CHANGE OF DI LENGTH AND FIELD

E. Todesco
CERN, Geneva Switzerland

On behalf of T. Nakamoto, Q. Xu
Paper published at MT, Boston 2013

BASELINE

- D1 is the separation dipole
- Superconductive, Nb-Ti, large aperture
- Started with 160 mm aperture, then decided that 10 mm more than quads was not needed after ebergy deposition studies
- 35 Tm required
- 70\% margin on the loadline was chosen, giving 5.2 T operational field with 15 mm one layer coil
- Two layers excluded since this magnet has a lot of fringe field already

Field verus coil width in accelerator magnets and models

VARIATIONS

- The chosen margin is large w.r.t. quadrupoles, which are in Nb 3 Sn and in similar region for radiation and heat loads
- Possible to decrease from 30% to $20-25 \%$
- At the same time the length corresponding to 5.2 T and 35 Tm was exceeding the vertical test station length at KEK
- Study was carried out to explore the case of 25% margin and 20% margin
- Options look viable, with increase of stress and fring field which appears to be tolerable [talk on 25 June 2013, T. Nakamoto and Q. Xu]

THREE OPTIONS AT 150 MM

	LHC outer cable With 70\% load line ratio	LHC outer cable With 75% load line ratio	LHC outer cable With 80% load line ratio
Bore diameter	150 mm	150 mm	150 mm
Nominal field (dipole)	5.22 T	5.59 T	5.97 T
Magnetic length *	6.7 m	6.3 m	5.9 m
Operating current	11.0 kA	12.0 kA	13.0 kA
Injection current	$\sim 0.70 \mathrm{kA}$	$\sim 0.77 \mathrm{kA}$	$\sim 0.84 \mathrm{kA}$
Field homogeneity	$<0.01 \% \quad\left(\mathrm{R}_{\text {ref }}=50 \mathrm{~mm}\right)$	$<0.01 \% \quad\left(\mathrm{R}_{\text {ref }}=50 \mathrm{~mm}\right)$	$<0.01 \% \quad\left(\mathrm{R}_{\mathrm{ref}}=50 \mathrm{~mm}\right)$
Peak field in the coil	6.0 T	6.5 T	6.9 T
Load line ratio	69\% @ 1.9 K	75\%@1.9 K	80\% @ 1.9 K
Inductance (low / nominal field)	$5.7 / 5.2 \mathrm{mH} / \mathrm{m}$	$5.7 / 5.2 \mathrm{mH} / \mathrm{m}$	$5.7 / 5.1 \mathrm{mH} / \mathrm{m}$
Stored energy	$294 \mathrm{~kJ} / \mathrm{m}$	$340 \mathrm{~kJ} / \mathrm{m}$	391 kJ/m
Peak field/central field	1.15	1.15	1.16
Lorenz force \mathbf{X} / \mathbf{Y} ($\mathbf{1}^{\text {st }}$ quadrant)	1.3/0.5 MN/m	1.5/0.6 MN/m	1.7/0.7 MN/m
Outer dia. of iron yoke	550 mm	550 mm	550 mm
Inner dia. of iron yoke	222 mm	222 mm	222 mm
Strand diameter	0.825 mm	0.825 mm	0.825 mm
$\mathrm{Cu} /$ Non-Cu ratio	1.95	1.95	1.95
Cable dimension	15.1* 1.48mm ${ }^{\text {2 }}$	15.1* 1.48mm ${ }^{\text {2 }}$	15.1* 1.48mm ${ }^{\text {/ }}$
/ insulation	0.16 mm (radial)	0.16 mm (radial)	0.16 mm (radial)
	0.145 (azimuthal)	0.145 (azimuthal)	0.145 (azimuthal)
No. of strands	36	36	36
Keystone angle	$0.9{ }^{\circ}$	$0.9{ }^{\circ}$	$0.9{ }^{\circ}$
Superconductor current density	$1710 \mathrm{~A} / \mathrm{mm}^{2}$	$1865 \mathrm{~A} / \mathrm{mm}^{2}$	$1954 \mathrm{~A} / \mathrm{mm}^{2}$
Total length of the cable	618 m (Coil length $\sim 7.1 \mathrm{~m}$)	566 m (Coil length $\sim 6.7 \mathrm{~m}$)	548 m (Coil length $\sim \mathbf{6 . 3 ~ m}$)

IMPACT ON FIELD QUALITY

CONCLUSIONS

- We propose to reduce the margin from 30% to 25%, i.e. increasing the operational field from 5.2 to 5.6 T and reducing length from 6.7 to 6.3 m
- Minimal change needed to fit the test station
- Current increase from 11 to 12 kA

SUMMARY

		$\begin{gathered} \text { Triplet } \\ \text { Q1,Q3/Q2a,b } \\ \hline \end{gathered}$	Orbit corrector MCBX	$\begin{gathered} \hline \text { Sep. } \\ \text { dipole } \\ \text { D1 } \\ \hline \end{gathered}$	Recom. dipole D2	$\begin{gathered} \hline \text { Large 2-in- } \\ 1 \text { quad } \\ \text { Q4 } \\ \hline \end{gathered}$
Aperture	(mm)	150	150	150	105	90
Field	(T)		2.1	5.6	3.5	
Gradient	(T/m)	140				120
Mag. Length	(m)	8.0/6.8	1.2/2.2	6.3	10.0	4.5
Int field	(Tm)		2.5/4.5	35	35	
Int gradient	(T)	1120/938				544
Peak field	(T)	12.1	3.9	6.5	4.1	5.9
Current	(kA)	17.5	2.2	11.8	6.8	16.0
j overall	($\mathrm{A} / \mathrm{mm}^{2}$)	528	455	1816	1040	2458
Loadline margin	(\%)	18\%	45\%	25\%	56\%	20\%
Stored energy	(MJ/m)	1.440	0.090	0.338	0.140	0.204
Saturation	(\%)	9.0\%	0.0\%	12.0\%	13.0\%	
Material		$\mathrm{Nb}_{3} \mathrm{Sn}$	$\mathrm{Nb}-\mathrm{Ti}$	$\mathrm{Nb}-\mathrm{Ti}$	$\mathrm{Nb}-\mathrm{Ti}$	$\mathrm{Nb}-\mathrm{Ti}$
N. layers		2	1+1	1	1	1
Cable width	(mm)	18.1	4.37	15.1	15.1	15.1

