges.

Thermal drifts


Advanced School - oPAC

3rd Generation Synchrotron Light Sources

Topping Up Experiments at SRRC

T. S. Ueng, K. T. Hsu, J. Chen, K. K. Lin, W. T. Weng* Synchrotron Radiation Research Center, Hsinchu 300, Taiwan

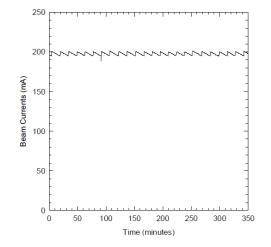


Fig. 2 Typical result of SRRC topping up mode operation.

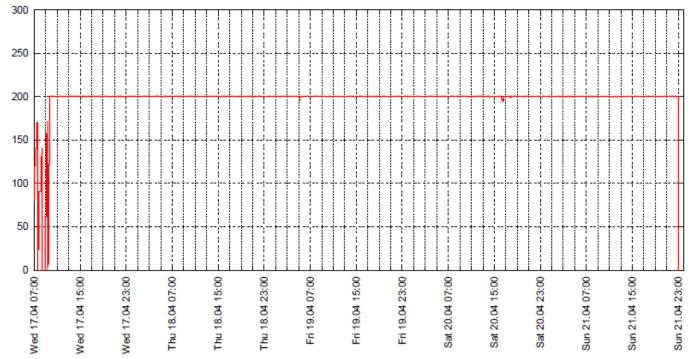
EPAC 1996

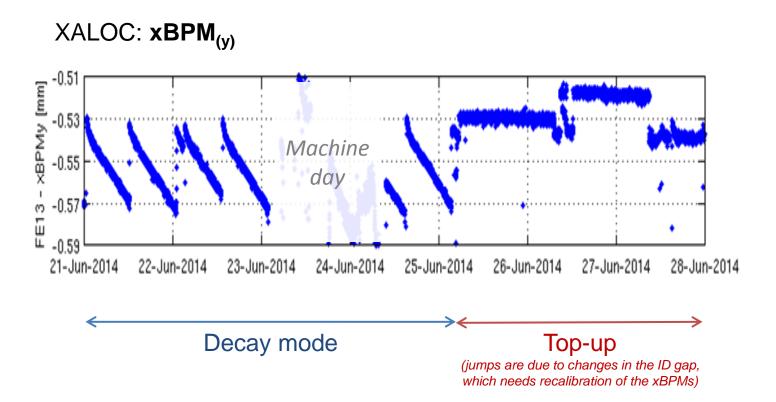
2001

Top Up for User Operation

Proceedings of EPAC 2002, Paris, France

Beamcurrent [mA] from 17. Apr 2002 to 21. Apr 2002




Figure 1: Beam current during a typical top-up run (week 16 of 2002).

