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Tracking Code Overview

There are a huge number of tracking codes available for different
applications

Optics

Particle Tracking

Space Charge

Linacs

EM solvers

Synchrotron Radiation

Specific processes

How do we determine the correct code for a specific problem?
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Tracking Code Overview

The choice of which code to use depends on the required accuracy,
computation speed, reputation, ease of use, what your
collaborators use ... etc

it’s very specific to the problem you’re trying to solve

I won’t be talking in any great detail about specific codes

I’ll concentrate on the underlying algorithms that many of the
codes use and the approximations that are made

I’ll try to explain how these methods were developed which gives
some insight into the underlying assumptions made

.
A simple definition of particle tracking could be:
..

......

Given a particle’s phase space coordinates at the beginning of an
accelerator element, calculate the particle’s trajectory through the

element
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The Problem

The Laws of Motion for a Newtonian dynamical system reduce to
a set of second-order ordinary differential equations

i.e. The Lorentz force equation:

ẍ =
q

m
(ẋ×B+E)

or more generally:
q̈ = f(q, q̇; t)

where q refers to the instantaneous position of a particle, and the
dot represents the derivative w.r.t time, t.

Do these equations actually contain information about trajectories?

dnewton@liverpool.ac.uk oPAC School - Tracking Codes 9th July 2014 5 / 65



The Problem

Note that we can convert any second-order differential equation
into two first-order differential equations :

q̈ = f(q, q̇; t) (1)

by the rules,

y1(t) = q(t), y2 = q̇(t)

Equation (1) is then equivalent to the first-order set

ẏ1 = y2 (2)

ẏ2 = f(q, q̇; t) = f(y1, y2; t) (3)
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The General Problem

The solution to the Cauchy (or initial value problem) states:
For any set of first-order differential equation of the form

ẏj = fj(y1, y2, . . . , ym; t), j = 1, . . . ,m

if fj and the partial derivatives ∂fj/∂yk exist and are continuous
in some region R and for some time t in an interval T about a
fixed value t0, there exists a unique solution

yj(t) = gj(y
0
1, . . . , y

0
m; t0; t)

with the property

yj(t
0) = gj(y

0
1, . . . , y

0
m; t0; t0) = y0j

Do these equations actually contain information about trajectories?...
YES! They contain all the information about the trajectory
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The Problem

The solution is guaranteed to exist for a finite interval of time
about the point t0 and can be extended forward or backward in
time as long as the fj are continuous and the yj(t) remain within a
region R.

The first-order differential equations constitute a set of ‘marching
orders’

Once the initial time t0 and the initial starting point y0 are
specified, the trajectory is completely determined

The trajectory can be determined by solving the set of first-order
differential equations

dnewton@liverpool.ac.uk oPAC School - Tracking Codes 9th July 2014 8 / 65



The Problem

Unfortunately, there are very few systems that have closed form
analytical solutions. However, a complete knowledge of all possible
allowed trajectories is not necessary.

It often suffices to have a qualitative description of the types of
allowed motion supplemented by a detailed knowledge of
representative ‘orbits’ - most easily obtained by numerical
integration.

dnewton@liverpool.ac.uk oPAC School - Tracking Codes 9th July 2014 9 / 65



Numerical Integration

If we write our first-order equations as y = (y1 = q, y2 = q̇) and
ẏ = f(y, t)

We’d like to integrate ẏ from some initial time t0 to some time T

We start by dividing T into N equals steps of duration h, so that
Nh = T and tn = t0 + nh

h should be small compared to the characteristic time scale of the
physical system we are studying (i.e. for a pendulum problem, h
should be much smaller than the oscillation period)

Our goal is to find yn = y(tn)

dnewton@liverpool.ac.uk oPAC School - Tracking Codes 9th July 2014 10 / 65



Euler Integration

Leonhard Euler (1707-1783): Swiss mathematician and Physicist

The Euler method (1768-1770) is a basic method if integrating
differential equations, given an initial value.
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Euler Integration

We know that the solution vectors yn exist and are uniquely
specified by y0

Given y0 we proceed one step at a time using Taylor expansions:

y1 = y(t1) = y(t0 + h) = y0 + hẏ0 +O(h2)

or
y1 = y0 + hf0 +O(h2)

We know y0 and t0 so we can compute f0 and y1 (ignoring the
O(h2) error)

Further steps can be calculated using the rule:

yn+1 = yn + hfn
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A Numerical Example

