

Jennifer Siegal-Gaskins Caltech

Outline

- Motivation and methods of indirect detection
- Calculating indirect signals
- Spectra from DM annihilation and decay
- The dark matter distribution

see also Tom Abel's and Louie Strigari's talks

- see also Miguel Sánchez-Conde's and Gamma-ray searches Dan Hooper's talks
- Neutrino searches see also Justin Vandenbroucke's talk
- Cosmic-ray searches see also the AMS talk
- Secondary emission
- Anomalies! see also Dan Hooper's talk

Early evidence for dark matter:

Fritz Zwicky, 1933 The Coma Galaxy Cluster

Image Credit: NASA/JPL-Caltech/GSFC/SDSS

Image: NASA/ESA

Planck Collaboration, 2013

Indirect detection: key questions

- What kind of particle is dark matter?
- How does it interact with Standard Model particles?
- How is it distributed in the Universe? (And can this tell us about its particle properties?)

How to detect particle dark matter?

Particle dark matter candidates

Physicists' prior probability

Assume dark matter is a WIMP (weaklyinteracting massive particle):

- weak interactions with Standard Model
- GeV TeV mass scale
- can pair annihilate or decay to produce Standard Model particles

gravitino, axion

UED, hidden valley

Credit: Annika Peter

Thermal relic dark matter

Evolution of comoving density of DM particles 0.01 0.001 0.0001 10-5 if DM is a WIMP produced 10-6 thermally in the early Density Increasing $\langle \sigma_A v \rangle$ 10-7 universe, its pair 10-8 annihilation cross-section 10⁻⁹ Number is related to the relic 10-10 abundance today 10-11 10-12 Comoving 10-13 measured DM abundance 10-14 gives prediction for the 10-15 annihilation cross-section: 10-18 $<\sigma v > ~ 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$ N_{EQ} 10-17 10-18 10-19 10-20 10 100 1000 x=m/T (time \rightarrow)

Jungman, Kamionkowski, and Griest 1996

Other candidates for indirect searches

• Sterile neutrinos

- viable warm or cold DM candidate depending on production mechanism
- radiatively decay to active neutrinos producing a photon line at half the sterile neutrino mass
- most currently viable parameter space is for 1-100 keV mass (X-ray energies)
- responsible for claimed 3.5 keV line?
- Superheavy dark matter (mass > 10¹² GeV)
 - non-thermal relic
 - can annihilate or decay to SM particles, such as ultrahigh-energy cosmic rays or neutrinos

Indirect dark matter signals

Credit: Sky & Telescope / Gregg Dinderman

Indirect detection

Cherenkov Telescope Array [gamma rays and cosmic rays]

> Fermi Gamma-ray Space Telescope [gamma rays and cosmic rays]

IceCube [neutrinos] AMS-02 [cosmic rays]

Anomalies!

Anomalies!

Indirect detection: selling points

- only way to identify *particle* DM in an astrophysical context
- needed to show that a DM candidate detected at a collider or in a lab indeed is the cosmological DM and is stable on cosmological timescales
- for WIMPs, there is a theoretical prediction for the total annihilation cross section

• anomalies!

see also Dan Hooper's talk

	Instruments	Advantages	Challenges	
Gamma-ray photons	Fermi, ACTs (HESS, VERITAS, MAGIC, CTA, GAMMA-400)	point back to source, spectral signatures	backgrounds, attenuation	
Neutrinos	IceCube/DeepCore/PINGU, ANTARES, KM3NET, Super-K, Hyper-K	point back to source, spectral signatures	low statistics, backgrounds	
Charged particles	PAMELA, AMS(-02), ATIC, ACTs, Fermi, CTA, CALET, GAPS	antimatter hard to produce astrophysically	diffusion, propagation uncertainties, don't point back to sources	
Multiwavelength emission	[radio to X-ray telescopes!]	often better angular resolution, more statistics, different backgrounds	depends on assumptions about environment for secondary processes	

	Instruments	Advantages	Challenges
Gamma-ray photons	Fermi, ACTs (HESS, VERITAS, MAGIC, CTA, GAMMA-400)	point back to source, spectral signatures	backgrounds, attenuation
Neutrinos	IceCube/DeepCore/PINGU, ANTARES, KM3NET, Super-K, Hyper-K	point back to source, spectral signatures	low statistics, backgrounds
Charged particles	PAMELA, AMS(-02), ATIC, ACTs, Fermi, CTA, CALET, GAPS	antimatter hard to produce astrophysically	diffusion, propagation uncertainties, don't point back to sources
Multiwavelength emission	[radio to X-ray telescopes!]	often better angular resolution, more statistics, different backgrounds	depends on assumptions about environment for secondary processes