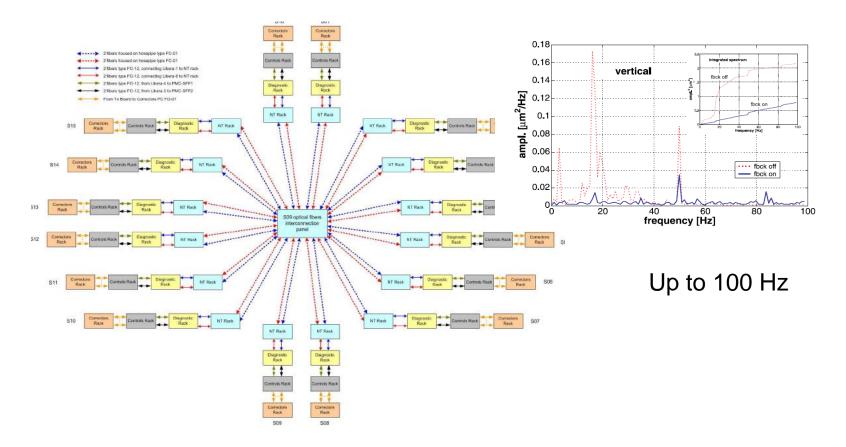
Advanced School - oPAC

3rd Generation Synchrotron Light Sources

Thermal Stability

ALBA data

Advanced School - oPAC 3rd Generation Synchrotron Light Sources



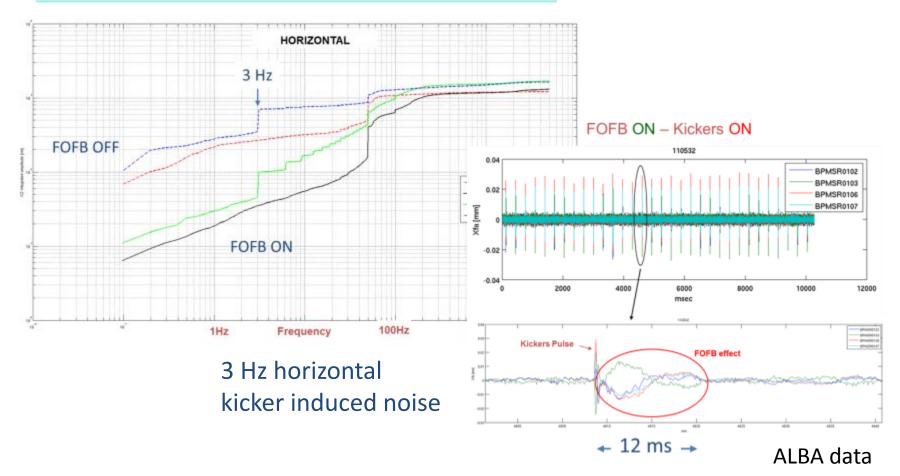
Fast Orbit Feedback

Proceedings of the 2003 Particle Accelerator Conference

COMMISSIONING OF THE FAST ORBIT FEEDBACK AT SLS

T. Schilcher, M. Böge, B. Keil, V. Schlott, Paul Scherrer Institut, Villigen, Switzerland

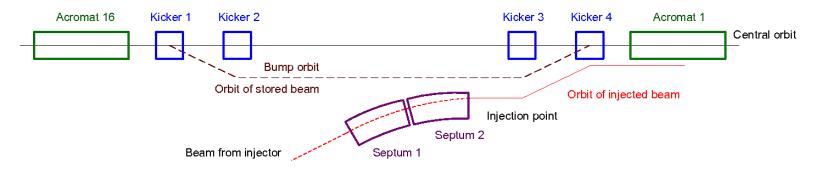
Advanced School - oPAC


3rd Generation Synchrotron Light Sources

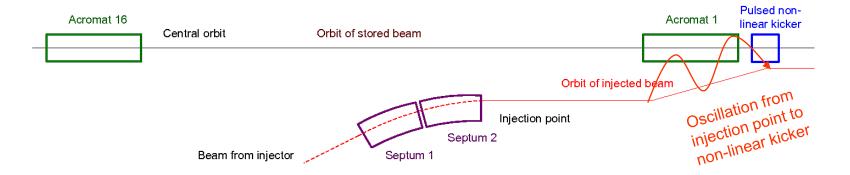
July 9th, 2014

FOFB OFF/ON - Kickers OFF/ON

10% H-Beamsize



Advanced School - oPAC 3rd


3rd Generation Synchrotron Light Sources

Conventional

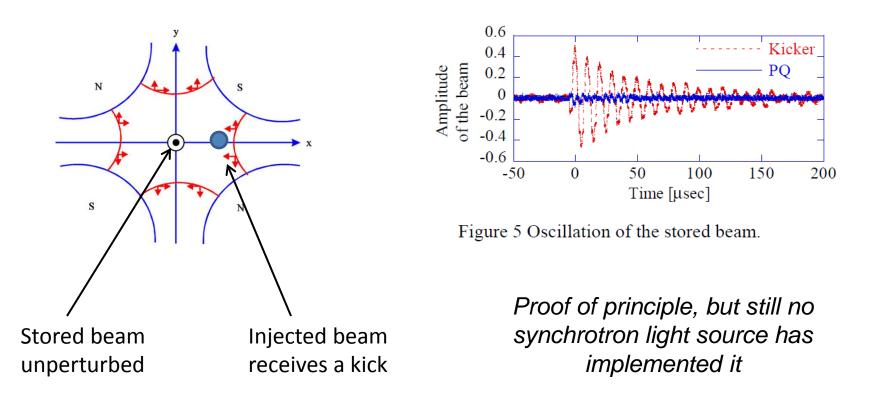
Pulsed Quad

*Phys. Rev. ST Accel. Beams 10, 123501, 'New injection scheme using a pulsed quadrupole magnet in electron storage rings', K. Harada, Y. Kobayashi, T. Miyajima, S. Nagahashi, *Photon Factory*, 2007.