Consider the differential equation

ẍ+ x = 2t

with initial conditions x(0) = 0, ẋ(0) = 1
We can convert this into a first-order set by writing y1 = x, y2 = ẋ,
and find

f1(y, t) = ẏ1 = y2

f2(y, t) = ẏ2 = 2t− y1

and

y0 = (0, 1)

yn+1 = yn + hfn
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A Numerical Example

Explicitly, given the initial coordinates y0 = (y1,0, y2,0) we calculate for
the first step

f1 = y2,0

f2 = 2t0 − y1,0

to find the values at the second step:

y1,1 = hf1

y2,1 = hf2

we then update the time t1 = t0 + h , f = (f1, f2) using the updated
values y1,1, y2,1 and t1 and iterate n times
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A Numerical Example

If we step the time to t0 + T in N steps, at each step we make a
local error of order h2

Note that the error is of order h2 - it is proportional to h2 with an
unspecified proportionality constant

The cumulative error is of order Nh2

The Euler Method is a first order integrator

We see that if the step size h is made sufficiently small the error in
y(t0 + T ) can be made arbitrarily small (in principle)

The Euler method is a rather crude integrator that evaluates f
once at each step - it could be improved by increasing the number
of evaluations at each step
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Runge-Kutta Integration

Runga-Kutta methods are an important family of iterative
methods used to numerically solve ordinary differential equations

They were developed around 1900 by the German mathematicians
M. Kutta and C. Runge

Martin Wilhelm Kutta
(1867 - 1944) Carl David Tolmé Runge

(1856 - 1944)
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Runge-Kutta Integration

The general idea of Runge-Kutta methods is to evaluate f at
several points in each step and take a weighted average of the
results in such a way that yn+1 is correctly estimated up to some
error that is proportional to some power of h (and therefore quite
small)

Deciding which points to use in f and how to weight them is a
complicated procedure (see the references at the end if you’re
interested)

There a huge number of different Runge-Kutta methods

The methods are labelled by the order of the local accuracy - an
mth order method is:

locally correct through order hm

has local errors of order hm+1
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Runge-Kutta Integration

One method is the RK3 method

locally correct through order h3

local errors of order h4

yn+1 = yn +
1

6
(a+ 4b+ c)

where

a = hf(yn, tn)

b = hf(yn +
a

2
, tn +

h

2
)

c = hf(yn + 2b− a, tn + h)

Higher order methods are available

The higher the order the more work must be done in the
computation
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Several trajectories are predicted and each prediction is used to
correct the initial estimation

An example of a predictor-corrector method
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Runge-Kutta Integration

We mentioned earlier that in principle the error can be made
arbitrarily small by decreasing the step size h

Practically, we’re limited by the finite precision of the computation

yn+1 = yn + hfn

If the h becomes too small, the quantity hfn becomes much
smaller than yn and the local error in yn+1 is dominated by
‘round-off’ errors.

If the sign of each error is random the cumulative error grows as
√
N

If the sign is systematic the cumulative error grows as N
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A Numerical Example

Consider the differential equation we saw earlier:

ẍ+ x = 2t

with initial conditions

x(0) = 0, ẋ(0) = 1

In this case the differential equation is sufficiently simple that we can
integrate it analytically to give the exact result:

y1 = x(t) = 2t− sin(t)

y2 = ẋ(t) = 2− cos(t)

Choosing a step size of h = 0.1 and integrating from t = 0 to t = 1.5,
the RK3 method can be used to compare the accuracy of the results
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A Numerical Example (RK3)
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The plot of the residuals (top)
shows an accuracy of ∼ 10−4 is
achieved using a rather modest
number of steps (h = 0.1)

The accuracy as a function of
step size h is shown (lower).
The error decreases (with a
gradient of ∼ 3) as the step
size decreases. As the step-size
becomes too small, the
numerical round-off errors
dominate the calculation and
the error grows linearly with N

dnewton@liverpool.ac.uk oPAC School - Tracking Codes 9th July 2014 22 / 65



Numerical Integration

Note that if we can use Hamiltonian mechanics (rather than
Newtonian):

H = c
√

(p− qA)2 +m2c2 + qφ

the equations of motion are given directly as two first-order differential
equations

dxi
dt

=
∂H

∂pi
,
dpi
dt

= −∂H

∂xi

which can be integrated numerically using the same procedures
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Numerical Integration

Numerical integration provides a robust method of tracking
through arbitrary electro-magnetic fields, but...

