
Cosmology Basics 

• Inflation 

• CMB Anisotropies 

• Structure Formation 

• Alternatives 



We see photons today from last scattering surface 

when the universe was just 400,000 years old 

The temperature of 

the cosmic microwave 

background (CMB) is 

very nearly the same 

in all directions. 



Horizon Problem 

Hubble Radius =c/H  (Distance light travels as 

the Universe doubles in size) at t=400,000 years 

How are these two spots 
correlated with one another? 



Horizon Problem: Take 2 
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Horizon Problem: Take 2 
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These distances are 

called “outside the 

horizon” 



Comoving Horizon 

 is called the comoving horizon. 

For particles which move at the speed of light ds2=0, 

so dx=dt/a. Integrating up to time t gives the total 

comoving distance traveled by light since the 

beginning of expansion. 

Exercise: Compute  in a matter dominated 

and radiation dominated universe 



Hubble Radius 

Can rewrite  as integral over comoving Hubble 

radius (aH)-1, roughly the comoving distance light 

can travel as the universe expands by a factor of 2. 



Horizon Problem: Take 3 

Compare 

comoving 

Cosmological 

Scales with 

comoving 

Hubble 

Radius 

These scales entered 

the horizon after 

recombination, too 

late to have 

equilibrated 



Hubble Radius 

Can rewrite  as integral over comoving Hubble 

radius (aH)-1, roughly the comoving distance light 

can travel as the universe expands by a factor of 2. 

The horizon can be large even if the Hubble 

radius is small: e.g. if most of the contribution to 

 came from early times. 



Inflation in terms of Comoving Distances  

Cosmological 

scales outside  

the horizon 
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Inflation 

Inflation in terms of Physical Distances  



Early Dark Energy 

Inflation correspond to an epoch in which the 

comoving Hubble radius decreases. 
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Inflation is an epoch early in which dark energy 

dominated the universe. This early dark energy has 

a density ~10100 times larger than late dark energy.  



Typically model inflation with scalar field 

Require: 
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Simplest models are single-

field slow-roll models 



Perturbations to the FRW metric 



Seeds of Structure 

• Quantum mechanical 

fluctuations generated 

during inflation 

• Perturbations freeze out 

when distances get 

larger than horizon 

• Evolution when 

perturbations re-enter 

horizon 
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Coherent picture of formation of  

structure in the universe 

3410 sect -=

Quantum      

Mechanical 

Fluctuations 

during 

Inflation 

( )V f

Perturbation 

Growth: 

Pressure vs. 

Gravity 

t ~100,000 years 

Matter 

perturbations 

grow into non-

linear 

structures 

observed today 

, ,reion dez wW

Photons freestream: 
Inhomogeneities 
turn into 
anisotropies 

m, r , b , f 



Now determine the evolution of 

perturbations when they re-enter the 

horizon. 



 CMB Acoustic Oscillations 

 Pressure of radiation acts against clumping 

 

 If a region gets overdense, pressure acts to reduce 

the density: restoring force 



Before recombination, electrons and photons are tightly 

coupled: equations reduce to 

Displacement of a string 

Temperature perturbation 

very similar to … 
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 CMB Acoustic Oscillations 



 CMB Acoustic Oscillations 



Why peaks and troughs? 

 Vibrating String: 
Characteristic 
frequencies 
because ends are 
tied down 

 Temperature in the 
Universe: Small 
scale modes begin 
oascillating earlier 
than large scale 
modes 



x+w2x = F
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In Fourier space, this becomes 

 CMB Acoustic Oscillations 

Forced Harmonic Oscillator 



x+w2x = F

Peaks at: 

dt
0

t*

ò wn º knrs = np

Peaks show up at angular scale  

 CMB Acoustic Oscillations 

q ~
rs

D*



x+w2x = F

Peaks at: 

dt
0

t*

ò wn º knrs = np

Peaks show up at angular scale  

The Universe is Flat! 