	Instruments	Advantages	Challenges	
Gamma-ray photons	Fermi, ACTs (HESS, VERITAS, MAGIC, CTA, GAMMA-400)	point back to source, spectral signatures	backgrounds, attenuation	
Neutrinos	IceCube/DeepCore/PINGU, ANTARES, KM3NET, Super-K, Hyper-K	point back to source, spectral signatures	low statistics, backgrounds	
Charged particles	PAMELA, AMS(-02), ATIC, ACTs, Fermi, CTA, CALET, GAPS	antimatter hard to produce astrophysically	diffusion, propagation uncertainties, don't point back to sources	
Multiwavelength emission	[radio to X-ray telescopes!]	often better angular resolution, more statistics, different backgrounds	depends on assumptions about environment for secondary processes	

	Instruments	Advantages	Challenges	
Gamma-ray photons	Fermi, ACTs (HESS, VERITAS, MAGIC, CTA, GAMMA-400)	point back to source, spectral signatures	backgrounds, attenuation	
Neutrinos	IceCube/DeepCore/PINGU, ANTARES, KM3NET, Super-K, Hyper-K	point back to source, spectral signatures	low statistics, backgrounds	
Charged particles	PAMELA, AMS(-02), ATIC, ACTs, Fermi, CTA, CALET, GAPS	antimatter hard to produce astrophysically	diffusion, propagation uncertainties, don't point back to sources	
Multiwavelength emission	[radio to X-ray telescopes!]	often better angular resolution, more statistics, different backgrounds	depends on assumptions about environment for secondary processes	

Predicting indirect signals

(for particles that propagate directly to the observer without deflection, attenuation, or secondary production)

differential intensity = particle physics term "K" • astrophysics term "J"

[differential intensity] =

particles

time • area • solid angle • energy

Caution: definition of "J" is not standardized! Watch for factors of 2, 4π, r₀, ρ₀, and integration over solid angles!

ANNIHILATION:

$$K_{\rm ann} = \frac{\mathrm{d}N}{\mathrm{d}E} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \qquad \qquad J_{\rm ann}(\psi) = \frac{1}{4\pi} \int_{los} \mathrm{d}s \ \rho^2(s,\psi)$$

(for particles that propagate directly to the observer without deflection, attenuation, or secondary production)

differential intensity = particle physics term "K" • astrophysics term "J"

particles [differential intensity] =

time • area • solid angle • energy

Caution: definition of "J" is not standardized! Watch for factors of 2, 4π, r₀, ρ₀, and integration over solid angles!

ANNIHILATION:

$$J_{\rm ann}(\psi) = \frac{1}{4\pi} \int_{los} \mathrm{d}s \ \rho^2(s,\psi)$$

spectrum of particles produced

DECAY:

$$K_{\text{decay}} = \left(\frac{\mathrm{d}N}{\mathrm{d}E}\frac{1}{m_{\chi}\tau_{\chi}}\right)$$

$$J_{\text{decay}}(\psi) = \frac{1}{4\pi} \int_{los} \mathrm{d}s \ \rho(s,\psi)$$

(for particles that propagate directly to the observer without deflection, attenuation, or secondary production)

(for particles that propagate directly to the observer without deflection, attenuation, or secondary production)

differential intensity = particle physics term "K" • astrophysics term "J"

particles Caution: definition of "J" is not [differential intensity] = standardized! Watch for time • area • solid angle • energy factors of 2, 4π , r₀, ρ_0 , and integration over solid angles! ANNIHILATION: $K_{\rm ann} = \frac{\mathrm{d}N\left\langle\!\langle \sigma v \rangle\!\rangle}{\mathrm{d}E \, 2m_{\star}^2} \qquad J_{\rm ann}(\psi) = \frac{1}{4\pi} \int_{los} \mathrm{d}s \ \rho^2(s,\psi)$ pair annihilation cross section times average relative velocity DECAY: $K_{\rm decay} = \frac{\mathrm{d}N}{\mathrm{d}E} \frac{1}{m_{\gamma}\tau_{\gamma}}$ $J_{\text{decay}}(\psi) = \frac{1}{4\pi} \int_{-\infty}^{\infty} \mathrm{d}s \ \rho(s,\psi)$

(for particles that propagate directly to the observer without deflection, attenuation, or secondary production)

differential intensity = particle physics term "K" • astrophysics term "J"

[differential intensity] =

particles

time • area • solid angle • energy

Caution: definition of "J" is not standardized! Watch for factors of 2, 4π, r₀, ρ₀, and integration over solid angles!

