
 Vectorizing and optimizing
detector geometry classes

-- benefits and opportunities from template
techniques --

concurrency forum, 29.1.2014

Sandro Wenzel / CERN-PH-SFT

R&D!

(for the GPU simulation+ Geant-V prototypes)

1building on previous talks in this forum (5.6.13 + 9.10.13)

Sandro Wenzel

Outline

short reminder of what we are doing

status of effort so far

challenges on the path to continue

arguments for template based techniques in future
geometry development

template class specialization for performance increase / better
vectorization (this talk)

template techniques for code generality (future talk)

focus on ideas rather than
many performance numbers

2

Sandro Wenzel

Status Reminder (CHEP13)
activity since spring 2013 focused on studying feasibility of vectorizing
(primitive and higher-level) geometry algorithms for the Geant-V and
GPU simulation prototypes

demonstrated for a couple of shapes (box, tube, cone) that this is very
possible indeed with good performance gains

ROOT/5.34.09 (patched) Vc (SIMD) version

0

12.5

25.0

37.5

50.0

Box Cone Tube

2.7
1.7 2.94

DistFromOutside

0

12.5

25.0

37.5

50.0

Box Cone Tube

1.75

2.24

1.98

DistFromInside sphere
trd2

cone
polycone

para
trd1

composite
trapezoid

xtru
polygon

box
tube

coneseg
twisted trap

tubeseg

0 0.1 0.3 0.4 0.5

Figure 2. Some speedups obtained from vectorizing simple algorithms in the ROOT shape
library for the box, cone and tube shapes and functions distFromOutside and distFromInside.
We also show a simple estimate of the relative CPU budget for various shapes based on counting
physical shapes in detectors of 33 existing HEP experiments and taking into account the scalar
runtime cost for function distFromOutside.

Note that both steps will individually contribute to a performance gain over the sequential scalar
version. As will be confirmed in Section 3.2, the first step will decrease the number of function
calls, reduce the number of memory moves and will improve code locality, while the second step
will increase throughput via microparallelism.

3.1. Elementary geometry algorithms
In order to work towards a vector geometry navigator, we have to provide the basic geometry
algorithms (single blocks in Figure 1(a)) in a recast and optimized form. Among the most
important basic algorithms in detector geometry calculations are the calculation of distances of
the particles in flight with respect to the solids/shapes the detector is composed of. We hence
started our investigation of the potential of SIMD instruction at the level of the shape methods,
notably on functions that calculate the distance of particles to inside (entering), distance to
outside (leaving), safety and if a particle is contained inside a volume. Being a standalone
library, our initial development relied on the existing code in the ROOT geometry library [5]
but we plan to transfer our experience to a future standard shapes library such as proposed by
the unified solids [12] once this is in a stable state.

The first geometrical shape tackled was the rectangular box as one of the most simple yet
important geometrical forms (see Figure 2(right) for an averaged estimate of the importance
of various shapes). The simplicity of the box gave us a good playground to quickly assess the
various programming models and memory layouts. Based on our observations in trying to get the
code to autovectorise versus the relative ease of programming (and compiler independence) with
a library like Vc, we then opted for the second choice for the purpose of this first performance
evaluation. At the time of writing, several of the simple shapes like boxes, cones, tubes (including
their segmented forms) were successfully ported to Vc code. Figure 2 gives an overview of the
speedup achieved so far for the most important methods. These benchmarks were run on an
Ivy Bridge machine with AVX instruction set and results are reported for 1024 particles in a
basket.3 These speedups between 2 and 3 are along the lines of our expectations and provide a
first confirmation that we are moving into the right direction.

