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Optimization  

( )y f x=

Find x0 such that  
 
for all  

x0
The function f(x) is called, variously,  
an objective function,  
fitness function (maximization), 
cost function (minimization)  

Multi-objective optimization: 

( ) ( )f fx x0 #

a x bj j j# #

( ( ), ( ), )min f fx x1 2 f -> Pareto front 
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Example: Multi-turn injection (into the GSI SIS) 

- The beam from the linac is injected in 
  horizontal phase space until  
  the machine acceptance is reached 
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- Loss (at the septum) should be as low as  
  possible -> activation, damage, vacuum 
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Measured current evolution in SIS18 

Trev=5 µs 

≈20 turns 

I = f0I0t

(Multi-) objectives: 
- stacked current (maximize) 
- beam loss (minimize) 
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Example: Multi-turn injection 
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( , , , )Q n,x x fh f x

Sabrina Appel, http://arxiv.org/abs/1403.5972   

( , , , )I Q n,x x ff x

MTI efficiency: nI
Iloss

0
h =

ninjected turns: 

I0current from linac: 

Parameters: 

horizontal emittance: xf

horizontal tune: Qx

bumper ramp: x

Objectives: 

Measured vs. simulated MTI efficiency 
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Numerical models and codes  
(for intense hadron beams) 

PATRIC (O. Boine-F., S. Appel, V. Kornilov, et al.):  
o  3D particle tracking with self-consistent 2.5D  
      space charge solver and wake fields 
o  MADX maps, arbitrary rf bucket forms  
o  Implemented for multi-core CPUs using MPI. 

pyorbit (A. Shishlo, S. Cousineau, J. Holmes, et al.)   
o  https://code.google.com/p/py-orbit/ 
o  Teapot tracking 
o  2D/3D space charge models 
o  MPI 

Tracking codes: ELEGANT, MADX, ….  
 
Tracking + Beam-Beam codes: BEAMBEAM3D, ….   
 
Tracking + space charge/wakefields: pyORBIT, PATRIC 
 
For MTI simulations we use pyORBIT and PATRIC at GSI. 
 
Challenges for employing tracking codes in optimization schemes:   
Model reduction, Performance !!!!!  -> Parallel processing, GPUs  
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Numerical accelerator optimization 

Accelerator problems: Multi-dimensional, Nonlinear, Multi-objective,  
Several ‘optimum’ solutions (choice of the accelerator designer is required) 

Traditional, gradient-based methods: 
 - may get stuck in a local minimum/maximum  
   (and never come out). 
- require local gradients 
- work if initial guess is already close to the optimum  
 
Parameter scans: 
- only applicable for 1D or 2D parameter spaces  

Find x0 such that  
 
for all  

( ) ( )f fx x0 #

a x bj j j# #

Optimization problem: 

f(x) evaluated by simulation code 
(or measured in the machine) 

Genetic algorithms: Search for solutions using techniques inspired by 
natural evolution, such as inheritance, mutation, selection, and crossover. 
In between fast converging gradient methods and slow converging  
random search methods.   
    
Can be combined with gradient-based methods (for refinement). 
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Genetic Algorithms (GA) 

Variable  
Set of variables 
Set of points 
Changing variable values 
Exchange of variable values 
Iteration 
Value of objective function  

The 2006 NASA ST5 spacecraft antenna.  
This complicated shape was found by an  
evolutionary computer design program to  
create the best radiation pattern  
(from Wikipedia). 

Analogy: 

Gene               
Individual         
Population       
Mutation 
Recombination       
Generation 
Fitness 
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A practical example: travel cost minimization 

Travel solutions 
 
[7, 5, 2, 3, 1, 6, 1, 6, 7, 1, 0, 3] 
 
[7, 2, 2, 2, 3, 3, 2, 3, 5, 2, 0, 8] 
 
... 
 
... 
 
[0, 4, 0, 3, 8, 8, 4, 4, 8, 5, 6, 1] 
 
[5, 8, 0, 2, 8, 8, 8, 2, 1, 6, 6, 8] 

Cost 
 
4394 
 
4661 
 
... 
 
... 
 
7845 
 
8088 

Mutation: 

Crossover: 
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Typical Structure of GA Optimization  

Select 
independent 

variables 

Initialize 
population 

generation=0 Evaluate 
objective 

Assign 
fitness 

End 
condition 

? 

Select pairs  

Recombination  

Mutation  generation++ 

, , ,x x x1 2 3 fQ V

, , ,f x x x1 2 3 fQ V

Done 
Yes 

No 
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GA application:  
Dynamic aperture (DA) maximization 

A. Hofler et al., Phys. Rev. ST-AB 16, 010101 (2013) 

Single-objective, 2D, nonlinear optimization problem: ( , )DA Q Qx y

maximize the correctable dynamic aperture over an en-
semble of machines with randomly generated realistic
magnet alignment and field errors. However, the same
algorithm as in this conceptual demonstration can be ap-
plied and offers the same advantages over an optimizer that
searches for a local extremum as discussed earlier.

