Vectorizing and optimizing
detector geometry classes

-- benefits and opportunities from template
techniques --

‘.
A

- X
Sandro Wenzel / CERN-PH-SFT

(for the GPU simulation+ Geant-V prototypes)

concurrency forum, 29.1.2014

building on previous talks in this forum (5.6.13 + 9.10.13)

Outline

3k short reminder of what we are doing
3k status of effort so far
3k challenges on the path to continue

3k arguments for template based techniques in future
geometry development

O template class specialization for performance increase / better
vectorization (this talk)

O template techniques for code generality (future talk)

focus on ideas rather than
many performance numbers

Sandro Wenzel

Status Reminder (CHEPI13)

2% activity since spring 2013 focused on studying feasibility of vectorizin

4 pring yIng 4 &
(primitive and higher-level) geometry algorithms for the Geant-V and
GPU simulation prototypes

y

OB DistFromOutside 50.0 2.24 D|stFrom|nS|de

I .7 2094

375 — 2.7 — \ . Y 375 —— 1.98 _
25.0 ; 25.0 \ \

\
i 8 e

Box Cone Tube Box Cone Tube
[] ROQOT/5.34.09 (patched) B Vc (SIMD) version

3k this came at the cost of totally rewriting the routines to make them
vector friendly

3k adopted programming model: Vc library, Intel Cilk Plus Array
notation

Sandro Wenzel

Status (CHEPI3) - 2

5k CHEP13 higher-level vector performance benchmark:

O (simplified) navigation of vectors of particles in a simplified detector with

daughter shapes 2 750 N
g ROOT seq
® CHEPI3:max SIMD speedup of 3.1 ¢ 00 Vec (noSIMD)
= ' Vec (SSE4) o |
= Vec (AVX)
< 450 ¢+
£
8.
= 300 % 3.1x
o ®.
g 150_ : A Y. Q@ ®
oY)
<
£
B 1 10 100 1000 10000

number of particles

2k How much better can we do?

3k profiling@Intel: very good already; maybe try to reduce unnecessary
operations (reduce branches; floating point ops)

3Kk much of the ideas here are based on this original advice
Sandro Wenzel 4

Further goals / Challenges

3k we should also now start a systematic effort to produce a “prototype

ready”’ vectorized geometry library for both the Geant-V and GPU-
prototypes

O provide a library with vector interfaces for important geometry funct.

O provide a library targeting the CPU + CUDA at the same time

O achieve best performance

3k main challenges ahead (from my point of view):

O current code does not serve for SIMD vectorization or SIMT -- there are

often too many branch levels (see for instance tube::distanceToln in
Geant4/Usolids)

O hence, total code rewrite necessary (regardless of starting point:
ROOT or USolids)

O complete revalidation necessary

Sandro Wenzel >

challenges continued ... / implications

3k targeting different backends and instructions sets (vector, GPU, scalar)
sounds like a lot of code repetition if we continue to code the way it
was done in the past

O will be a nightmare for maintenance and testing

3k we should hence (these points are related)
O write code which is generic

B functions which work with scalar or vector arguments

O reuse code as much as possible without performance loss

B example: many kernels for tube / cone / polycone are shared and should be written
only once (without function calls)

B write code which is composable from smaller ‘“codelets”

Sandro Wenzel 6

a proposed direction

taken together these requirements remind me ...
of C++ templates

Sk a templated library is perfect to achieve/increase performance:

O template class specialization allows to produce very optimized code for
particular shapes / matrices, etc.

I:{> focus of this talk

Sk a templated library is a good approach to solve the general
challenges presented:

O one can write generic code easily with template functions

O one automatically writes easily reusable(“inlineable”) code since templates
usually requires coding in header files

O can solve the problem of different backends (CPU/GPU)

I:{>focus of another talk

any alternatives??