 CMB Acoustic Oscillations 

q ~
rs

D*



x+w2x = F

Peaks at: 

dt
0

t*

ò wn º knrs = np

Peaks show up at angular scale  

In flat models, peak 

locations determine one 

combination of parameters 

 CMB Acoustic Oscillations 

q ~
rs

D*



Constraints in Degeneracy Direction 

come from peak heights 

Much more difficult to 

pin down – especially 

when combining 

experiments – as 

sensitive calibration is 

required 



x+w2x = F

with 

Immediately see: lower ω (e.g. 

with more baryons) -> greater 

odd/even peak disparity. 
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 CMB Acoustic Oscillations 



Reducing the matter density brings the 

epoch of equality closer to recombination 

• Forcing term 

larger when 

potentials decay 

• During the 

radiation era, 

potentials decay, 

leading to a larger 

anisotropy at first 

peak 
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• Forcing term 

larger when 

potentials decay 

• During the 

radiation era, 

potentials decay, 

leading to a larger 

anisotropy at first 

peak 

¶2T

¶t2
- cs

2Ñ2T = F[F]

Reducing the matter density brings the 

epoch of equality closer to recombination 



CMB Constraints on Baryonic and 

Dark Matter Densities 

Some movement 

from WMAP (gray 

contours) to Planck 

(red) but … bottom 

line is: strong 

evidence for non-

baryonic dark matter 



Growth of Structure: Gravitational 

Instability 

042   mGH 

Fundamental equation governing overdensity in a 

matter-dominated universe when scales are 

within horizon: 
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Define overdensity: 



Growth of Structure: Gravitational 

Instability 
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Example 1: No expansion (H=0,energy density constant) 

 Two modes: growing and decaying 

 Growing mode is exponential (the 

more matter there is, the stronger is 

the gravitational force) 



Gravitational Instability in an Expanding 

Universe 
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Example 2: Matter density equal to the critical density 

in an expanding universe.  

Exercise: Show that, in this universe, 

 a=(t/t0)
2/3  so H=2/(3t) 

The coefficient of the 3rd term is then 3H2/2, so 

 



Gravitational Instability in an Expanding 

Universe 
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Insert solution of the form: δ~tp 

Collect terms:  

Quadratic formula yields: 

Growing mode: δ~a. Dilution due 

to expansion counters attraction 

due to overdensity. Result: power 

law growth instead of exponential 

growth 



Argument for Dark Matter 

d0

d(t*)
=1000

Perturbations have grown by (at most) 

a factor of 1000 since recombination. 

If this map accurately 

reflected the level of 

inhomogeneity at 

recombination, over-

densities today should 

be less than 10%. I.e. we 

should not exist 



MOdified Newtonian Dynamics 

(MOND) (Milgrom 1983): 
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Acceleration due to 

gravity (v2/r for 

circular orbit) 
New,fundamental scale 
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This leads to a simple prediction 
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So MOND predicts 

When the acceleration scale is fixed from 

rotation curves, this is a zero-parameter 

prediction! 



… which has been verified* (Tully-

Fisher Law) 

McGaugh 2011 

* but see Gnedin 

(1108.2271) , Foreman & 

Scott (1108.5734)  



MOND does a good job doing what it 

was constructed to do 

Fit Rotation 

Curves of many 

galaxies w/ only 

one free 

parameter 

(instead of 3 

used in CDM). 

McGaugh 



Making MOND Serious 

 MOND is not a covariant theory that can be used to make 

predictions for cosmology 

 Challenge the implicit assumption of General Relativity 

that the metric in the Einstein-Hilbert action is the same 

as the metric that couples to matter 

 

 

 Allow 

 

 Scalar-Tensor model is defined by dynamics S[Φ] 
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There is a new fundamental mass scale in the Lagrangian 

Making MOND Serious 

Same scale used for quintessence or 

any other approach to acceleration! 



Making MOND Serious 

 Scalar-Tensor models give same light deflection 

prediction as GR. Exercise: Prove this. 