Advanced School - oPAC

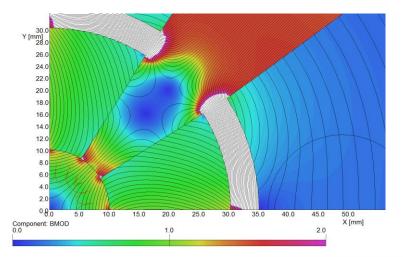
3rd Generation Synchrotron Light Sources

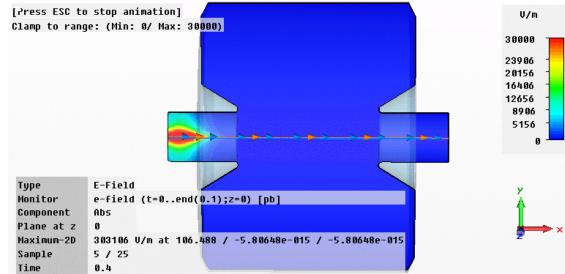
July 9th, 2014


39

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

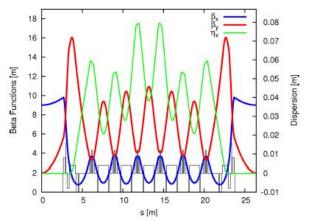
BEAM INJECTION FOR THE PF-AR WITH A SINGLE PULSED QUADRUPOLE MAGNET

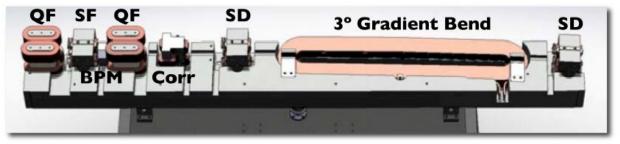

K. Harada, Y. Kobayashi, S. Nagahashi, T. Miyajima, T. Obina, A. Ueda and T. Mitsuhashi, KEK-PF, Tsukuba, 305-0801, Ibaraki, Japan


Advanced School - oPAC

3rd Generation Synchrotron Light Sources

Computation capabilities increasing rapidly, allowing reliable simulations


Advanced School - oPAC


3rd Generation Synchrotron Light Sources

MAX IV Light Source¹

- MAX IV will be the first MBAbased light source
 - 3 GeV, 528 m circumference
 - 20 7BA cells
 - Relaxed from TME condition to improve nonlinear dynamics
 - $_{-}$ ϵ_{0} =263 pm with 4 wigglers
 - In construction

Magnets are built with common yokes to reduce cost while improving relative alignment and stability.

1: S.Leemann et al., PRSTAB 12, 120701 (2009). Figures courtesy S. Leemann.

Advanced School - oPAC 3rd Generation Synchrotron Light Sources

NEG Coating to reduce vacuum chamber dimensions and use of small magnets

Multibend achromat, to reach 1 nmrad emittance

Block magnet construction, relying fully on simulations

Last generation of undulators

Тор Up

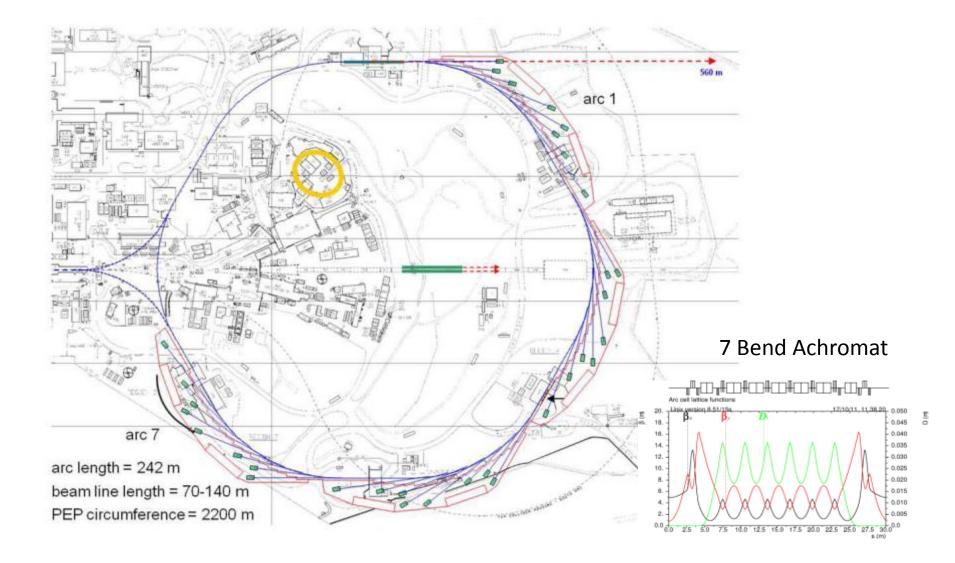
. . .