Refactoring- and optimization work on more complicated shapes like polycons (a shape made
up of (linear arrangements) of various cones and tubes) has started. First positive results for

3 Intel(R) Core(TM) i7-3770 CPU @ 3.40GH, SLC6 2.6.32-358.18.1.el6.x86_64, gcc-4.7, Vc-0.73,
ROOT-5.34.09.

this came at the cost of totally rewriting the routines to make them
vector friendly

adopted programming model: Vc library, Intel Cilk Plus Array
notation

3

Sandro Wenzel

Status (CHEP13) - 2
CHEP13 higher-level vector performance benchmark:

(simplified) navigation of vectors of particles in a simplified detector with
daughter shapes

CHEP13: max SIMD speedup of 3.1

Vec (AVX)
Vec (SSE4)

Vec (noSIMD)
ROOT seq

number of particles

tra
ck
in
g
tim
e
pe
rp
ar
tic
le
(n
an
os
ec
on
ds
)

100001000100101

750

600

450

300

150

0

Vec (AVX)
Vec (SSE4)

Vec (noSIMD)
ROOT seq

number of particles

in
str
uc
tio
ns
pe
rp
ar
tic
le
(in
th
ou
sa
nd
)

100001000100101

4

3

2

1

0

Figure 3. Results from the benchmark comparing the scalar and sequential algorithm with a
vector-oriented algorithm and various degrees of usage of SIMD instructions (from scalar fallback
to AVX). (a) Comparison of the runtime per particle showing a speedup factor of roughly 3
comparing the original version to the AVX code. (b) Comparison of actual instructions executed
per particle.

Table 1. Dynamic instruction count statistics for instructions executed in the actual algorithm
of Figure 1. Shown are what fractions ot the total instruction number are taken by simple
memory moves (MOV), call instructions (CALL), SIMD instructions (ALL SIMD) as well as
arithmic SIMD instructions (ARITHM SIMD). These numbers are obtained for 16 particles
and a comparison is done between the four algorithmic versions mentioned in the text. Some
absolute numbers are given in [] brackets (with an arbitrary but consistent scale).

Instruction (type) ROOT seq VEC(noSIMD) VEC(SSE4) VEC(AVX)

ALL [17554373] [10608655] [9230632] [5024520]
MOV 0.296 [5211457] 0.116 [1227198] 0.132 [1217347] 0.163 [819813]
CALL 0.036 [634933] 0.0023 [24601] 0.0026 [24601] 0.0048 [24601]
ALL SIMD 0.043 0.188 0.641 0.57
ARITHM SIMD 0.023 0.039 0.289 0.30

instruction sets SSE4 and AVX) then give the actual gains from microparallelism.6 We can track
the origin of the gains somewhat in analyzing the dynamic instruction mix actually executed
in the benchmark. Some important numbers obtained from this analysis are summarized in
Table 1. Essentially, it can be seen that going from a scalar to vector interface allows to reduce
the number of function call instructions accompanied by a massive reduction in simple memory
moves (such as to save registers on the stack). Further, when introducing SIMD optimisations
with Vc, the overall number of instructions further shrinks and the CPU vector unit is used
to a much higher degree. Using the hardware performance counters, we have also confirmed
that the number of instruction cache misses is considerable reduced due to better code locality
of using the vectorised interfaces. We expect this e↵ect to become even more important with
more complex algorithms. It should be noted that the current numbers are a first optimistic
results. As such they define a new baseline for possible next iterations of optimisations, which
6 We should mention that these number may be influenced by other factors that were optimized in the porting
process; for instance: removal of check whether to calculate safety within some functions.

How much better can we do?

profiling@Intel: very good already; maybe try to reduce unnecessary
operations (reduce branches; floating point ops)

much of the ideas here are based on this original advice

3.1x

4

Sandro Wenzel

Further goals / Challenges

we should also now start a systematic effort to produce a “prototype
ready” vectorized geometry library for both the Geant-V and GPU-
prototypes

provide a library with vector interfaces for important geometry funct.

