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MOTIVATION INTRODUCTIONMOTIVATION INTRODUCTION 

It is expected that the luminosity of the Large The magnets close to the Interaction Points (IP)It is expected that the luminosity of the Large 
H d C llid (LHC) ill b b d d i h

The magnets close to the Interaction Points (IP) 
d hi h i di i f h lliHadron Collider (LHC) will be bounded in the are exposed to high irradiation from the colli-( )

future by the beam loss limits of the supercon
p g

sion debris It has been shown that with thefuture by the beam loss limits of the supercon- sion debris. It has been shown that with the 
ducting triplet magnets (see Fig. 1).To protect present configuration of the installed BLM inducting triplet magnets (see Fig. 1).To protect 
the superconducting magnets of the high lumi

present configuration of the installed BLM in 
this region the ability to measure the energythe superconducting magnets of the high lumi- this region, the ability to measure the energy 

nosity insertions an optimal detection of the en-  deposition in the coil is limited because of thenosity insertions an optimal detection of the en
d iti b th h f b ti Figure 1: LHC left of IP triplet magnets.

deposition in the coil is limited because of the 
d b i ki th b l i l [1] (ergy deposition by the shower of beam parti- Figure 1: LHC left of IP triplet magnets. debris, masking the beam loss signal [1] (see gy p y p

cles is necessary Therefore beam Loss Moni-
 g g [ ] (

Fig 3)cles is necessary. Therefore beam Loss Moni-
(BLM) d b l d l h i

Fig. 3). 
tors (BLM) need to be placed close to the parti-( ) p p
cle impact location (see Fig 2) in the coldcle impact location (see Fig. 2) in the cold 
mass of the magnets where they should operatemass of the magnets where they should operate 
in s perfl id heli m at 1 9 Kel in

 
in superfluid helium at 1.9 Kelvin.  Figure 3: Simulated dose in the coil and signal in the BLM 

T h i l d ili
shown for two different situations: one for the debris from 

To choose optimal detectors n-type silicon wa- the interaction region (blue) and one for a simulated danger-p yp
fers have been examined at superfluid helium

g ( ) g
ous loss (red). It can be seen that the signal due to the debris fers have been examined at superfluid helium ( ) g

can be mask by the signal from a dangerous loss [1].
temperature whilst under irradiation from a  can be mask by the signal from a dangerous loss [1]. 
temperature whilst under irradiation from a 
high intensity proton beam The radiation hard To overcome this limitation a solution basedhigh intensity proton beam. The radiation hard- To overcome this limitation a solution, based  
ness and leakage current of these detectors on placing radiation detectors inside the coldFigure 4: Cross section of the Q1 triplet magnet with the cur-ness and leakage current of these detectors 
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on placing radiation detectors inside the cold 
l t th il i i ti t d [2] (

g p g
rent BLM placement in red and the free region for a possible 

were found to be significantly improved at Figure 2: Overview schematic shows the four main experi-
t d th t t f th LHC

mass close to the coils, is investigated [2] (see 
p g p

cryogenic BLM in blue. g y p
1 9 Kelvin when compared to their operation at ments and the structure of the LHC.  Fig 4)

y g
1.9 Kelvin when compared to their operation at  Fig. 4). 
room temperature. p

  

RESULTS DEGRADATIONRESULTS—DEGRADATION 
16 2 + +At the end of the irradiation a total integrated fluence of 1.22·1016 protons/cm2 was reached, corresponding to an integrated dose of about 3.26 MGy for silicon. Detectors have p+-n-n+ silicon doping structure with a thickness g p , p g g y p p g

of 300 μm The figures 9 12 show the decrease of collected charge for the diamond and the silicon devices The curve for a 10 kΩcm silicon with 100 V reverse bias has been plotted as a reference curve [4]of 300 μm. The figures 9 - 12 show the decrease of collected charge for the diamond and the silicon devices. The curve for a 10 kΩcm silicon with 100 V reverse bias has been plotted as a reference curve [4]. 

   
 

Fi 10 D d f th h ll t d i Fi 11 D d f h h ll d i Si Fi 12 D d f th h ll t d i SiFigure 9: Dependence of the charge collected in Si de- Figure 10: Dependence of the charge collected in Figure 11: Dependence of the charge collected in Si Figure 12: Dependence of the charge collected in Si Figure 9: Dependence of the charge collected in Si de
tectors with a resistivity 10 kΩcm vs fluence

g p g
scCVD diamond detector vs. fluence.

g p g
detectors with a resistivity 500 Ωcm vs. fluence. detectors with a resistivity 4.5 Ωcm vs. fluence.tectors with a resistivity 10 kΩcm vs. fluence. scCVD diamond detector vs. fluence. detectors with a resistivity 500 Ωcm vs. fluence. detectors with a resistivity 4.5 Ωcm vs. fluence. 

                

 

RESULTS VOLTAGE SCAN SUMMARYRESULTS—VOLTAGE SCAN SUMMARY 

iff i d di d d i
Th lt f th ll t d h f th diff t ili d t t t diff t fl i d i t d i th fi 13 15 I th lt iti

Different Si and diamond detectors at cryogenic temper-
The voltage scans of the collected charge for the different silicon detectors at different fluencies are depicted in the figures 13 - 15. In the voltage scans positive 

y g p
atures were tested for their radiation hardness. A totalg g p g g p

voltage denotes a forward bias
atures were tested for their radiation hardness. A total 
integrated fluence of 1 22·1016 protons/cm2 wasvoltage denotes a forward bias. integrated fluence of 1.22 10  protons/cm  was 

h d di t i t t d d f b treached, corresponding to an integrated dose of about 
3.26 MGy for silicon. The expected reduction in signal y p g
over 20 years (2 MGy) of LHC operation is a factor ofover 20 years (2 MGy) of LHC operation is a factor of 
25 ± 5 for the silicon device and a factor of 14 ± 3 for25 ± 5 for the silicon device and a factor of 14 ± 3 for 
h di d d M i i hthe diamond detector. More experiments with current 

pulse response measurements using TCT with a pulsed p p g p
laser at cryogenic temperatures during irradiation arelaser at cryogenic temperatures during irradiation are 
foreseenforeseen. 
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