Fast Orbit Feed back

Multipole kicker injection (with standard injection as backup)

even lower emittance lattices

We need to master Nonlinear beam dynamics in order to optimise dynamic aperture and Touschek lifetime

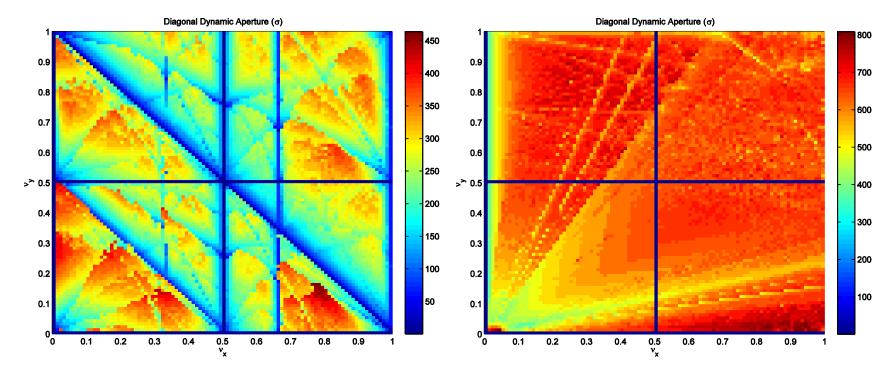

<u>MOGA</u> – Multi-Objective (multi-parameters) Genetic Algorithms

Objectives:	es: Dynamic aperture		
	Momentum aperture and lifetime		
	Tune shift with amplitude, dnx,y/dJx,y		
	Linear optics parameters		
Variables:	Sextupoles, Octupoles, Quadrupoles		

<u>Deterministic</u> – Hamiltonian resonance driving terms analysis

PEP - X

Advanced School - oPAC


3rd Generation Synchrotron Light Sources

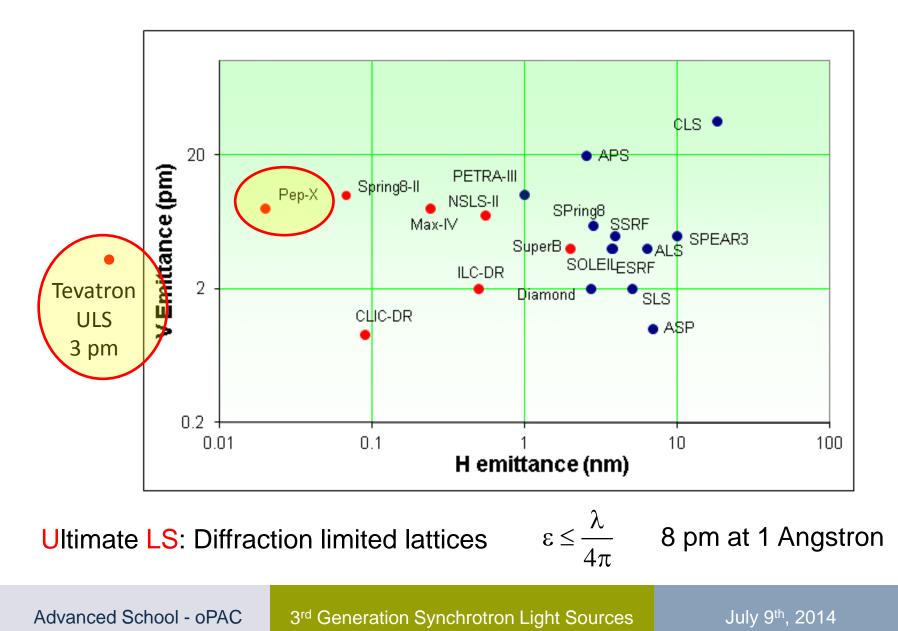
July 9th, 2014

PEP-X: Baseline (2008)