It is computationally expensive

there is a trade off between the accuracy/time/round-off which
you should be aware of

Certain sets of first-order equations are ‘stiff’ - numerically
unstable to integration unless the step-size is very small (even if
the underlying solution is smooth)

It would be obviously beneficial if the equations of motion could
be integrated analytically to give a ‘more-or-less exact’ solution...
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Strong Focusing

The Cosmotron (1952): Brookhaven’s 3 GeV weak-focusing proton
synchrotron
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Strong Focusing

Courant, Livingstone and Snyder (l-r)
“By reversing the direction of some of the Cosmotrons C-shaped
magnets (originally arranged facing outward around the machines

circular track), a young Brookhaven physicist named Ernest Courant
calculated that the resulting proton beam would focus much more

tightly. The strong-focusing principle was born.” 1

1
Taken from

http://scienceblogs.com/brookhaven/2010/06/25/finding-focus-for-the-worlds-a/
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Strong Focusing

“ Livingston has said that the idea of strong focusing arose [when], he
asked Courant to consider whether they could turn some bending
magnets of the new Cosmotron around... Operation at the highest
energies was limited by changes in the relative gradient n. Livingston
suggested turning some magnets around to cancel this variation of
gradient and asked whether this could be done without terrible damage
to the focusing of the beam. Courant ... found that focusing was in
fact improved and that alternating the focusing could lead to an
entirely new class of accelerators. ”

F.T.Cole - “O Camelot! A Memoir of the MURA Years”, 1994
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The Equations of Motion for a drift space

Lets start with the simplest example: a field free drift region, of length
L. The Hamiltonian (in accelerator coordinates) is:

H =
δ

β0
−

√(
δ − 1

β0

)2

− p2x − p2y −
1

β2
0γ

2
0

=
δ

β0
− d

with the transverse equations of motion:

dpx
ds

= −∂H

∂x
= 0

dx

ds
= −∂H

∂px
=

px
d

Since the momenta, the energy (and d) are all constant these can
be integrated directly
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The Equations of Motion for a drift space

The exact solutions for the equations of motion in a drift space are:

x1 = x0 +
px0
d

L

px1 = px0

where, d =

√(
δ − 1

β0

)2

− p2x − p2y −
1

β2
0γ

2
0

Note that the equations are non-linear - the final values for the
co-ordinates have a non-linear dependence on the momenta
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The Equations of Motion for a drift space

A drift space is one of the (very) few examples of a Hamiltonian
that can be solved exactly

In nearly all other cases of accelerator components we have to
make some approximations to obtain a convenient form for the
solutions for the equations of motion

The solution can be linearised by expanding the solutions as power
series to first order in the dynamical variables...

Alternatively, the Hamiltonian can be expanded to second order in
the dynamical variables (the paraxial approximation).

Its generally a better approach to find an exact solution to an
approximate Hamiltonian, rather than an approximate solution to
an exact Hamiltonian

If this is done carefully, symplecticity can be preserved
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Matrix Tracking

Assuming the fields can be described by a vector potential with no
transverse dependence (A = (0, 0, As)) where the scalar potential goes
to zero (φ = 0), A general Hamiltonian can be written as

H =
δ

β0
− (1 + hx)

√(
δ +

1

β0

)2

− p2x − p2y +
1

β2
0γ

2
0

− (1 + hx)as

H ∼ δ

β0
+ (1 + hx)

(
p2x
2D

+
p2y
2D

−D − as

)
+O(4)

where h is the curvature, as = (q/P0)As and D =
√

1 + 2δ
β0

+ δ2. This

approximation is valid for

p2x + p2y
2D2

� 1
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Matrix Tracking

H ∼ δ

β0
− (1 + hx)

(
p2x
2D

+
p2y
2D

−D − as

)

Truncating the Hamiltonian at second order will give linear
transfer matrices, zf = Rzi
Truncating at higher order gives the non-linear dynamics

i.e. TRANSPORT method used in MAD8

zj,f =
∑
k

Rjkzj,i +
∑
kl

Tjklzj,izl,i + . . .
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At around the same time
that strong-focusing was
discovered, a prototype
FFAG was being studied at
MURA

Jackson Laslett was using
an early IBM computer
with a Runge-Kutta
integrator to study the
non-linear particle
dynamics in this machine.

