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shown for two different situations: one for the debris from
the interaction region (blue) and one for a simulated danger-
ous loss (red). It can be seen that the signal due to the debris
can be mask by the signal from a dangerous loss [1].
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were found to be significantly improved at Figure 2: Overview schematic shows the four main experi- civogenic BLM in Blie, mass close to the coils, 1s investigated [2] (see
- . . ments and the structure of the LHC. .
1.9 Kelvin when compared to their operation at Fig. 4).

room temperature.

RESULTS—DEGRADATION

At the end of the irradiation a total integrated fluence of 1.22:10'° protons/cm” was reached, corresponding to an integrated dose of about 3.26 MGy for silicon. Detectors have p'-n-n" silicon doping structure with a thickness
of 300 um. The figures 9 - 12 show the decrease of collected charge for the diamond and the silicon devices. The curve for a 10 k€2cm silicon with 100 V reverse bias has been plotted as a reference curve [4].

Cryo Irradiation

Cryo Irradiation

—=— Si 10 kQcm, 50 V reverse Cryo Irradiation Cryo Irradiation |
— —— Si 10 kQcm, 100 V reverse

) I
poeiieitl —e— 8i 10 kQem, 200 V reverse
i i i | —— 8i10 kQcm, 300 V reverse
eeihededod ] —%— Si10 kQem, 400 V reverse

—#— Si 10 kQcm, 100 V reverse
| —%— Si10 kQcm, 100 V reverse : o : I Si 4.5 Qcm, 50 V reverse

i ——— Si 500 Qcm, 50 V reverse ‘ gooeecgerdgoogecinied : rooeed
i+l —%— Si 500 Qcm, 100 V reverse
—e— Si 500 Qcm, 200 V reverse
—¢— 8Si 500 Qcm, 300 V reverse

| —— Si 4.5 Qem, 100 V reverse
‘\ i i i| —e— Si4.5Qcm, 200 V reverse
i i | =—— Si 4.5 Qcm, 300 V reverse

ChargeiMlP [fC]
Charge/MIP [fC]
Charge/MIP [fC]
Charge/MIP [fC]

—#— Si 10 kQ2cm, 100 V reverse
sCVD 50 V
sCVD 100 V

—=e&— sCVD 200V

—— sCVD 300V

—¥— sCVD 400 V

1 l ; ; ; ; i 1 1 1 L1 1 11 1 10 0
10" 10 Total fluence [10" protons/cm?] Total fluence [10" protons/cm?] Total fluence [10" protons/cm’]
Total fluence [10'* protons/cm?]

Figure 9: Dependence of the charge collected in Si de- Figure 10: Dependence of the charge collected in Figure 11: Dependence of the charge collected in Si Figure 12: Dependence of the charge collected in Si
tectors with a resistivity 10 kQcm vs. fluence. scCVD diamond detector vs. fluence. detectors with a resistivity S00 Qcm vs. fluence. detectors with a resistivity 4.5 Qcm vs. fluence.

RESULTS—VOLTAGE SCAN SUMMARY

, o , , : : .. Difterent Si and diamond detectors at cryogenic temper-
The voltage scans of the collected charge for the different silicon detectors at different fluencies are depicted in the figures 13 - 15. In the voltage scans positive Slites wete eeted tor their radiation hardness: A forl
voltage denotes a forward bias. integrated fluence of 1.22:10'° protons/cm” was
reached, corresponding to an integrated dose of about
Cryo Irradiation voltage scan Cryo Irradiation voltage scan Cryo Irradiation voltage scan 3.26 MGy for silicon. The expected reduction in signal
over 20 years (2 MGy) of LHC operation is a factor of
25 £ 5 for the silicon device and a factor of 14 £ 3 for
the diamond detector. More experiments with current
pulse response measurements using TCT with a pulsed
laser at cryogenic temperatures during irradiation are
foreseen.
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Figure 13: Voltage scan for 10 kQcm silicon. Figure 14: Voltage scan for 500 Qcm silicon. Figure 15: Voltage scan for 4.5 Qcm silicon.
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Three different detector modules were used in the
experiment (see Fig. 8): holders for direct current