provide a library targeting the CPU + CUDA at the same time

achieve best performance

main challenges ahead (from my point of view):
current code does not serve for SIMD vectorization or SIMT -- there are
often too many branch levels (see for instance tube::distanceToIn in
Geant4/Usolids)

hence, total code rewrite necessary (regardless of starting point:
ROOT or USolids)

complete revalidation necessary

5

Sandro Wenzel

challenges continued ... / implications

targeting different backends and instructions sets (vector, GPU, scalar)
sounds like a lot of code repetition if we continue to code the way it
was done in the past

will be a nightmare for maintenance and testing

we should hence (these points are related)
write code which is generic

functions which work with scalar or vector arguments

reuse code as much as possible without performance loss

example: many kernels for tube / cone / polycone are shared and should be written
only once (without function calls)

write code which is composable from smaller “codelets”

6

Sandro Wenzel

a proposed direction

a templated library is a good approach to solve the general
challenges presented:

one can write generic code easily with template functions

one automatically writes easily reusable(“inlineable”) code since templates
usually requires coding in header files

can solve the problem of different backends (CPU/GPU)

an example for templated code?

taken together these requirements remind me ...
of C++ templates

a templated library is perfect to achieve/increase performance:
template class specialization allows to produce very optimized code for
particular shapes / matrices, etc.

focus of this talk

any alternatives?? 7

focus of another talk

Sandro Wenzel 8

Benefit of template class specializations

Sandro Wenzel

HalfHollowTubeFullTubePhi

68%

Motivation for class specialization
-- reduction of branches --

shape primitives come in many flavours/realizations (here for tube)

in reality current libraries (USolid,Root) implement one or few generic
tube classes -- mainly to have few code lines to maintain

a lot of the branches (if statements) are static in the sense that they test
properties of the tube instance (“if I am hollow then; else ”)

such static branches reduce performance (we will see by how much)

FullTube

15%
HollowTube

10%
HollowTubePhi

5%
statistics generated from Atlas, CMS, ALICE, LHCB geometries (ftp://root.cern.ch/root/geometries.tar.gz)

9

few

Sandro Wenzel

possibilities to make algorithms more specialized

canonical approach: solution with handwritten separate classes

AbstractTube

HollowTube FullTube HollowTubeWithPhi

alternative idea: solution with templated classes

AbstractTube

Safety
DistanceToIn

SpecializedTube
 TubeType

AbstractTube *t = new FullTube();

code repetition

performance

(almost) no code repetition

performance

AbstractTube *t = new SpecializedTube<FullTube>();

AbstractTube *t = GeoManager::CreateTube(...);

user does not even need to care about special classes / should use factory
methods

a way to get rid of many branches would be to introduce a separate class for
each important tube realization

10

Sandro Wenzel

common code - many realizations
template<typename TubeType>
class
SpecTube{
 // ...
 bool Inside(Vector3D const &) const;
 //...
};

sharing code between classes with compile-time branches (scalar toy example)

AbstractTube

Inside
SpecTube

 TubeType

template<typename TubeType>
bool SpecTube<TubeType>::Inside(Vector3D const & x) const
{
! // checkContainedZ
! if(std::abs(x.z) > fdZ) return false;

! // checkContainmentR
! double r2 = x.x*x.x + x.y*x.y;
! if(r2 > fRmaxSqr) return false;

! if (TubeType::NeedsRminTreatment)
! {
! ! if(r2 < fRminSqr) return false;
! }

! if (TubeType::NeedsPhiTreatment)
! {
! ! // some code
! }
! return true;
}

we can express “static” ifs as
compile-time if statements
(e.g. via const properties of

TubeType)

gets optimized away if a certain
TubeType does not need this code

compiler creates different binary
code for different TubeTypes

11

Sandro Wenzel

Different example for class specialization
-- reduction of floating point operations --

next to branch reduction; can find many examples where specializing
code can be beneficial to save many floating point operations

example: coordinate transformations between coordinate systems of
different shapes

known to consume a considerable time (in simple geometries) -- Laurent Duhem@Intel

advice: reduce the number of useless multiplications

often coordinate transformations are treated as a generic “4x4
matrix times a vector” operation (some exceptions in ROOT)

treating every transformation by
general code means ~9

multiplications +
~9 additions per cartesian point

GeneralTransformation

Sandro Wenzel

specializing coordinate transformations

How many of those floating point operations are actually relevant?