‘the chief advantage of our
theory was that it was
sufficiently complicated
that it was hard to show it
will not work’*

K.R.Symon, ‘MURA Days’, PAC 2003, WOPA003. In fact the model worked very well
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With his code Laslett was
able to construct a
Frequency Map of the
FFAG dynamics

Studied early examples of
chaotic motion

He was aware that the RK
method didn’t conserve
phase-space:
‘non-Liouvillean errors
were present’

Were these chaotic motions
‘real’ or an artefact of the
integration method?
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Symplectic Integration Schemes

Suppose we have a function of 2N phase space variables

f = f(xi, pi)

such that f has no explicit dependence on the independent variable, s.
However the value of f will evolve with s, because the values of the
dynamical variables evolve with s:

df

ds
=

N∑
i=1

dxi
ds

∂f

∂xi
+

dpi
ds

∂f

∂pi

Using Hamilton’s equations, this becomes:

df

ds
=

N∑
i=1

∂H

∂pi

∂f

∂xi
− ∂H

∂xi

∂f

∂pi
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Symplectic Integration Schemes

df

ds
=

N∑
i=1

∂H

∂pi

∂f

∂xi
− ∂H

∂xi

∂f

∂pi

If we define an operator : g : for any function g(xi, pi) :

: g :=

N∑
i=1

∂g

∂xi

∂

∂pi
− ∂g

∂pi

∂

∂xi

then, as long as f and H have no explicit dependence on s, we can
write the evolution of f as

df

ds
= − : H : f

: H : is a Lie operator
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Symplectic Integration Schemes

df

ds
=

N∑
i=1

∂H

∂pi

∂f

∂xi
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∂xi

∂f

∂pi

If we define an operator : g : for any function g(xi, pi) :

: g :=

N∑
i=1

∂g

∂xi

∂

∂pi
− ∂g

∂pi

∂

∂xi

then, as long as f and H have no explicit dependence on s, we can
write the evolution of f as

df

ds
= − : H : f

: H : is a Lie operator
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Lie Transforms

Now suppose we expand, the function f about the point s0:

f |s0+∆s = f |s0 +∆s
df

ds

∣∣∣∣
s0

+
∆s2

2

d2f

ds2

∣∣∣∣
s0

+ . . .

=

∞∑
n=0

∆sn

n!

dnf

dsn

∣∣∣∣
s0

which we can write as,

f |s0+∆s = e∆s d
ds f |s0

or

f |s0+∆s = e−∆s:H:f |s0
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Lie Transforms

The operator e−∆s:g: is known as a Lie Transform, with generator
g.

Applying a Lie Transform with the Hamiltonian as a generator, to
a function f produces a transfer map

The function f can be any function of the dynamical variables

If we set it equal to each of the dynamical variables in turn we can
construct a full map for the system
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Lie Transforms

This method requires only differentiation - it can be applied even
when the equations of motion cannot be analytically integrated

Any Lie transform represents the evolution of a Hamiltonian
system, so it’s guaranteed to be symplectic

The full transfer map is given in the form of a power series, which
usually does not have a closed form

If the power series is truncated, symplecticity is lost
This isn’t always important, as long as the power series converges

The technique can be modified to produce a symplectic map in
closed form

This usually requires an approximation of the Hamiltonian
→ Symplectic Integrators
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Symplectic Kicks

The Hamiltonian for a sextupole magnet, in one degree of freedom, can
be written as

H = −
√
1− p2x +

1

6
k2x

3

Applying the Lie Transform e−L:H: (representing a sextupole with
length L) produces a power series with infinitely many terms. But we
can write the Hamiltonian as the sum of a drift term and a kick term:

H = Hd +Hk

The Lie transforms e−L:Hd: and e−L:Hk: can be written exactly in
closed form, so could we approximate the sextupole as a drift followed
by a kick and transform each term separately?
i.e.:

e−L:H: = e−L:Hd+Hk: ' e−L:Hd:e−L:Hk:
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Symplectic Kicks

It turns out2 that

e−L:H: = e−L:Hd+Hk: = e−L:Hd:e−L:Hk: +O(L2)

but because each transform has a closed form solution, neglecting the
additional O(L2) terms still gives a symplectic representation. A better
approximation can be made by writing the Hamiltonian as the sum of
three terms (drift-kick-drift):

H =
1

2
Hd +Hk +

1

2
Hd

e−L:H: = e−L:Hd/2+Hk+Hd/2: ' e−L:Hd/2:e−L:Hk:e−L:Hd/2:

which gives a closed form symplectic map , with errors of order L3 - a
second-order symplectic integrator

2using the Baker-Campbell-Hausdorff and the Zassenhaus formulae
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Symplectic Tracking Timeline