 Far from the center of galaxies, signal should fall of as 

1/R2. Exercise: Prove this. 



 Scalar-Tensor Models fail because of lensing 

constraints 

 Add a vector field (to get more lensing w/o dark 

matter) to get TeVeS (Bekenstein 2004) 

 Relation between 2 metrics now more complex 

Breaks theorem about light deflection 

 We can now do cosmology: is there enough 

clustering w/o dark matter? 

Making MOND Serious 



Inhomogeneities in TeVeS 

Perturb all fields: (metric, matter, radiation) + (scalar 

field, vector field) 

E.g., the perturbed metric is 

)]21(),21(),21(),21([ 2222  aaaadiagg

where a depends on time only and the two potentials 

depend on space and time. 

TeVeS 

Standard Growth 



Scorecard for Modified Gravity 

 Appears to do at 

least as well as DM 

on small scales 

 Two 

coincidences/succe

sses: (i) requires 

same scale as MG 

models that drive 

acceleration (ii) fix 

to get lensing also 

enhances growth of 

structure 

 Problems on large 

scales persist 



Neutrinos affect large scale structure 

Recall 

This fraction of the total density does not participate 

in collapse on scales smaller than the freestreaming scale 

At the relevant time, this scale is 0.02 Mpc-1 for a 1 eV 

; power on scales smaller than this is suppressed. 



Even for a small neutrino mass, get large impact 

on structure: power spectrum is excellent probe of 

neutrino mass 

Neutrinos affect large scale structure 



Zhao et al. 2013 

Neutrinos affect large scale structure 



I. Stunning Agreement with a wide 

variety of observations 

CMB Temperature 

CMB Polarization 

Galaxy clustering 

Supernovae 

Lensing of CMB[!] 

Gravitational Lensing 



II. Requires New Physics 

 Non-Baryonic Dark Matter (SUSY?) 

 Inflation (Grand Unified Theory?) 

 Dark Energy (Cosmological Constant?) 

 Right-Handed Neutrinos (Grand Unified Theory?) 



III. You need to come up with 

creative alternatives! 

 Modified Gravity to drive acceleration? 

 Modified Gravity instead of dark matter? 

 Moving beyond WIMPs? 

 Complexity in the Neutrino Sector? 

 … 



Sterile neutrinos  Neff 

Sterile neutrinos as DM 

Asymmetric DM 

Modified Gravity for DE 

 

Other Alternatives 



• Majorana Mass: mL=m; mD=mR=0 

 

• Dirac Mass: mD=m; mL=mR=0 

 

• See-Saw Mechanism: mD=m; mR=M; mL=0 

Alternatives: Light Sterile Neutrinos 
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Standard See-Saw mechanism has M>>m. Explains why 

observed neutrino masses (m2/M) are so small. But M 

could be small as well; in that case, sterile neutrinos 

might be observable, both in the Lab and in the cosmos   



Sterile neutrinos can be produced via oscillations 

Rate =
1

2
sin2(2qm )Gweak

where the mixing 

angle needs to be 

computed in matter 

and the usual 

sin2(ΔEt) term 

averages to ½ since 

the interaction time is 

very fast 

1204.5861 

Alternatives: Light Sterile Neutrinos 



Sterile neutrinos can be the Dark Matter 

To be cold, need a 

mass M greater than 

~ keV. Thermal 

production does not 

quite work, but there 

are other possibilities 

Alternatives: Light Sterile Neutrinos 

1311.0282 



Sterile neutrinos can be the Dark Matter 

To be cold, need a 

mass M greater than 

~ keV. Thermal 

production does not 

quite work, but there 

are other possibilities 

… and we might have 

seen a signature of 

this over the past 

year 

Alternatives: Light Sterile Neutrinos 

1402.4119 



Alternative: Asymmetric Dark Matter 

Instead of annihilation freeze-out 

Abundance could be 

fixed by asymmetry 



Alternative: Asymmetric Dark Matter 

Instead of annihilation freeze-out 

Abundance could be 

fixed by asymmetry 

Natural value is the same as 

baryon asymmetry  

mDM~5-10 eV 



Perturbations to the FRW metric 

The scalar potentials typically satisfy Φ = 

-Ψ (but beware sign conventions) so we 

will use them interchangably. 