Another noteworthy observation is that, due to the low
dimensionality of this optimization problem, we are able
to search the whole tune space. However, the optimal
working point still falls into one of the stability regions
discussed in Sec. III A, which validates the procedure for
the search domain reduction used in that section.

Figure 11 illustrates the improvement to the dynamic
aperture attained by optimizing the working point: the
initial dynamic aperture from Fig. 8 is compared to the
largest-area dynamic aperture obtained in the optimization,
corresponding to the blue !’s in Figs. 9 and 10.

In comparison, a systematic scan of the entire 2D frac-
tional betatron tune space, at a resolution of 0.01 would
require 1002 ¼ 10 000 function evaluations. By employing
a GA in our search, we reduced the required number of
function evaluations to a few hundred—a computational
savings of at least 1 order of magnitude.

C. Decoupling of the beam optics in the injector

The Continuous Electron Beam Accelerator Facility
(CEBAF) is a superconducting facility located at
Jefferson Lab. It provides a continuous electron beam of
up to 6 GeV for use for nuclear physics experiments in up
to three experimental halls simultaneously. (See the layout
in Fig. 12.)

The beam is generated at the electron gun equipped with
a GaAs photocathode. A circularly polarized laser beam
impinges on this cathode and allows for polarized electrons
to be produced with a longitudinal polarization in excess of
85% and currents as high as 200 !A.

The electrons have an initial kinetic energy of 130 keV,
and are then accelerated, bunched, and compressed in the
injector to an energy of a few tens of MeV depending on
the linacs’ energy gains and the desired energies in the
experimental halls. After the injector, acceleration to the
experiment energies is achieved in two superconducting
linacs, set in an antiparallel configuration and connected by
asynchronous recirculation arcs. CEBAF can thus deliver
beams between 0.6 and 6 GeV. The delivery of very high-
quality beams with energy spread less than 3–4! 10#5

and geometric emittances on the order of 10#9 mrad is
routinely achieved.
Parity-violating experiments are the most challenging in

terms of beam quality amongst the wide range of experi-
ments performed at CEBAF. They require the helicity-
correlated beam positions and angles to be controlled at
the level of nanometers/nanoradians. Most of these corre-
lations originate at the laser table and, while they can be
controlled, they cannot be completely eliminated. To reach
the desired level of accuracy, one has to rely on the natural
adiabatic damping occurring during acceleration to reduce
the helicity-correlated position and angle differences to the
desired tolerances. One of the implications to the beam
transport is that one has to suppress the transverse coupling
in the injector proper to prevent projected emittance
growth from occurring [50].
Coupling in the machine originates mainly from the SRF

cavities. Skew quadrupoles are installed in the linacs be-
tween the rf zones to compensate for this. The injector is
instrumented with eight skew quadrupoles located along
the beam line where the SRF cavities are installed. The
most damaging emittance growth potentially occurs in the
injector proper since the beam is accelerated from 130 keV
at the cathode to 60 MeV for a standard one-pass parity
experiment. Here we describe the scheme we have adopted
for correcting such transverse coupling in the injector
transport line.
To recover from the emittance growth that occurs be-

cause of the x-y coupling, one has to alter the strengths of
both the skew and normal quadrupoles. One approach is to
measure the 4! 4 transport matrix across the SRFmodules
and then use the skew quadrupoles to decouple the system
and normal quadrupoles to rematch the beam line [51].
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FIG. 11. Comparison of the dynamic aperture for the initial
ð"x;"yÞ ¼ ð0:31; 0:32Þ working point (red line) to that for the
optimal (0.994, 0.001) working point marked with the blue !’s
in Figs. 9 and 10 (blue line).

FIG. 12. Schematic of the CEBAF accelerator.
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resonance grid and the running experience of the existing
machines. The dynamic aperture in Fig. 8 is reasonably
large, especially considering the large compensated values
of the natural chromaticities. However, due to the large
beam extension required to achieve the ambitiously small
IP! values at theMEIC, the horizontal and vertical sizes of
the dynamic aperture correspond to only!4"x and!15"y,
respectively. Since a practical design typically requires a
dynamic aperture above 6" in both transverse dimensions
with all imperfections and realistic effects taken into ac-
count, further optimization of the dynamic aperture even
within this simplified model is required.

We combine the GA described in Sec. II with ELEGANT

code [28] as a function evaluator. The independent varia-
bles are the two fractional parts of the betatron tunes, #x

and #y, while the objective function is the dynamic aper-
ture, evaluated as described above. The domain of the two
independent variables is 0 to 1. Therefore, this is a 2D,
single-objective, nonlinear optimization problem.