13

GeneralTransformation

Identity PureTranslation Translation
+RotationAroundX

Translation
+RotationAroundY

17% 28% ~50% of all transformations are a
translation + very simple rotation

statistics generated from ATLAS,CMS, ALICE, LHCB geometries (ftp://root.cern.ch/root/geometries.tar.gz)
Let’s have a look at what important transformations are actually used:

...

looking still closer, one realizes: ~85% of all matrices would
actually require <=3 multiplications, <=3 additions

for vectors of particles this adds up to a considerable saving in floating point ops

Sandro Wenzel 14

Specializing Coordinate Transformations
We should have specialized coordinate transformations !

As before we can generate them using a template class

GeneralTransformation

Identity PureTranslation Translation
+RotationAroundX

Translation
+RotationAroundY

...

A factory takes care to produce right instance

GeneralTransformation

SpecializedTransformation

TransfType

GeneralTransformation *t = GeoManager::CreateTransformation(...);

Sandro Wenzel

some performance evaluation for tube

15

speedup of calculating distances of 1024 particles to a placed tube in a world
volume (with a high hit rate of 80%)

HollowTubeWithPhi ~2.7

HalfHollowTube ~2.6

some preliminary speedups compared to USolids scalar

ratio of runtime for vector kernels: non-templated / templated

FullTube ~1.15
HollowTubeWithPhi ~1.16

HalfHollowTube ~1.24

benefit from templating the tube
(first estimate - this might be

depend on many circumstances +
parameters)

benefit from vectorizing + templating
the tube (on AVX)

with template approach have now vectorized all realizations of tubes in
one go (previously only simple tubes)

these SIMD speedups match our expectations

Sandro Wenzel

CHEP13 benchmark revisited

able to readdress CHEP13 benchmark with this new prototype

new status: max speedup ~ 4

Vec (AVX)
Vec (SSE4)

Vec (noSIMD)
ROOT seq

number of particles

tra
ck
in
g
tim
e
pe
rp
ar
tic
le
(n
an
os
ec
on
ds
)

100001000100101

750

600

450

300

150

0

Vec (AVX)
Vec (SSE4)

Vec (noSIMD)
ROOT seq

number of particles

in
str
uc
tio
ns
pe
rp
ar
tic
le
(in
th
ou
sa
nd
)

100001000100101

4

3

2

1

0

Figure 3. Results from the benchmark comparing the scalar and sequential algorithm with a
vector-oriented algorithm and various degrees of usage of SIMD instructions (from scalar fallback
to AVX). (a) Comparison of the runtime per particle showing a speedup factor of roughly 3
comparing the original version to the AVX code. (b) Comparison of actual instructions executed
per particle.

Table 1. Dynamic instruction count statistics for instructions executed in the actual algorithm
of Figure 1. Shown are what fractions ot the total instruction number are taken by simple
memory moves (MOV), call instructions (CALL), SIMD instructions (ALL SIMD) as well as
arithmic SIMD instructions (ARITHM SIMD). These numbers are obtained for 16 particles
and a comparison is done between the four algorithmic versions mentioned in the text. Some
absolute numbers are given in [] brackets (with an arbitrary but consistent scale).

Instruction (type) ROOT seq VEC(noSIMD) VEC(SSE4) VEC(AVX)

ALL [17554373] [10608655] [9230632] [5024520]
MOV 0.296 [5211457] 0.116 [1227198] 0.132 [1217347] 0.163 [819813]
CALL 0.036 [634933] 0.0023 [24601] 0.0026 [24601] 0.0048 [24601]
ALL SIMD 0.043 0.188 0.641 0.57
ARITHM SIMD 0.023 0.039 0.289 0.30