ANNIHILATION:

$$K_{\rm ann} = \frac{\mathrm{d}N}{\mathrm{d}E} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \qquad \qquad J_{\rm ann}(\psi) = \frac{1}{4\pi} \int_{los} \mathrm{d}s \ \rho^2(s,\psi)$$

(for particles that propagate directly to the observer without deflection, attenuation, or secondary production)

differential intensity = particle physics term "K" • astrophysics term "J"

(for particles that propagate directly to the observer without deflection, attenuation, or secondary production)

differential intensity = particle physics term "K" • astrophysics term "J"

[differential intensity] =

particles

time • area • solid angle • energy

Caution: definition of "J" is not standardized! Watch for factors of 2, 4π, r₀, ρ₀, and integration over solid angles!

ANNIHILATION:

$$K_{\rm ann} = \frac{\mathrm{d}N}{\mathrm{d}E} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \qquad \qquad J_{\rm ann}(\psi) = \frac{1}{4\pi} \int_{los} \mathrm{d}s \ \rho^2(s,\psi)$$

Tools to calculate indirect signals

• DarkSUSY: <u>http://www.fysik.su.se/~edsjo/darksusy/</u>

• PPPC4DMID: <u>http://www.marcocirelli.net/PPPC4DMID.html</u>

Annihilation and decay spectra

particles produced at energies up to the dark matter mass for annihilation (half the mass for decay)

- spectral shape encodes info about particle properties

spectra shown are source spectra in vacuum -secondary processes can modify observed spectra

Dark matter photon spectra

- "soft" channels: produce a continuum gamma-ray spectrum primarily from decay of neutral pions
- "hard channels": include final state radiation (FSR) associated with charged leptons in the final states
- line emission: YY, ZY, hY (not shown), loopsuppressed

Spectra calculated with PPPC 4 DM ID [Cirelli et al. 2010]

Indirect dark matter signals

The DM distribution

motivated by numerical simulation results, constrained by observations

DM density in inner part of halo goes as roughly r^{- Γ} with $\Gamma \approx 1$, but there is likely large variation between halos, and this is only weakly constrained for individual objects

Presence of baryons can significantly modify the DM density

The dark matter spatial distribution

Credit: Springel et al. (Virgo Consortium)

Dark matter annihilation signal

Density profiles

Navarro-Frenk-White (NFW):

$$\rho_{\rm NFW}(r) \propto \frac{1}{\left(\frac{r}{r_s}\right) \left[1 + \left(\frac{r}{r_s}\right)\right]^2}$$

Generalized NFW (GNFW):

$$\rho_{\gamma}(r) \propto \frac{1}{\left(\frac{r}{r_s}\right)^{\gamma} \left[1 + \left(\frac{r}{r_s}\right)\right]^{3-\gamma}}$$

Einasto:
$$\rho_{\rm Ein}(r) \propto e^{-\left(\frac{2}{a}\right) \left[\left(\frac{r}{r_s}\right)^a - 1\right]}$$

Modifying the density profile

 adiabatic contraction: baryons pull in the DM, steepening the profile

 feedback: supernovae blow out gas, rapidly changing the potential and disrupting cuspy DM profiles

 self-interacting DM: allowing DM to exchange energy leads to a flattening of the DM profile

Weinberg et al. 2013

Dark matter signals from the Inner Galaxy

Dark matter signals from the Inner Galaxy

angle from Galactic Center

Pierre, JSG, & Scott, 2014

Gamma-ray searches

look for prompt and sometimes also secondary emission from WIMP annihilation/decay; sift through large, uncertain backgrounds

to observe gamma rays below about 10 GeV MUST GO TO SPACE: Fermi Large Area Telescope (LAT)

 for high energies, need large effective area: groundbased imaging atmospheric Cherenkov telescopes (IACTs), e.g., H.E.S.S., MAGIC, VERITAS, and CTA The Fe arge Area Telescope (LAT)

- pair-production detector detector particles as well
- excellent charge and background
- 20 MeV to > 30(
- angular resolutio
- large FOV ~ 2.4

Fermi data and analysis tools are public!

The Fermi LAT gamma-ray sky 3-year all-sky map, E > 1 GeV

Image Credit: NASA/DOE/International LAT Team

Gamma rays from dark matter annihilation

Image credit: JSG 2008

Fermi LAT dark matter search targets

Fermi LAT dark matter search targets

The isotropic gamma-ray background

Image credit: JSG 2008

positrons

Current constraints

SLAC Summer Institute | "Shining Light on Dark Matter" | August 10, 2014

Current constraints

SLAC Summer Institute | "Shining Light on Dark Matter" | August 10, 2014

Anomaly: the Galactic Center GeV excess

- Using Fermi LAT data, multiple groups have claimed an excess at a few GeV from the Galactic Center and higher Galactic latitudes. The excess has been interpreted as emission from DM annihilation and/or unresolved millisecond pulsars (MSPs).
- Energy spectrum of the excess:
 - can be fit by DM with mass of ~10-40 GeV, depending on channel
 - uncomfortably similar to MSPs
 - Excess is spatially extended:
 - if from annihilation, need steep DM density profile $r-\gamma$ with $\gamma = 1.2-1.4$
 - uncertain if MSPs could explain large extension and steep profile
 - To generate amplitude of the excess:
 - requires roughly thermal relic DM annihilation cross section
 - would require a few thousand MSPs, which seems plausible

see: Hooper & Goodenough 2011, Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Gordon & Macías 2013, Abazajian et al. 2014, Daylan et al. 2014,

A dark matter signal in the Inner Galaxy?

