

CHANGE OF DI LENGTH AND FIELD

E. Todesco CERN, Geneva Switzerland

On behalf of T. Nakamoto, Q. Xu Paper published at MT, Boston 2013

BASELINE

- D1 is the separation dipole
 - Superconductive, Nb-Ti, large aperture
 - Started with 160 mm aperture, then decided that 10 mm more than quads was not needed after ebergy deposition studies
- 35 Tm required
 - 70% margin on the loadline was chosen, giving 5.2 T operational field with 15 mm one layer coil

• Two layers excluded since this magnet has a lot of fringe field already

Field verus coil width in accelerator magnets and models [E. Todesco, L. Rossi Malta workshop CERN 2011-003]

E. Todesco

Design options for the 15-20 T range - 2

VARIATIONS

- The chosen margin is large w.r.t. quadrupoles, which are in Nb3Sn and in similar region for radiation and heat loads
 - Possible to decrease from 30% to 20-25%
- At the same time the length corresponding to 5.2 T and 35 Tm was exceeding the vertical test station length at KEK
 - Study was carried out to explore the case of 25% margin and 20% margin
 - Options look viable, with increase of stress and fring field which appears to be tolerable [talk on 25 June 2013, T. Nakamoto and Q. Xu]

THREE OPTIONS AT 150 MM

	LHC outer cable	LHC outer cable	LHC outer cable	
	With 70% load line ratio	With 75% load line ratio	With 80% load line ratio	
Bore diameter	150 mm	150 mm	150 mm	
Nominal field (dipole)	5.22 T	5.59 T	5.97 T	
Magnetic length *	6.7 m	6.3 m	5.9 m	
Operating current	11.0 kA	12.0 kA	13.0 kA	
Injection current	~ 0.70 kA	~ 0.77 kA	~ 0.84 kA	
Field homogeneity	<0.01% (R _{ref} =50 mm)	<0.01% (R _{ref} =50 mm)	<0.01% (R _{ref} =50 mm)	
Peak field in the coil	6.0 T	6.5 T	6.9 T	
Load line ratio	69% @ 1.9 K	75% @ 1.9 K	80% @ 1.9 K	
Inductance (low / nominal field)	5.7 / 5.2 mH/m	5.7 / 5.2 mH/m	5.7 / 5.1 mH/m	
Stored energy	294 kJ/m	340 kJ/m	391 kJ/m	
Peak field/central field	1.15	1.15	1.16	
Lorenz force X/Y (1 st quadrant)	1.3/0.5 MN/m	1.5/0.6 MN/m	1.7/0.7 MN/m	
Outer dia. of iron yoke	550 mm	550 mm	550 mm	
Inner dia. of iron yoke	222 mm	222 mm	222 mm	
Strand diameter	0.825 mm	0.825 mm	0.825 mm	
Cu/Non-Cu ratio	1.95	1.95	1.95	
Cable dimension	15.1* 1.48mm ² /	15.1* 1.48mm ² /	15.1* 1.48mm² /	
/ insulation	0.16 mm (radial)	0.16 mm (radial)	0.16 mm (radial)	
	0.145 (azimuthal)	0.145 (azimuthal)	0.145 (azimuthal)	
No. of strands	36	36	36	
Keystone angle	0.9 °	0.9 °	0.9 °	
Superconductor current density	1710 A/mm ²	1865 A/mm ² 1954 A/mm ²		
Total length of the cable	618 m (Coil length ~7.1 m)	566 m (Coil length ~6.7 m)	548 m (Coil length ~6.3 m)	

Design options for the 15-20 T range - 4

IMPACT ON FIELD QUALITY

- We propose to reduce the margin from 30% to 25%, i.e. increasing the operational field from 5.2 to 5.6 T and reducing length from 6.7 to 6.3 m
 - Minimal change needed to fit the test station
 - Current increase from 11 to 12 kA

SUMMARY

·			Orbit	Sep.	Recom.	Large 2-in-
		Triplet	corrector	dipole	dipole	1 quad
		Q1,Q3/Q2a,b	MCBX	D1	D2	Q4
Aperture	(mm)	150	150	150	105	90
Field	(T)		2.1	5.6	3.5	
Gradient	(T/m)	140				120
Mag. Length	(m)	8.0/6.8	1.2/2.2	6.3	10.0	4.5
Int field	(T m)		2.5/4.5	35	35	
Int gradient	(T)	1120/938				544
Peak field	(T)	12.1	3.9	6.5	4.1	5.9
Current	(kA)	17.5	2.2	11.8	6.8	16.0
j overall	(A/mm^2)	528	455	1816	1040	2458
Loadline margin	(%)	18%	45%	25%	56%	20%
Stored energy	(MJ/m)	1.440	0.090	0.338	0.140	0.204
Saturation	(%)	9.0%	0.0%	12.0%	13.0%	
Material		Nb ₃ Sn	Nb-Ti	Nb-Ti	Nb-Ti	Nb-Ti
N. layers		2	1+1	1	1	1
Cable width	(mm)	18.1	4.37	15.1	15.1	15.1