 

 



During inflation, fluctuates quantum 

mechanically around a smooth background 

The mean value of  is zero, but its variance is 

Get contributions from all scales equally if  

with n=1 (scale-invariant spectrum) 
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Inflation predicts … 
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Two regions with the scalar field taking the same value 

at slightly different times have relative potential 

But 

The last equality following from the equations of motion 
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Leading to … 

RMS fluctuations in the scalar field are roughly equal to 

the Hubble rate, and the Friedmann equation tells us 

that H2~GV 

Each Fourier mode is associated with  [the value of 

 when k exits the horizon].  

YRMS ~
(GV )3/2

V '

Y ~
dfH 2

V '



Equation of motion for a 

scalar field in an expanding 

Universe 

Inflation: Scalar Field 

Slow roll approximation sets 

dφ/dt=-V’/3H 

Since H is very large, 

V~H2mPl
2 is also large, 

typically of order (1016GeV)4, 

much larger than the dark 

energy today 



Super-horizon 

Transfer Function 

Growth function 

+ 

Nonlinearities 

Earlier than aEQ, most of the 

energy density is relativistic; 

afterwards non-relativistic 



Gravitational Potential 
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Poisson’s Equation:  

In Fourier space, this becomes:  

So the gravitational potential remains constant! 

Delicate balance between attraction due to 

gravitational instability and dilution due to 

expansion. 
Only if all the energy is in non-relativistic matter.  

Dark energy or massive neutrinos lead to potential decay. 



Matter Power Spectrum 
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Poisson says:  

So the power spectrum of matter (which measures 

the density squared) scales as: 

Valid on large scales which entered the horizon at 

late times when the universe was matter 

dominated. 



Sub-horizon modes oscillate and decay in 

the radiation-dominated era 

Newton’s equations - with radiation as the source -  

reduce to 

with analytic solution 

Here using η 

as time 

variable 



Expect less power on small scales 

For scales that enter the horizon well before equality, 

So, we expect the transfer function to fall off as  
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Shape of the Matter Power Spectrum 
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The turnover scale is the one that enters the horizon at 

the epoch of matter-radiation equality: 

Therefore, measuring the shape of the power spectrum 

will give a precise estimate of m  

Log since structure grows slightly 

during radiation era when potential 

decays 

Large scales 

Small scales 

-12Mpc073.0 hk mEQ 



Turnover scale sensitive to the matter density 



Inhomogeneities in TeVeS 
Skordis 2006 

Skordis, Mota, Ferreira, & Boehm 2006 

Dodelson & Liguori 2006 

Perturb all fields: (metric, matter, radiation) 

  + (scalar field, vector field) 

E.g., the perturbed metric is 

)]21(),21(),21(),21([ 2222  aaaadiagg

where a depends on time only and the two 

potentials depend on space and time. 



Inhomogeneities in TeVeS 
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Other fields are perturbed in the standard way; only 

the vector perturbation is subtle. 

Constraint leaves only 3 DOF’s. Two of these 

decouple from scalar perturbations, so we need 

track only the longitudinal component defined via: 
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Inhomogeneities in TeVeS 

For large K, no growing mode: vector follows 

 particular solution. 

For small K, growing mode comes to dominate. 

Particular soln 
Large K 

Small K 



Inhomogeneities in TeVeS 

This drives 

difference in 

the two 

gravitational 

potentials … 
Small K 

Large K 



Inhomogeneities in TeVeS 

Small K 

Large K 

Standard Growth 

… which leads 

to enhanced 

growth in 

matter 

perturbations! 