instruction sets SSE4 and AVX) then give the actual gains from microparallelism.6 We can track
the origin of the gains somewhat in analyzing the dynamic instruction mix actually executed
in the benchmark. Some important numbers obtained from this analysis are summarized in
Table 1. Essentially, it can be seen that going from a scalar to vector interface allows to reduce
the number of function call instructions accompanied by a massive reduction in simple memory
moves (such as to save registers on the stack). Further, when introducing SIMD optimisations
with Vc, the overall number of instructions further shrinks and the CPU vector unit is used
to a much higher degree. Using the hardware performance counters, we have also confirmed
that the number of instruction cache misses is considerable reduced due to better code locality
of using the vectorised interfaces. We expect this e↵ect to become even more important with
more complex algorithms. It should be noted that the current numbers are a first optimistic
results. As such they define a new baseline for possible next iterations of optimisations, which
6 We should mention that these number may be influenced by other factors that were optimized in the porting
process; for instance: removal of check whether to calculate safety within some functions.

an initial version of templated vectorized geometry has been finished (shape +
coordinate transform specialization)

old status: max speedup = 3.1

the template technology gives the extra kick to vectorization !!

16

new status: relative performance increase by
~30% (seen for 16, 64, 1024 particles)

https://github.com/sawenzel/VecGeom.git

https://github.com/sawenzel/VecGeom.git
https://github.com/sawenzel/VecGeom.git

Sandro Wenzel

some important implications

unavoidable facts (on the negative side):
templates require a rethinking of how we implement a geometry library

one needs to code a lot in header files which will stress the compilers

currently this is an incompatible programming style compared to existing
libraries (USolids, ROOT)

the binary code size increases (a lot) - need to study negative impact of this

some implications for users unavoidable (avoid new operator in favour of
factories ...)

 coding in header files has many positive side effects:

code can be shared much simpler between different backends/languages such
as C++/CPU and CUDA/GPU

code can be reused much simpler in different algorithms (by inlining)
17

this is nice, but...

on the other hand...

Sandro Wenzel

Summary/Outlook

status and challenges of vectorized geometry
discussed motivation for using template techniques
concentrated here on benefits of template specialization for
performance

generation of specialized classes without code duplication

reduction of static branches leading to better compiler optimization and
more efficient vectorization

avoiding unnecessary floating point operations

overall 30% gain in our standard (simple) benchmark

18

code generality between scalar and vector code

sharing code between CPU and GPU

Outlook

Summary

upcoming talk by Johannes
De Fine Licht

April milestone for Geant-V / GPU prototype

Sandro Wenzel

Acknowledgements

Geant-V / GPU team

Laurent.Duhem@Intel for discussions leading to the present
ideas

Johannes De Fine Licht (implementing a lot of the template
ideas)

Thanks to:

19

First prototype available at:

https://github.com/sawenzel/VecGeom.git

https://github.com/sawenzel/VecGeom.git
https://github.com/sawenzel/VecGeom.git

Sandro Wenzel

Backup slides

20

Sandro Wenzel

Towards a common CPU / CUDA code base

common (static +
templated) codelets

CPU land GPU land
(CUDA)

Tube::DistanceToInScalar

Tube::DistanceToInVector

TubeCUDAkernel_DistanceToIn

(probably a .cu file
or an .h file)

(a .h file)(a .h file)

InZRange

InRadialRange

SolveQuadraticEquation

just one generic code base !

inlining scalar instantiation
of function

inlining Vc
instantiation of

function

inlining CUDA/scalar
instanteation of function

these are template functions
that template on argument type,
 return type, tube specialisation

etc.

21

Sandro Wenzel

Notes on benchmark conditions

System: Ivybridge iCore7 (4 core, not hyperthreaded (can read out
8hardware performance counters))

Compiler: gcc4.7.2 (compile flags -O2 -unroll-loops -ffast-math -mavx)

OS: slc6

Vc version: 0.73

benchmarks usually run on empty system with cpu pinning (taskset -c)

benchmarks use preallocated pool of testdata, in which we take out N particles
for processing. Repeat this P times. For repetitions distinguish between random
access of N particles (higher cache impact) or sequential access in datapool (as
shown here)

benchmarks shown use NxP=const to time an overall similar amount of work

22