PEP-X: USR (2011)

The dynamic aperture is in unit of sigma of the equilibrium beam size. The USR design is built with <u>4th-order geometric achromats and therefore no 3rd and 4th order resonances driven by the sextupoles seen in the scan.</u>

Advanced School - oPAC 3rd Generation Synchrotron Light Sources


Next Generation Light Sources

Parameter	PEP-X	Spring8-II	TeVUSR
Beam energy [GeV]	4.5	6.0	11.0
Circumference [m]	2200	1436	6283
Current [mA]	200	300	100
Betatron tune (H/V)	113.23/65.14	141.865/36.65	403.098/222.198
Natural chromaticity (H/V)	-162/-130	-477/-191	-580/-468
Momentum compaction	4.96x10 ⁻⁵	1.55x10 ⁻⁵	4.47x10 ⁻⁶
Emittance [pm-rad]	12/12	68 (natural)	1/1
Bunch length [mm]	3	3.8	3
Energy spread	1.25x10 ⁻³	0.96x10 ⁻³	1.4x10 ⁻³
Energy loss per turn [MeV]	2.95	4.0	18
RF voltage [MV]	8.3	16	24
RF frequency [MHz]	476	508	500
Wiggler length [m]	90	50 (may be)	188
Length of ID straight [m]	5	4 5	
Beta at ID center (H/V) [m]	4.9/0.8	1.0/1.4	5/0.8

Advanced School - oPAC

3rd Generation Synchrotron Light Sources

Next Generation Light Sources

EuCARD-2: Enhanced European Coordination for Accelerator Research & Development

ome About Activities Events Results EuCARD Vacancies Contact

ACTIVITIES

WP1: MANCOM WP2: INNovation WP3: EnEffficient & WP4: AccApplic & WP5: XBEAM WP6: LOW-e-RING WP6: LOW-e-RING WP6: EuroNNac2 WP8: ICTF@STFC & WP9: HiRadMat@SPS and MagNet@CERN How to apply WP10: MAG WP11: COMA-HDED WP12: RF WP13: ANAC2 &

Activities

Learn more about the people taking part in the project here ! EuCARD-2 is divided into 13 Work Packages. A Work Package (WP) is a unit of work within the project. The WPs are theoretically independent but they were defined in order to foster synergies in EuCARD-2.

Management and Communication

• WP1: Management and Communication (MANCOM)

Networking Activities

- WP2: Catalysing Innovation (INNovation)
- WP3: Energy Efficiency (EnEfficient) &
- WP4: Accelerator Applications (AccApplic) @
- WP5: Extreme Beams (XBEAM)
- WP6: Low Emittance Rings (LOW-e-RING)
- WP7: Novel Accelerators (EuroNNAc2)

Transnational Access

- WP8: ICTF@STFC₽
- WP9: HiRadMat@SPS and MagNet@CERN

Joint Research Activities

- WP10: Future Magnets (MAG)
- WP11: Collimator Materials for fast High Density Energy Deposition (COMA-HDED)
- WP12: Innovative Radio Frequency Technologies (RF)
- WP13: Novel Acceleration Techniques (ANAC2)
 d

eucard2.web.cern.ch/

3rd Generation Synchrotron Light Sources

Advanced School - oPAC

Overview		
Timetable		
Contribution List		
Author List		
Registration		
Registration Form		
Participant List		
Accommodation		
Venue		

Workshop sessions included:

Insertion devices, magnets and alignment Instrumentation for Low Emittance Rings Kicker systems RF system design, including low-level RF system Vacuum design Feedback systems