2. Results

Figure 9 shows the results of the GA run with 64
individuals and 20 generations, sampling the entire
½0; 1#2 domain in fractional betatron tunes. The optimal
value of the dynamic aperture is found in the tenth genera-
tion (after about 640 function evaluations). By the sixth
generation, the optimal value becomes prevalent, signaling
that the algorithm has converged on the location of the
optimal fractional betatron tunes. Figure 10 plots the dy-
namic aperture data from Fig. 9 as a function of the frac-
tional betatron tunes. From the clustering of the points near
the (1, 0) point in Fig. 10, it is evident that the GA has
converged to this region, having identified it as the
one with optimal fractional betatron tunes. The largest
dynamic aperture occurs at a working point of ð#x;#yÞ ¼
ð0:994; 0:001Þ. Precipitous drops in the area of the dynamic
aperture in Fig. 10 correspond to the points too close to the
(1, 0) integer resonance.

The choice of the optimal working point for the beam-
beam interaction described in Sec. III A and for the maxi-
mum dynamic aperture discussed in this section are
determined by different processes. Nevertheless, in com-
paring the two cases, one has to consider that the ring
model used in this section includes two IPs, or two super-
periods; therefore, all phase advances are doubled in com-
parison to Sec. III A, which only assumed one IP. The two
cases then demonstrate similar optimal working points
close to half-integer resonances. This is a general feature
of linear or properly linearized systems; the most stable
dynamics in these systems are near half-integer resonances
because they are devoid of other low-order resonances (of
order' 2 and above). This result confirms that the model’s
chromaticity compensation scheme successfully sup-
presses the nonlinearity introduced by the final focus.
Selecting a working point so close to half-integer reso-
nances is perhaps not realistic, especially for ion beams
that do not have synchrotron damping. To find a more
realistic solution, the model has to be extended to include
magnet errors, beam-beam interaction, IBS, etc.
In fact, in a practical design optimization, one has to
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FIG. 9. Maximization of the dynamic aperture for the MEIC
ion collider ring: 64 individuals sampling the ½0; 1#2 domain,
evolved using GA over 20 generations. The blue ( denotes the
maximum value of the dynamic aperture.
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FIG. 10. Dynamic aperture versus the fractional betatron tunes
for the simulation in Fig. 9.
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optimization such as a systematic parameter scan using
the problem discussed in this section as an example.
Note that in this instance, a systematic parameter scan
requires k4 function evaluations, where k is the number
of evenly spaced discrete values for each of the four
parameters (independent variables) and together uni-
formly sample the 4D search space. Extending to N
dimensions, the number of function evaluations is kN ,
and it is easy to see that this quickly becomes computa-
tionally prohibitive. In this N ¼ 4 example, the ranges of
parameters are quite small—[0.5, 0.55]—so the problem
is marginally tractable by a (very coarse) parameter scan;
this is not the case in the other applications presented
here, which is why parameter scans are not implemented
for those. Figure 6 compares the results obtained for the
example case using GA-based optimization (top panel)
and a systematic parameter scan (bottom panel). It is
evident that the GA-based optimization is appreciably
more powerful and efficient. More to the point, if one
recalls that the first generation in a GA optimization
(denoted by the leftmost red dot in the top panel of
Fig. 6) randomly samples the entire allowable parameter
space, then it is clear that the parameter scan even at the
k ¼ 7 resolution (the rightmost blue point in the bottom
panel of Fig. 6) does not provide any improvement over
such random sampling. (Note the curve for the parameter
scan in Fig. 6 is not necessarily monotonic because as
the resolution of the scan increases by 1, a different set
of interior points is sampled; the proper refinement in
resolution follows the sequence k ¼ 2; 3; 5; 9; . . . .)

4. Discussion

This study demonstrates that the GA is very efficient in
finding the near-optimal working point for the collider. We
recognize that the present physical model may be too
simplistic to be used for the design of the real accelerator:
it does not include nonlinear aspects of the collider rings,
magnet imperfections, intrabeam scattering (IBS), the
damping due to electron cooling of the ion beam, crab
crossing by high integrated voltage SRF cavities, etc.
These studies are currently under way. All the augmenta-
tions to the beam-beam simulations listed above will be
implemented at the level of individual beam-beam simu-
lations, and therefore confined to the function evaluator.
However, the concept and implementation of the GA will
remain intact. Therefore, this study serves as a proof of
concept that GAs can efficiently optimize the collider
working point.

Further sophistication of the GA-based beam-beam
simulations will include the implementation of a multi-
objective search in which additional objective functions
will assure that the optimal working point is in a stable
‘‘neighborhood’’ in the tune space. Another important
aspect of the collider that will be considered is its long-
term operational stability. At the price of sacrificing the

self-consistency of the physical model, the much-faster
strong-weak simulations can enable the study of the me-
dium- to long-term stability. This type of simulation will
allow for optimization of the integrated luminosity, which
is of greatest importance to the experiments.