Sandro Wenzel

Benefit of template class specializations

Sandro Wenzel

Motivation for class specialization
-=- reduction of branches --

3 shape primitives come in many flavours/realizations (here for tube)

Full Tube HollowTube Hollow TubePhi Full TubePhi HalfHollow Tube

15% 10% 5% 68% few

statistics generated from Atlas, CMS, ALICE, LHCB geometries (ftp://root.cern.ch/root/geometries.tar.gz)

2K in reality current libraries (USolid,Root) implement one or few generic
tube classes -- mainly to have few code lines to maintain

2% a lot of the branches (if statements) are static in the sense that they test
properties of the tube instance (“if | am hollow then; else ")

2k such static branches reduce performance (we will see by how much)

Sandro Wenzel

possibilities to make algorithms more specialized

2% a way to get rid of many branches would be to introduce a separate class for
each important tube realization

* canonical approach: solution with handwritten separate classes

ke = :
AbstractTube AbstractTube *t = new FullTube();
(N
performance i
code repetition P
HollowTube FullTube HollowTubeWithPhi

2k alternative idea: solution with templated classes

AbstractTube *t = new SpecializedTube<FullTube>();
AbstractTube
00
A R performance &
! TubeType i 00
SpecializedTube | I (almost) no code repetition w

Safety
DistanceToln
user does not even need to care about special classes / should use factory

methods
AbstractTube *t = GeoManager::CreateTube(...);

Sandro Wenzel

10

common code - many realizations

template<typename TubeType>

o P AbstractTube

SpecTube

3/ . .{ AN e |
bool Inside(Vector3D const &) const; I TubeType !
// ... SpecTube | L
}; Inside |

sharing code between classes with compile-time branches (scalar toy example)

template<typename TubeType>
bool SpecTube<TubeType>::Inside(Vector3D const & x) const

{

L eckEontainedz we can express ‘“static” ifs as
if(std::abs(x.z) > fdZ) return false; compile-time if statements
// checkContainmentR (e.g. via const properties of
double r2 = X.X%X.X + X.Y*X.V; TubeType)
if(r2 > fRmaxSqr) return false;
i.f (TubeType: :NeedsRminTreatment) gets optimized away if 2 certain
if(r2 < fRminSqr) return false; TUbeT)’Pe does not need this code

I3
if (TubeType::NeedsPhiTreatment)]])
{ compiler creates different binary
7 OIS O code for different TubeTypes
return true;

¥

Sandro Wenzel

Different example for class specialization
-=- reduction of floating point operations --

3k next to branch reduction; can find many examples where specializing
code can be beneficial to save many floating point operations

3k example: coordinate transformations between coordinate systems of
different shapes

O known to consume a considerable time (in simple geometries) -- Laurent Duhem@lIntel

O advice: reduce the number of useless multiplications

3k often coordinate transformations are treated as a generic “4x4
matrix times a vector’ operation (some exceptions in ROOT)

treating every transformation by

GeneralTransformation
general code means ~9

multiplications +
~9 additions per cartesian point

Sandro Wenzel

specializing coordinate transformations

3k How many of those floating point operations are actually relevant?

3k Let’s have a look at what important transformations are actually used:
statistics generated from ATLAS,CMS, ALICE, LHCB geometries (ftp://root.cern.ch/root/geometries.tar.gz)

GeneralTransformation

)/

Identit PureTranslation Translation Translation coe
y +RotationAroundX +RotationAroundY
17% 28% ~50% of all transformations are a

translation + very simple rotation

2k looking still closer, one realizes: ~85% of all matrices would
actually require <=3 multiplications, <=3 additions

2% for vectors of particles this adds up to a considerable saving in floating point ops
13

Sandro Wenzel

Specializing Coordinate Transformations

2% We should have specialized coordinate transformations !

GeneralTransformation

Translation Translation

Identity PureTranslation +RotationAroundX +RotationAroundY

2% As before we can generate them using a template class

GeneralTransformation

: TransfType

SpecializedTransformation w

A factory takes care to produce right instance

GeneralTransformation *t = GeoManager::CreateTransformation(...);
| 4

Sandro Wenzel

some performance evaluation for tube

2% with template approach have now vectorized all realizations of tubes in
one go (previously only simple tubes)

XK speedup of calculating distances of 1024 particles to a placed tube in a world
volume (with a high hit rate of 80%)

* ratio of runtime for vector kerne

s: hon-templated / templated

FullTube ~|.15
HollowTubeWithPhi ~|.16
HalfHollowTube ~|.24

benefit from templating the tube
(first estimate - this might be

depend on many circumstances +
parameters)