PATRICIA: 1976 kick code

RaceTrack: 1984 - Transverse Variable kick code

SIXTRACK: 1984 - 6D kick code

Still used for DA calculations at CERN

MARYLIE: 1985 - 3rd order Lie Maps (symplectic numerical
tracking)

TEAPOT: 1987 - first kick integrator to use the full Hamiltonian
(no paraxial approximation)

COSYINFINITY:2000 - High order Hamiltonian expansion,
symplectification using generating functions

PTC: 2008 - Full Hamiltonian, symplectic tracking, implemented
in MADX, BMAD...

dnewton@liverpool.ac.uk oPAC School - Tracking Codes 9th July 2014 42 / 65



Symplectic Tracking

Analytical integration using Lie Algebra results in an analytical
transfer map

If the Lie transform has a closed form (kick codes) the resulting
map is symplectic

If the map must be truncated at some high order, symplecticity is
lost

But the symplectic error can be made very small
It gives a very accurate description of the dynamics

Symplectic integrators are available for s-dependent fields
(undulators, fringe fields) - i.e. Wu-Forest Robin

Numerical integration with these integrators gives a symplectic
description of the dynamics (up to machine precision)

dnewton@liverpool.ac.uk oPAC School - Tracking Codes 9th July 2014 43 / 65



Numerical Integration Overview

Advantages:

Robust
Can use full Hamiltonian (no approximations)
Flexible - arbitrary fields (fringe fields etc.)
Symplectic Integrators are available (eg Wu-Forest-Robin) but
approximate the Hamiltonian

Disadvantages:

slow
Generally not symplectic
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Matrix Tracking Overview

Advantages:

Robust - well benchmarked
Very fast
Linear tracking is symplectic

Disadvantages:

Generally approximates the Hamiltonian (paraxial)
Non-linear terms aren’t symplectic
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Kick-Code Tracking Overview

Advantages:

Robust - well benchmarked
Very fast
Symplectic

Disadvantages:

Assumes no longitudinal field gradient
Approximates the Hamiltonian (how good is the approximation?)
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Tracking Methods Overview

We’ve covered a lot of different tracking methods so far

They all have advantages and disadvantages

Most tracking codes available now, were written for a very specific
application, so if you use them

Be aware of the approximations used in the code, and make sure
they are suitable for your application
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Tracking Methods Overview

Relativistic approximation - assumption that v ∼ c

small angle approximation - is this valid?

Energy - does the particle energy change? Is this handled
correctly?

Is symplecticity important?

Not only useful for long term tracking
If you’re studying non-symplectic effects (space-charge, wakefields)
it may to be useful to use a symplectic code

Reference problems - how are the canonical variables defined?

Elegant uses x′ rather than Px/P0

Longitudinal variables are often defined differently in different codes
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Example: Off momentum tune in cyclotrons

MAD curve uses the expanded Hamiltonian

PTC uses the full Hamiltonian

(PTC is now implemented in MADX)
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Example: USR @ FLAIR (Antiproton Ring)

z / m
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The USR is a proposal for an electro-static low energy anti-proton
ring at FLAIR

E ∼ 20 keV → non-relativistic, energy changes appreciably in the
ES elements

Comparison with COSY and numerical integrator (CVODE)
tracking through a spherical deflector
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Example: G-2 Muon decay line

P/GeV
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Immediately after the proton target, the beam is mixture of
protons, neutrons, pions etc. with a HUGE momentum spread

Initially the decay line was implemented as a MAD8 Lattice

The decay line select particles of the correct rigidity, so its not
obvious, looking at the end of the line that there is a problem!
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Example: G-2 Muon decay line
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Comparison of tracking up to the first dipole using MAD8 and
PTC
The phase space distributions at the end of the line are similar
MAD8 predicts ∼ 30% more muons at the end of the decay line
Also benchmarked with RK integrator and BMAD
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Example: ASTRA v PARMELA in the LCLS injector

Twiss parameters, beam spot-size are very similar

Very different phase-space distributions

After a LOT of benchmarking, it turned out that the the
longitudinal distributions are defined differently in these codes and
weren’t being converted correctly

In the simulations, the bunches were traversing a linac at different
phases, which lead to different space-charge blow-up
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Tracking Codes

There have been many tracking codes written over the years...
AT, BETA, BMAD, COMFORT, COSYINFINITY, DIMAD,
ELEGANT, LEGO LIAR, LUCRETIA, MAD8,MADX, MARYLIE,
MERLIN, ORBIT, PETROS, PLACET, PTC, RACETRACK, SAD,
SIXTRACK, SYNCH, TEAPOT, TRACY, TRANSPORT, TURTLE,
UAL, ZGOUBI, ...
Depending on your application, they may or may not be suitable...