B. Maximizing the dynamic aperture in a collider ring

In this section, we illustrate application of the GA to
maximizing the dynamic aperture of a collider ring by
optimizing its betatron tunes. Note that, to a large extent,
the dynamic aperture optimization can be considered in-
dependently of the beam-beam interaction discussed in
Sec. III A due to their different interaction ranges: the
dynamic aperture is determined by dynamics of large-
amplitude particles while the beam-beam interaction pri-
marily affects the beam cores. Ultimately, of course, one
would like to study these effects in combination.
To achieve the highest possible luminosity in a collider,

the colliding beams should be focused to a small spot at the
IP. Conceptually, the main challenge of designing a col-
lider interaction region (IR) is compensation of chromatic
effects associated with this strong focusing while preserv-
ing an adequately large dynamic aperture (a region in the
transverse plane of stable particle motion).
One approach to IR design is presented in [38–40]. It

involves installation of a dedicated chromaticity com-
pensation block (CCB) between a beam extension sec-
tion (BES) and a final focusing block (FFB) (see Fig. 7).
In the CCB, certain symmetries of the beam orbital
motion and dispersion are created using a symmetric
arrangement of dipoles, quadrupoles, and sextupoles
[40]. Namely, the particle’s horizontal and vertical beta-
tron trajectory components must be either symmetric or
antisymmetric with respect to the center of the CCB,

FIG. 7. Linear optics of the ion ring’s IR.

ALICIA HOFLER et al. Phys. Rev. ST Accel. Beams 16, 010101 (2013)
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GA combined with the 
ELEGANT tracking code  
for the function evaluator 

( , ) ( . , . )Q Q 0 994 0 001x y =

, :Q Qx y tunes 

Interaction section in a proposed e-A collider. 
Dynamic aperture caused by sextupoles for 
chromaticity correction.   

Dynamic aperture from ELEGANT 
Optimized tunes:  

20 generations of 64 individuals 
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GA example: Optimum tunes with beam-beam   

A. Hofler et al., Phys. Rev. ST-AB 16, 010101 (2013) 

that tune footprints for both beams stay comfortably
away from the unstable resonance lines. It is also interest-
ing to note that the solutions obtained by the GA neces-
sarily show favoring for the tune footprint with the proper
orientation—away from the resonant lines. For all working
points with low luminosity, one or more lower-order
unstable resonance lines passes through the tune footprint.

The main factors limiting the closeness of the betatron
tunes to the integer and half-integer resonances are their
sensitivity to machine imperfections (alignment and field
errors) and the particle loss due to single-particle scattering
(Touschek and intrabeam). These are not a part of the

physical model implemented here, which is why the
near-optimal working point is so close to the half-integer
resonance.
A more massive search, which includes more genera-

tions and individuals, can yield an even better working
point. This is illustrated in the top panel of Fig. 6 which
shows the improvement over design luminosity for each
generation of a GA-based optimization where 128 indi-
viduals are evolved for 20 generations within the region
[0.5,0.55] in each tune. This yielded the working point,
ð!x;!yÞ ¼ ð0:525; 0:546Þ for the electron beam and
(0.501, 0.501) for the proton beam, with luminosity of
7:53$ 1033 cm%2 s%1, which exceeds design luminosity
by 39%. However, it is not always obvious that additional
computational work expended on a more detailed and
longer search (here about 6 times) justifies the improve-
ment in performance (here about 9%).
It is interesting to compare the results from a

GA-based optimization with those from a traditional

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.5  0.52  0.54  0.56  0.58  0.6

ν y

νx

e-beam design tune
p-beam design tune

e-beam tunes
p-beam tunes

FIG. 5. Tune footprint for 4000 randomly selected representa-
tive particles from each beam for the near-optimal working point
denoted by a blue $ in Fig. 4, corresponding to ð!x;!yÞ ¼
ð0:53; 0:548Þ for the electron beam and (0.501, 0.527) for the
proton beam. The electron beam is shown in blue, and the proton
in red. The location of the near-optimal working point is denoted
with two crosses, one for each tune.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  512  1024  1536  2048  2560

0 4 8 12 16 20

Im
pr

ov
em

en
t o

ve
r d

es
ig

n 
[%

]

# function evaluations

Generation Number

GA

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

81 256 625 1296 2401

3 4 5 6 7

Im
pr

ov
em

en
t o

ve
r d

es
ig

n 
[%

]

# function evaluations

Scan Resolution k

Parameter scan

FIG. 6. Top panel: Improvement over the design luminosity
after each generation for a GA-based optimization with 20
generations of 128 individuals in each. The improved working
point is about 9% better than the one found in Fig. 4. Bottom
panel: Improvement over design luminosity after a systematic
parameter scan with resolution k in each parameter.

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5

Lu
m

in
os

ity
 [1

033
 c

m
-2

 s
-1

]

Generation Number

FIG. 4. GA at work: beam-beam simulation of the MEIC with
five generations of 64 individuals each, sampling the 4D tune
space ½0:5; 0:55'4. The green line represents the design luminos-
ity. The optimization locates a near-optimal working point in
fewer than 300 simulations (blue $).