2K some preliminary speedups compared to USolids scalar

Hollow TubeWithPhi

~2.7

HalfHollowTube

~2.6

|:{> these SIMD speedups match our expectations

Sandro Wenzel

benefit from vectorizing + templating

the tube (on AVX)

|5

CHEPI3 benchmark revisited

2K an initial version of templated vectorized geometry has been finished (shape +
coordinate transform specialization) https:/github.com/sawenzel/VecGeom.git

2% able to readdress CHEP13 benchmark with this new prototype

Z 750 I —
5 ROOT seq
2 00 Vec (noSIMD) |
= Vec (SSE4) o
‘% Vec (AVX)
3 450 t
g

e
= 3001 ¢
o 'a\
Q N
g 150 i ®-9.. Q@ @ @ o |
en
=
£
% O L . P . M . L . R
= 1 10 100 1000 10000

number of particles

B old status: max speedup = 3.1

B new status: relative performance increase by
~30% (seen for 16, 64, 1024 particles)

I:{> B new status: max speedup ~ 4

2K the template technology gives the extra kick to vectorization !!
|6

Sandro Wenzel

https://github.com/sawenzel/VecGeom.git
https://github.com/sawenzel/VecGeom.git

some important implications

this is nice, but...

3k unavoidable facts (on the negative side):

O
O
O

templates require a rethinking of how we implement a geometry library
one needs to code a lot in header files which will stress the compilers

currently this is an incompatible programming style compared to existing
libraries (USolids, ROOT)

the binary code size increases (a lot) - need to study negative impact of this

some implications for users unavoidable (avoid new operator in favour of
factories ...)

on the other hand...

XK coding in header files has many positive side effects:

O code can be shared much simpler between different backends/languages such

as C++/CPU and CUDA/GPU

O code can be reused much simpler in different algorithms (by inlining)

Sandro Wenzel

|7

Summary/Outlook
Summary

2% status and challenges of vectorized geometry
2 discussed motivation for using template techniques

2 concentrated here on benefits of template specialization for
performance

O generation of specialized classes without code duplication

reduction of static branches leading to better compiler optimization and
more efficient vectorization

O avoiding unnecessary floating point operations

2% overall 30% gain in our standard (simple) benchmark

Outlook

3k code generality between scalar and vector code

3k sharing code between CPU and GPU ::>upcoming talk by Johannes
De Fine Licht

3k April milestone for Geant-V / GPU prototype

Sandro Wenzel 18

Acknowledgements

Thanks to:

2k Geant-V / GPU team

2k Laurent.Duhem@lIntel for discussions leading to the present
ideas

2k Johannes De Fine Licht (implementing a lot of the template
ideas)

First prototype available at:

https://github.com/sawenzel/VecGeom.git

19

Sandro Wenzel

https://github.com/sawenzel/VecGeom.git
https://github.com/sawenzel/VecGeom.git

Sandro Wenzel

Backup slides

20

Towards a common CPU / CUDA code base

CPU land

(a .hfile)

Inlining scalar instantiation

of function

Tube::DistanceTolnScalar

Inlining Vc /
instantiation of .~
function .~

7/

/7
/

¥
Tube::DistanceTolnVector

Sandro Wenzel

common (static +
templated) codelets

(a .hfile)

GPU land
(CUDA)

(probably a .cu file
or an .h file)

InZRange

inlining CUDA/scalar
~~._ instanteation of function

InRadialRange

TubeCUDAkernel DistanceToln

SolveQuadraticEquation

just one generic code base !

N

these are template functions
that template on argument type,
return type, tube specialisation
etc.

21

Notes on benchmark conditions

XK System: lvybridge iCore/ (4 core, not hyperthreaded (can read out
8hardware performance counters))

2% Compiler: gcc4.7.2 (compile flags -O2 -unroll-loops -ffast-math -mavx)

2% OS: slcé
2% Ve version: 0.73

2% benchmarks usually run on empty system with cpu pinning (taskset -c)

2% benchmarks use preallocated pool of testdata, in which we take out N particles
for processing. Repeat this P times. For repetitions distinguish between random
access of N particles (higher cache impact) or sequential access in datapool (as
shown here)

* benchmarks shown use NxP=const to time an overall similar amount of work

22

Sandro Wenzel

