
A Taxonomy of Scientific
Software Applications Peter Elmer - Princeton University

HEP's Place in the World

• Software and Computing in HEP has been, and still is, a
major enterprise

• Participation by a cast of thousands: physicists, software
and computing professionals

• Large international conferences (CHEP, ACAT, IGSC,
HEPiX, many other smaller conferences/workshops). Even
some of our software tools have their own workshops.

HEP's Place in the World - practical questions

• This is a small hobby project. For entirely pragmatic reasons I am
primarily interested in:

• Understanding better what other scientific software projects look like,
and how they get adopted by others and evolve.

• Identifying places where we have something to offer the world (and
why we do or don't when we do have something) and when others
might have something to offer us. Where can we potentially
collaborate?

• Understanding better how and when projects succeed in "leaving the
ghetto" of a particular group, experiment or the field is potentially
interesting.

Distributed Computing (The Grid)

• I am not going to spend much time on Grid Computing here.

• It is obviously an area where we attracted a lot of attention
(and funding), built an amazing worldwide system to do what
we needed to do, with no other realistic solutions. We also
played a role in enabling other sciences to do things they
could not otherwise have done.

• Panel discussion on Thursday "The end of HEP-specific
Computing as we know it?" Hint of my attitude: nobody is
worried today that we aren't all still using CERN httpd.

SLOCCount

• Simple tool to measure "size" of a software package in
Source Lines of Code (SLOC)

• http://www.dwheeler.com/sloccount/

• SLOC is not a measure of "value", e.g. zlib/deflate is only 29k
SLOC, however it has been of great importance to us

• SLOC is however a crude estimator of the effort required for
the initial creation of some piece of software. (Subsequent
maintenance, non-technical "physics tuning", etc. are
probably not well measured by the number.)

An aside: Scientific Software Production,
Cyberinfrastructure, Ecosystems

• While my aims are actually very pragmatic, while looking into this I see
that "Scientific Software Production" is actually an academic area of
research. See, for example, James Howison (http://howison.name/)
and follow references from there. For example:

• http://howison.name/pubs/IncentivesAndIntegration-p459-
howison.pdf

• See also (another aside): "When Authorship Isn’t Enough: Lessons
from CERN on the Implications of Formal and Informal Credit
Attribution Mechanisms in Collaborative Research ", J. Birnholtz

• http://quod.lib.umich.edu/j/jep/3336451.0011.105?
rgn=main;view=fulltext

http://howison.name/
http://howison.name/
http://howison.name/pubs/IncentivesAndIntegration-p459-howison.pdf
http://howison.name/pubs/IncentivesAndIntegration-p459-howison.pdf

What is HEP software?

• Before I start looking at other fields I looked at the software
we build and use.

• I used CMS as a concrete example, and (mostly) focus on
the software applications, not "computing" in the sense of
data and workflow management tools.

• What kinds of things are we using and building?

CMSSW Software Release

• First, the CMSSW software release, written by CMS people, is the
largest software project we have: 3.6 MSLOC C++, with
contributions by 960 people over the years, up to ~250/month.

• Includes all "common" code for the experiment: the core event
processing Framework, CMS specific simulation, trigger,
reconstruction code, data quality monitoring, validation, conditions
mgmt, analysis tools, etc. (See lots of CHEP talks over the years.)

• How much of this is reusable even between HEP experiments is
clearly open for discussion. What is clear is that this scale of
software development itself pushed us into a regime of software
integration and testing more like large open source projects and
companies than most scientific software projects.

CMSSW Code Contributions (people/month)

See also "The Life Cycle of HEP Offline Software",
P.Elmer, L. Sexton-Kennedy, C.Jones, CHEP 2007

Physics Generators

• alpgen (187k), cascade (35.9k) charybdis (2.9k) jimmy (5.4k)
LHAPDF (79.6k) Rivet (77.9k) Pythia6 (78k) Pythia8 (75k)
Tauola (21.8k) Tauola++ (58.4k) ThePEG (69k) toprex (33k)
Sherpa (297.5k) MCDB (1.2k) libHepML (2k) HepMC (9.3k)
HepPDT (13.1k) Herwig (120k) Herwig++ (189.9k) Photos
(69.k) Professor (14.5k) EvtGenLHC (38.7k)

• Total of about 1.4 MSLOC, approx. half C++, half Fortran,
clearly HEP-specific, not of interest to others.

• Starting to become more computationally intensive. (And
incentives for theorists are different...)

System and Software Engineering

• General open source: boost bz2lib ccache curl cppunit
distcc DMTCP doxygen expat jemalloc gcc gccxml gdb
git gmake llvm libjpg libpng libtiff libungif libuuid libxml2
opengl openldap openssl oracle SLOCCount TBB
Google-Perftools Valgrind xerces-c xz zlib libSigC++
python python-ldap protobuf ipython sqlite gdbm lcov
cvs2git pacparser pcre rpm apt glimpse

• Developed in HEP: Castor classlib dcap dpm xrootd
IgProf

Data Analysis, Math and Graphics

• General open source: gnuplot matplotlib numpy scipy
GSL meschach lapack fftw3 CGAL graphviz Qt PyQt SIP

• Developed in HEP: CLHEP VDT ROOT (RooFit RooStats)
PyMinuit2

• Several potentially interesting tools for the rest of the
world.