INNOVATIVE APPLICATIONS OF GENETIC ALGORITHMS . . . Phys. Rev. ST Accel. Beams 16, 010101 (2013)

010101-7

Resonance diagram with optimum 
tunes for e and A beams. 

bunch of the opposing beam with which it collides. The
code is capable of running in both strong-strong mode, in
which both colliding beams suffer perturbation by the
beam-beam interactions in collisions, and weak-strong
mode, in which only the ‘‘weak’’ colliding beam can be
perturbed. BEAMBEAM3D code is parallelized so as to take
full advantage of parallel computer architecture.

In the current implementation, we keep the synchrotron
tunes fixed, and search the betatron tune space: x and y
tunes for each beam, thus yielding a 4D problem.
Therefore, this is a 4D, single-objective, nonlinear optimi-
zation problem.

This formalism can easily be extended to include also
the synchrotron tunes, as well as the particle spin.

2. Restricting the search space

A systematic scan of the multidimensional tune space in
search of an optimal working point is computationally
prohibitively expensive. For example, covering each of
the N betatron tunes with a modest resolution of 0.01
would require 102N function evaluations to cover the entire
space; in our problem, we search over N ¼ 4 betatron
tunes only, which still results in staggering 108 multihour
function evaluations. Without restricting the search space,
even the GA implemented here would require much larger
populations and many more generations to provide a rea-
sonable working point, due to the vastness of the parameter
space.

We restrict the search space to the most stable regions
determined in the following way. Figure 3 shows a grid of
both sum (denoted by black lines) and difference (denoted

by green lines) resonances in the betatron tune space of up
to order 7. The sum resonances always lead to dynamic
instability due to resonant amplitude growth. Therefore,
one generally wants to stay far away from them. The
difference resonances, on the other hand, preserve a com-
bination of the integrals of motion. They just cause ex-
change between the degrees of freedom, which, barring the
situations such as beam envelope beating, keeps the motion
bounded. Resonant lines are defined by m!x þ k!y ¼ n,
where !x and !y are the betatron tunes, m, k, and n are
integers, and n is the order of the resonance. The shaded
regions are entirely devoid of sum resonances (black lines).
It is also generally considered a bad idea to operate the
collider with nearly integer tunes, which is why the regions
near (0,0) and (1,1) are excluded from the search. The 16
regions (each with its mirror on the other side of the central
point) cover only about 3.6% of the entire 2D tune space,
which reduces the 4D search space and computational load
by a factor of nearly 1000. With this realization, the search
of the multidimensional parameter space becomes compu-
tationally tractable.

3. Results

Given that each function evaluation may require hours of
computing time on eight nodes of Jefferson Lab’s com-
puter cluster, it is imperative that the new algorithm locates
a good working point within as few steps as possible. Each
beam’s tune can be located in any of the 16 regions of the
tune space, which means that there is a total of 162 ¼ 256
areas of the tune space available for search. Randomly
populating all of the 256 areas leads to solutions which
slowly converge toward the near-optimal solution, in the
sense that the most consequent generations are concen-
trated in the region in betatron tune space just beyond the
half-integer resonance: ½0:5; 0:55$2, for each of the two
colliding beams. The working point obtained in this com-
prehensive search exceeds design luminosity but is not
optimal. To that end, we further restrict our search space
to the single high-performing region [0.5,0.55] in each of
the four tunes. This choice is also corroborated by the fact
that PEP-II and KEK-B empirically converged to working
points near the half-integer resonance. Figure 4 shows the
luminosity for five generations consisting of 64 individuals
which initially randomly sample ½0:5; 0:55$4 space. Within
only 320 function evaluations, the algorithm located a
working point at ð!x;!yÞ ¼ ð0:53; 0:548Þ for the electron
beam and (0.501, 0.527) for the proton beam with lumi-
nosity of 7:05' 1033 cm(2 s(1, which exceeds design
luminosity corrected for the hourglass effect of 5:42'
1033 cm(2 s(1 by 30%. The enhancement of the collider’s
luminosity beyond the design value is due to the decrease
in the beams’ transverse size at the IP.
For the near-optimal working point, we compute the

tunes of the subset of particles from each beam, and super-
impose them on the resonance lines in Fig. 5. It is evident

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ν y

νx

FIG. 3. A grid of sum (black) and difference (green) reso-
nances up to 7th order. Shaded regions mark restricted search
space for the GA, which is completely devoid of black resonance
lines. The dots denote the optimal working point: red represents
the betatron tunes for the proton beam, and blue for the electron
beam.

ALICIA HOFLER et al. Phys. Rev. ST Accel. Beams 16, 010101 (2013)

010101-6

L nf N N
*

e A

rb f
= t

Luminosity: Single-objective, 2D, nonlinear optimization problem: ( , , , )L Q Q Q Qx
A

y
A

x
e

y
e

GA combined with  
the BEAMBEAM3D  
tracking code  
as the function  
evaluator 

Obtained optimum machine tunes with  
incoherent tune distribution 



09.07.14  |  Department of Electrical Engineering and IT |  Accelerator Physics  |  Oliver Boine-Frankenheim  |  12 
 

Multi-objective genetic algorithms (MOGA) 
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solution is nondominated by any other feasible objective
function value. Since dominance, by definition, categorizes
a set of objective function values, and optimal solutions are
nondominated, it serves as a key criterion whereby multi-
objective optimization with GAs is implemented.