<	Mon 05	7/05 Tue 06/05 All days	>
	Mon	5/5	Detailed view Filter
C	09:00	Opening	Dr. Yannis PAPAPHILIPPOU 🗎
		IFIC	09:00 - 09:15
		Laser based alignment systems for CLIC	Guillaume STERN 🛅
		IFIC	09:15 - 09:40
		Ultra short bunch instrumentation	Prof. Allan GILLESPIE 📄
1	10:00	IFIC	09:40 - 10:05
		Methods for sub-micron beam size measurements in circular accelerato	rs Enrico BRAVIN 🛅
		IFIC	10:05 - 10:30
		Coffee Break	
		IFIC	10:30 - 11:00
1	11:00	Extraction mirrors	Dr. Federico RONCAROLO 📄
		IFIC	11:00 - 11:25
		Trends in high stability, high precision BPM systems	Manfred WENDT 🗎
		IFIC	11:25 - 11:50
	12:00	Transverse Feedbacks at DAFNE for low emittance	Alessandro DRAGO 📄
	12.00	IFIC	11:50 - 12:15
		Dipoles with longitudinally varying field; what for?	Parthena Stefania PAPADOPOULOU 🛅
ms		IFIC	12:15 - 12:35
		Magnets for MAXIV	Martin JOHANSSON 🛅
_		IFIC	12:35 - 13:00
1	13:00	LUNCH	

Advanced School - oPAC

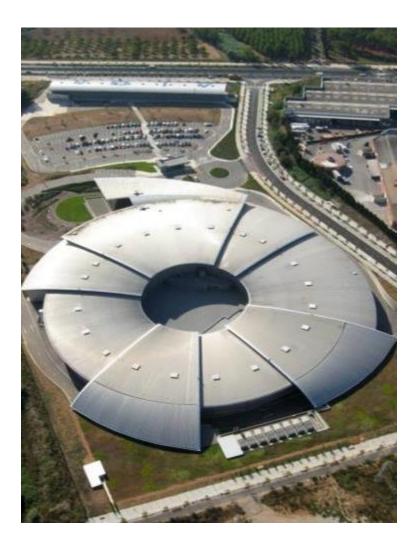
• There are over 50 synchrotron worldwide (still some of the 1st generation)

- Science with synchrotron light is in the forefront
- Synchrotron Light Sources have been and are evolving continuously
- Evolution is based on R&D effort in different fields and on the new requirements of the users

July 9th, 2014

• Still lots to do...

- <u>http://abyss.uoregon.edu/~js/glossary/bohr_atom.html/rutherford-model.html</u>
- http://www.iun.edu/~cpanhd/C101webnotes/modern-atomic-theory/
- Synchrotron Radiation, Philip J. Duke, Oxford Science Publications
- Daresbury Laboratory, 50 years. Science & Technology Facilities Council
- Accelerator Science at Daresbury the early years. Vic Suller.
- <u>http://www.lightsources.org/</u>
- X-Ray Data Booklet, Arthur L. Robinson, <u>http://xdb.lbl.gov/</u>
- <u>http://en.wikipedia.org</u>
- http://www.iop.org/publications/iop/2011/page_47511.html
- <u>http://invention.smithsonian.org/resources/fa_tantalus_index.aspx</u>
- The History of the Synchrotron Radiation Center, Eric Verbeten. History of Science, University of Wisconsin. 2009.
- The evolution of dedicated synchrotron light source, G. Margaritondo, Physics Today, 2008.
- History of Synchrotron Radiation Sources, R. Hettel, SSRL, USPAS 2003
- Wigglers and Undulators Magnets, H.Wininck et al. Physics Today, 1981.
- Ricardo Bartolini, John Adams Institute Lecture, 2010
- Top Up Operation Experience at the Swiss Light Source, A.Lüdeke, M.Muñoz, EPAC 2002
- NEG Coating of the non-standard LSS vacuum chambers, P. Costa Pinto et al. CERN TS-Note-2005-030, May 2005
- <u>www.esrf.fr</u>
- Vacuum Science and Technology for Accelerators, Yulin Li, USPAS 2013.
- F. Mazzolini, NEG pumps and coatings, CAS 2006
- Magnets Studies, M.Modena, CLIC CERN
- ICFA Workshop Future Light Sources, 2012, <u>www.conferences.jlab.org/FLS2012</u>
- and more...


Advanced School - oPAC

3rd Generation Synchrotron Light Sources

Thank you

Advanced School - oPAC

3rd Generation Synchrotron Light Sources