dnewton@liverpool.ac.uk oPAC School - Tracking Codes 9th July 2014 54 / 65



Single Particle Tracking

MAD8 - TRANSPORT equations, based on expanded
Hamiltonian (paraxial approximation)

ZGOUBI - Numerically integrates the Lorentz equations,
truncated Taylor maps

GPT - 5th order Runge-Kutta

SIXTRACK - kick code (symplectic, paraxial approximation)

PTC - Symplectically integrates full Hamiltonian for hard-edge
elements (implemented in MADX, BMAD)

COSY,MARYLIE, BMAD - Truncated Taylor Maps using
Differential Algebra (may be ‘symplectified’)
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Tracking Methods in BMAD

In the BMAD code the
tracking method used can
be set for individual
elements
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Tracking Code Overview

Personal preference plays a large part in determining which code
to use

Ease of use, familiarity all reduce the chance of making a
modelling error

Using a new code often involves an initial steep learning curve
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Tracking Codes I

‘Universal’ Lattice Codes

Offer flexible methods for defining lattices

Useful for optimisation and tuning of lattice parameters

Critical components may need simulating in specialised codes
(wakefields, space charge etc.)

i.e. MAD, Elegant, LUCRETIA
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Tracking Codes II

Provide the user with a toolbox (library) which contains the
needed elements and procedures

Examples in C++, F90, Pascal

Very flexible, can be tailored to a specific problem

Easy to link with other codes

The Accelerator Markup Language / Universal Accelerator Parser
Project may help in translating lattice files between codes

i.e. BMAD, COSYINFINITY, PTC, MERLIN
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Tracking Codes III

Many codes now have a high-level interface (PYTHON,
Mathematica, Matlab)

Input/output and processing can be dealt with using built in
functions

Easy to link with other codes/implement a control system

i.e. PyZgoubi, MAD, ELEGANT, GPT, ASTRA
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Tracking Codes IV

Programs tailored to simulate specific processes

i.e. Space Charge (ASTRA, GPT), CSR ( CSRtrack), Ionisation
cooling (ICOOL), FEL codes (Genesis, PUFFIN), Wake fields
(LUCRETIA)

Generally used to model critical sections of a lattice

Need integrating with other codes for end-end simulations

.
With all tracking codes, a deep understanding of how the physical

processes are implemented (and approximated) is crucial
........
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Beam Tracking Codes

Single particle dynamics is a mature field with many useful tools

Codes have been benchmarked against experiments with good
agreement if the accelerator model is refined enough

For today’s problems, perhaps the single particle approach is
becoming less valid:

Beam-beam, space-charge, wakefields, IBS, Halo physics, CSR, FEL
interactions, SR production

The increase in computing speed and massively parallelised codes
mean the description of the beam dynamics is becoming more and
more sophisticated
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Overview

The choice of tracking code used should be driven by the
underlying physics

What approximations are made in the underlying algorithms?

Is symplecticity important?

Will you need to swap data between codes?

Do you understand how the variables are defined?

If speed is an issue, it may be you’ll have to live with some
approximations

You should still be aware of the approximations and try to ascertain
how they will affect on your results

Benchmarking results using codes with different approximations is
ALWAYS a good idea

But remember, if two codes agree they could both be wrong...
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Some useful references

The physics manual for whatever tracking code you’re currently
using

‘Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics’, Alex J. Dragt

Contains a useful introduction to numerical integration and more advanced chapters on Lie
Algebra. Available from http://www.physics.umd.edu/dsat/dsatliemethods.html

‘Beam Dynamics in High Energy Particle Accelerators’, Andy Wolski, Imperial College Press

(2014)

Very good introduction to Matrix tracking and Lie Algebra (also discusses a symplectic RK
integrator)

Most introductory accelerator text books (e.g. Lie, Wiedemann) will give a useful introduction to
tracking with linear matrices

‘Geometric Integration for Particle Accelerators’, E Forest, J.Phys A:Math.Gen (39)

2006,5321-5377

An ideosycratic view of the history and development of symplectic integrators

‘O Camelot - A memoir of the MURA years’, F.T. Cole

A personal memoir of an accelerator physicist in the 1050s and 1960s
Very good overview of the physics, personalities and the politics at the time
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Some achievements in the 1950s and 1960s:

Many of these concepts were years (decades?) away from being
practically realised
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