Equation (2) illustrates another feature of multiobjective
optimizations—conflicting objectives—that differentiate
them from single-objective optimizations. In the example,
the conflict is that minimizing f1ðx1; x2Þ causes f2ðx1; x2Þ
to increase. When objectives conflict, the optimization has
more than one equally valid solution, and these individuals
form a Pareto-optimal front in search space. Each solution
on this front is feasible, nondominated with respect to the
other solutions on the front, and dominates at least one
feasible individual in the search space. In Fig. 1, A and C
are on the Pareto-optimal front. Although B and C are
nondominated with respect to each other, B is not on the
Pareto-optimal front since it is dominated by A. The task
for a multiobjective optimization is to identify the Pareto-
optimal front (a set of individuals), and dominance-based
fitness functions are the best tools for this search.

Note that not all multiobjective optimizations have con-
flicting objectives. For instance, such a problem can be
constructed from Eq. (2) if for the same bounded domain
f1ðx1; x2Þ is minimized, and f2ðx1; x2Þ is maximized. The
problem essentially reduces to a single-objective optimi-
zation to maximize f2ðx1; x2Þ. Its one solution at ðx1; x2Þ ¼
ð0:1; 5Þ gives ðf1; f2Þ ¼ ð0:1; 60Þ in Fig. 1 and forms a
single-point Pareto-optimal front. Using a dominance-
based fitness function, the problem can be solved either
as a multiobjective or a single-objective optimization
because the optimal solution to either shares the same

characteristics: the solution dominates other feasible solu-
tions and is nondominated.
The process a GA follows to identify the Pareto-optimal

front for a multiobjective optimization is to first randomly
generate a population of individuals to evenly sample the
search space. The objective and fitness functions for each
individual are evaluated. The GA then uses competition to
select candidate individuals to form the mating pool. The
fitness values of randomly chosen contestants from the
generation are compared, and a copy of the contestant
with the stronger fitness value is placed in the mating
pool. Fitter individuals will win more competitions, have
more copies of themselves in the mating pool, and there-
fore have a greater influence on the next generation. Pairs
of individuals, parents, are taken from the mating pool to
produce offspring pairs to populate the next generation.
The offspring, modified copies of the parental gene
pairs, are created through a process which simulates repro-
duction, whereby genes undergo: recombination—value
exchange for the same independent variable—and
mutation—single independent variable value adjustment.
The value exchange in recombination can be a direct swap
where the parent values selected for exchange are used
without modification in the offspring. Alternatively, values
used in the offspring can be functions of the selected
parental values. Both recombination and mutation opera-
tions can be designed to enforce bounded-domain con-
straints. These operators also can be optionally switched
off in an optimization, and whenever recombination is
turned off, the GA method devolves to a Monte Carlo-
based optimization. In a GA, the process of evaluating
fitness and creating offspring is then repeated until desir-
able results are reached.
The choice of the population size should achieve a

balance between the richness of genes and the speed of
convergence. Too few individuals may not produce enough
gene variety for successful search of a good optimum
point. On the other hand, too many individuals may slow
down the speed of convergence by increasing the number
of function evaluations, thereby precluding the search from
benefiting from the increased gene variety.
For the studies reported here, the Strength Pareto

Evolutionary Algorithm 2 (SPEA2) [20] is used because
it has produced good results in previous efforts at using
GAs in accelerator design [2]. It is an elitist strategy.
Because individuals are selected at random to participate
in mating pool competitions, it is possible for some fitter
individuals to be omitted from the mating pool for lack of
being chosen to participate in a competition. Without
intervention, these individuals and their influence on the
optimization outcome are lost. An elitist strategy reserves
the fitter individuals from each generation to supplement
the set of individuals considered in subsequent generations
to seed the mating pool, in essence, giving the optimization
‘‘memory.’’ In SPEA2, reserved individuals are placed in
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Multiobjective Optimization: DA and Chromaticity  

GA-based algorithms are adept at both single- and mul-
tiobjective optimization. In contrast to the first approach
which involved constructing a single-objective problem
description for the multiobjective system, the complete
multiobjective optimization can be solved with GA meth-
ods. This leads to greater confidence in the solutions
found because fewer simplifying assumptions are required.
GA-based algorithms, also, can quickly identify promising
regions in the global search space, a marked improvement
over parameter scans.

In this section, we present two GA-based multiobjective
optimizations. First, we reconsider the single-objective
dynamic aperture optimization (III B) seeking to addition-
ally minimize chromatic effects. The second optimizes the
brightness of an rf gun-based injector and uses constraints
based on model evaluator results to restrict the search. Both
problems are sufficiently complex that parameter scans are
untenable, yet they are tractable with GA methods.