Energy spectrum of excess in Galactic Center

A dark matter signal in the Inner Galaxy?

A dark matter signal in the Inner Galaxy?

Needed cross section is close to thermal relic value

Excess over what?

What's in the model:

- Galactic diffuse emission associated with cosmic-ray interactions (sum of many processes)
- isotropic gamma-ray background (measured)
- detected gamma-ray sources (e.g., pulsars, supernova remnants)

What's not in the model:

- unresolved gamma-ray sources
- dark matter

Fermi LAT data 0.69 - 0.95 GeV

Abazajian & Kaplinghat 2012

Residuals

(for best-fit model w/o dark matter component) 1-2 GeV residual

Residuals

(for best-fit model w/o dark matter component) 1-2 GeV residual

Residuals

(for best-fit model w/o dark matter component) 1-2 GeV residual

Does DM uniquely improve the fit?

Does DM uniquely improve the fit?

No.

Does DM uniquely improve the fit?

TABLE I. The best-fit TS_{\approx} , negative log-likelihoods, and $\Delta \ln \mathcal{L}$ from the baseline for general models in the 200 MeV-100 GeV analysis.

models adding an additional component with an extended spatial distribution

Spatial model	Spectrum	TS≈	$-\ln \mathcal{L}$	$ riangle \ln \mathcal{L}$
Baseline	• • •	•••	140 070.2	•••
Density $\Gamma = 0.7$	LogPar	1725.5	139 755.5	314.7
Density ² $\gamma = 0.9$	LogPar	1212.8	139 740.0	330.2
Density ² $\gamma = 1.0$	LogPar	1441.8	139 673.3	396.9
Density ² $\gamma = 1.1$	LogPar	2060.5	139651.8	418.3
Density ² $\gamma = 1.2$	LogPar	4044.9	139 650.9	419.2
Density ² $\gamma = 1.3$	LogPar	7614.2	139 686.8	383.4
Density ² Einasto	LogPar	1301.3	139 695.7	374.4
Density ² $\gamma = 1.2$	PLCut	3452.5	139 663.2	407.0

improvement in fit $(2\Delta ln \mathcal{L} > 25)$ is highly significant)

Abazajian & Kaplinghat 2012

Hooper, Cholis, Linden, JSG, Slatyer 2013

Can unresolved MSPs produce the highlatitude excess?

- adopt a spatial model and luminosity function for the MSPs, calibrated to detections in radio
- base model can roughly account for the amplitude of Inner Galaxy excess, but strongly overpredicts number of Fermi-detected MSPs

adjusting MSP model parameters to better reproduce the observed source counts leads to models that cannot explain the *amplitude* of the observed excess

J. Siegal-Gaskins

SLAC Summer Institute | "Shining Light on Dark Matter" | August 10, 2014

Hooper, Cholis, Linden, JSG, Slatyer 2013

Is the GeV excess dark matter?

- Hard to explain with gamma-ray millisecond pulsars. Other source populations? (NB:Yuan & Zhang 2014 claim MSPs ok with softer luminosity function.)
- Attributable to uncertainties in modeling of Galactic diffuse emission?
 - Sum of several processes with not-strongly-constrained inputs:
 - cosmic-ray spectra and distribution
 - gas distribution
 - interstellar radiation field
 - magnetic fields
 - Galactic diffuse model tuned to fit all-sky data
- Systematics? (Not statistics-limited!)

Bed of Procrustes

Bed of Procrustes

- Lacroix et al. point out importance of:
 - inverse Compton
 - propagation model
 - diffusion (and latitude dependence of secondary emission)

Bed of Procrustes

• diffusion (and latitude dependence of secondary emission)

Multiwavelength / multi-messenger constraints

Bringmann et al. 2014

Multiwavelength / multi-messenger constraints

Bringmann et al. 2014

Summary: Part I

- indirect detection tests particle nature of DM with astrophysical observations
- we are beginning to probe favored models of dark matter with gamma-ray searches
- hints of possible dark matter signals have been uncovered in gamma-ray data!