A. Optimization of the dynamic aperture and
chromaticity correction in a collider ring

Section III B discusses challenges associated with or-
ganizing a low-! IP in a collider and describes an approach
to mitigate them using field and orbital symmetries in the
IR design [41]. This approach is applied to the challenging
case of a high-chromaticity small-! MEIC ion collider
ring [40,42]. In Sec. III B 1, the GA is used to maximize
the dynamic aperture by finding the optimal fractional
betatron tunes "x and "y in the range between 0 and 1.
The optimum ð"x;"yÞ working point is found to be (0.994,
0.001). However, that single-objective optimization does
not consider the impact of varying the betatron tunes on the
ring’s momentum acceptance. After compensating the lin-
ear chromaticities, the momentum acceptance is deter-
mined by the higher-order ones, which depend on the
choice of the working point. In general, the smaller the
2nd-order chromaticities, the larger the momentum accep-
tance. Large 2nd-and higher-order chromaticities drive
particles into beam resonances causing their loss. This
necessitates an approach in which the GA is used to
optimize dynamic aperture and momentum acceptance
simultaneously.

1. Optimization problem

We use ELEGANT to compute two objective functions
that are to be optimized simultaneously, namely, the
dynamic aperture and the 2nd-order chromatic function
#ð2Þ defined as a sum of relative magnitudes of the
2nd-order chromaticities: #ð2Þ # jj@2"x=@$

2j$ 1000jþ
jj@2"y=@$

2j$ 2500j. The dynamic aperture is obtained
following the procedure described in Sec. III B 1. The
2nd-order chromaticities are calculated in ELEGANT by
concatenating the ring’s transfer matrix for a set of
!p=p values and finding the trace of the off-momentum

matrices [28]. We then use the GA described in Sec. II to
optimize these two objective functions simultaneously. In
this case, optimization entails minimizing the inverse of
the dynamic aperture and the value of the chromatic func-
tion #ð2Þ. There are two independent variables, as before:
the fractional parts of the betatron tunes, "x and "y, varying
between 0 and 1. Therefore, this is a 2D, multiobjective,
nonlinear optimization problem.

2. Results

Figure 17 shows the results of the GA run by plotting the
Pareto-optimal front of the chromatic function #ð2Þ versus
the inverse dynamic aperture 1=A after 24 generations of
64 individuals. Note the resemblance of Fig. 17 to Fig. 1
resulting from the conceptual similarity of the underlying
problems. Two conclusions can be drawn immediately
from Fig. 17. First, the Pareto front is composed of a few
sections that form individual islands in the ð"x;"yÞ tune
space. Since the islands are isolated from each other,
locating the global optimum would have been impossible
using conventional optimization techniques, which would
only converge to the nearest local extremum. Second, there
is an inverse relationship between #ð2Þ and 1=A, i.e., the
objectives conflict with each other. This means the point
with the largest dynamic aperture (point A in Fig. 17 with
the minimum 1=A value) has the largest #ð2Þ and, therefore,
the smallest momentum acceptance and vice versa (point C
in Fig. 17).
From the nonlinear dynamics point of view, the choice

of the optimal working point is a balance between the
momentum acceptance and dynamic aperture being both
reasonably large such as point B in Fig. 17. Note that, in
case of MEIC, due to its aggressively small collision point
! values, further nonlinear optimization is required to have
both the dynamic aperture and momentum acceptance
adequately large [40]. This can be done by optimizing
multiple sextupole and octupole families. The argument
for choosing an optimal working point that gives a balance
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between the dynamic aperture and momentum acceptance,
however, remains valid.

The dynamic aperture and momentum acceptance cor-
responding to points A, B, and C are compared in Figs. 18
and 19, respectively. Figure 18 plots the dynamic aperture
in the x-y space. Figure 19 shows the fractional betatron
tunes !x and !y as a function of momentum offset !p=p.
The horizontal extent of the lines in Fig. 19 indicates the
size of the momentum acceptance.

B. rf gun optimization for injector brightness

As demonstrated in III C, for linac-based accelerators,
the beam quality at the exit of the particle source or injector
determines the quality of the final beam of the entire
machine. Another example is light source brilliance and
6D brightness [53],

Bn ¼
N

"n;x"n;y"n;z
;

where N is the number of electrons in the particle bunch
and "n;x, "n;y, and "n;z are the normalized transverse and
longitudinal emittances of the injector. Bn directly affects
the brilliance of a linac light source. In general, it is crucial
for the injector to produce the highest quality beam
to ensure that each new machine meets ever more aggres-
sive application requirements, and for a linac-based
light source, this translates to maximizing Bn. For a fixed
bunch charge, minimizing the injector "n;x, "n;y, and "n;z
maximizes Bn.
Here we describe an optimization system that can vary

the shape of the field profile of an rf gun in response to the
performance of the beam dynamics [24–26,54]. Often rf
guns are used in linac-based light sources. The typical rf
gun design consists of a half-cell cavity containing the
photocathode optionally joined to one or more full cells.
The photocathode is inside the half-cell cavity at the center
of the upstream cavity end plate (centered at the origin in
Fig. 20). The peak field is at the cathode, and for multicell
designs, the field profile is balanced, meaning the peak
field amplitude is equal in each cell as shown in Fig. 21. We
use the GA optimization to investigate if this design can be
improved to increase source Bn. We discuss the field
generation method and present results for an rf gun-based
injector similar to the rf gun injector developed by the
Photo Injector Test Facility Zeuthen (PITZ) [55]. The
PITZ gun is the injector for the Deutsches Elektronen-
Synchrotron (DESY) Free-Electron Laser in Hamburg
(FLASH) [56]. Note that, while the optimization system
is used to minimize normalized emittances in this example,
it is general purpose and can be used to optimize rf gun-
based injectors with respect to other beam dynamics and
cavity performance criteria. Also, in contrast to varying an
idealized numerical model of the field profile [24] or
interpolating between field profiles in a catalog of exter-
nally produced profiles for different gun geometries [57],
physical dimensions of the gun are varied and a field solver
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between the dynamic aperture and momentum acceptance,
however, remains valid.

The dynamic aperture and momentum acceptance cor-
responding to points A, B, and C are compared in Figs. 18
and 19, respectively. Figure 18 plots the dynamic aperture
in the x-y space. Figure 19 shows the fractional betatron
tunes !x and !y as a function of momentum offset !p=p.
The horizontal extent of the lines in Fig. 19 indicates the
size of the momentum acceptance.

B. rf gun optimization for injector brightness

As demonstrated in III C, for linac-based accelerators,
the beam quality at the exit of the particle source or injector
determines the quality of the final beam of the entire
machine. Another example is light source brilliance and
6D brightness [53],

Bn ¼
N

"n;x"n;y"n;z
;

where N is the number of electrons in the particle bunch
and "n;x, "n;y, and "n;z are the normalized transverse and
longitudinal emittances of the injector. Bn directly affects
the brilliance of a linac light source. In general, it is crucial
for the injector to produce the highest quality beam
to ensure that each new machine meets ever more aggres-
sive application requirements, and for a linac-based
light source, this translates to maximizing Bn. For a fixed
bunch charge, minimizing the injector "n;x, "n;y, and "n;z
maximizes Bn.
Here we describe an optimization system that can vary

the shape of the field profile of an rf gun in response to the
performance of the beam dynamics [24–26,54]. Often rf
guns are used in linac-based light sources. The typical rf
gun design consists of a half-cell cavity containing the
photocathode optionally joined to one or more full cells.
The photocathode is inside the half-cell cavity at the center
of the upstream cavity end plate (centered at the origin in
Fig. 20). The peak field is at the cathode, and for multicell
designs, the field profile is balanced, meaning the peak
field amplitude is equal in each cell as shown in Fig. 21. We
use the GA optimization to investigate if this design can be
improved to increase source Bn. We discuss the field
generation method and present results for an rf gun-based
injector similar to the rf gun injector developed by the
Photo Injector Test Facility Zeuthen (PITZ) [55]. The
PITZ gun is the injector for the Deutsches Elektronen-
Synchrotron (DESY) Free-Electron Laser in Hamburg
(FLASH) [56]. Note that, while the optimization system
is used to minimize normalized emittances in this example,
it is general purpose and can be used to optimize rf gun-
based injectors with respect to other beam dynamics and
cavity performance criteria. Also, in contrast to varying an
idealized numerical model of the field profile [24] or
interpolating between field profiles in a catalog of exter-
nally produced profiles for different gun geometries [57],
physical dimensions of the gun are varied and a field solver
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Other example applications of GA 

Magnet sorting in a storage ring. 
Chen, J., Wang, L., Li, W.-M., & Gao, W.-W. ,Optimization of magnet sorting in a storage ring using 
genetic algorithms, Chinese Physics C (2013) 

Magnet design optimization 
S. Ramberger, S. Russenschuck, Genetic algorithms for the optimal design of superconducting 
accelerator magnets EPAC 98 

  
 

Linac settings for high intensity 
Pang, X., & Rybarcyk, L. J., Multi-objective particle swarm and genetic algorithm for the 
optimization of the LANSCE linac operation.NIMA 741 (2013) 

Minimization of the energy consumption of an accelerator facility  
Ripp, C., Boine-Frankenheim, O., Hanson, J., Stadlmann, J., Spiller, P., Lindenberg, J., Zimmer, H. 
Electric energy consumption of an accelerator facility. IYCE (pp. 1–3) IEEE 2013 

Real machine based optimization in a storage ring 
Tian, K., Safranek, J., & Yan, Machine based optimization using genetic algorithms in a 
storage ring, Phys. Rev. ST AB, 17 (2013) 
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Conclusions 

During the last years evolutionary, and  more specifically, genetic algorithms became  
very popular in the numerical optimization of accelerators.  
 
Existing simulations codes are used as function evaluators.  
 
Performance of the accelerator codes is crucial for the optimization. 
 
To be completed ….  