Other HEP misc

• CORAL FastJet fftjet frontier-client Geant4 KtJet Hector
TKOnlineSW

• Mostly not useful outside of HEP, with the exception of
Geant4 (later slide) and (perhaps) Hector

ROOT
• analysis tools, visualization, Framework, Math libraries, data

persistency, etc.

• 1.7 MSLOC, with many subpackages: cint (263k) graf2d (212k)
math (126k) gui (114k) core (113k) graf3d (112k) roofit (108k) hist
(93k) tutorials (78k) proof (76k) geom (61k) tmva (60k) test (55k) tree
(53k) net (46k) io (42k), etc.

• Ubiquitous in HEP, and used in related fields, some use elsewhere

• Core team at CERN, effort at FNAL and large community input

• Has arguably served as a sort of "distribution" for other tools (xrootd,
TMVA, RooFit/RooStats, etc.)

• Monte Carlo simulation of the passage of particles
through matter

• 1.22 MSLOC (1.05M C++, 142k Fortran)

• Collaboration structure, effort at many large labs: CERN,
FNAL, SLAC, KEK, ESA/ESTEC, etc.

• Used wider than HENP, also accelerator, medical physics,
space science. As a physics-based tool, less obviously
useful for other fields beyond these.

Sampling of other scientific software

• The following is a sampling of
other scientific software

• I do not pretend this is a complete
picture (it is not). I've not yet
spent much time interacting with
original authors, but instead used
their documentation

• Most of these were suggestions
from a random sampling of
people, a few are just plain
random.

• This selection is thus a bit
"anecdotal", bit perhaps that is
an appropriate way to form a
"taxonomy"

BLAST+

• Implementation of an algorithm for approximate sequence
matching of nucleotides in DNA or amino acids in proteins

• (See paper by Howison earlier for notes on the evolution of
the BLAST algorithm and its implementations), rewrite in
2009

• From National Center for Biotechnology Information (NCBI),
Penn State, U. Arizona: Biology/Computer Science
collaboration

• 757 kSLOC C++/C

• "language and software environment for statistical computing
and graphics"

• An implementation of S (Bell Labs), from 1993, by U.Auckland,
with core group of ~20 developers with repository write access.

• 423 kSLOC (311k C, 89.6k fortran) + ~150k R

• Worldwide list of R User Groups: estimate "2 million R users",
important tool not only in the academic world, but also in
industry. Support through dedicated company Revolution
Analytics, etc.

• Hierarchical filesystem-like data format, data model and
file format

• Originally from NCSA (1987), since 2006 supported by a
not-for-profit corporation (HDF group). Very widely used
by a quite diverse number of users from many fields.

• Not strictly tied to any particular set of tools, used by a
large number of tools.

• 456 kSLOC (388k C, 35k F90, 19k sh, 12k C++)

• Molecular Dynamics

• Originally written by Sandia/LLNL + Companies (Cray, Birstol
Myers Squibb, Dupont)

• Dates from mid 1990's, first version in F90, rewrite in C++ in
2004 (made open source at that point: GPL)

• Designed for distributed MPI-style parallelism, support for
some features with GPU's (CUDA, OpenCL), OpenMP

• 488 kSLOC (434k C++, 19.1k Python, 16k Fortran)

• "While there have been a number of efforts to develop Python packages
for astronomy-specific functionality, these efforts have been fragmented,
and several dozens of packages have been developed across the
community with little or no coordination. This has led to duplication and
a lack of homogeneity across packages, making it difficult for users to
install all the required packages needed in an astronomer’s toolkit."

• Includes things like Units/Coordinate-Systems, FITS/ASCII I/O, Astro
computations and statistics, Message logger, etc. Tools that should
complement more general packages like NumPy and SciPy

• Begun in 2011, it currently consists of 232 kSLOC (150k C, 60k
Python, including 140k C for embedded expat)

• "Not Another Molecular Dynamics" program, "NAnoscale
Molecular Dynamics"

• 134 kSLOC (106k C++, 25k C), including Charm++
Message Passing parallel language and runtime 410 kSLOC
(220k C++, 167k C)

• Previous codes rewritten from scratch in C++, with
parallelism in mind, in the 1990's

• Typical parallel supercomputer application. MPI and selected
features CUDA GPU accelerated.

• a "suite of programs that allows researchers to determine
macromolecular structures by X-ray crystallography and other
biophysical techniques", "the CCP4 suite is a set of separate
programs which communicate via standard data files"

• programs are modified to use CCP4 data format when they are
integrated into the suite

• Collaborative Computational Project Number 4 in Protein
Crystallography, created in 1979 and coordinated from RAL

• 8.5 MSLOC (2.64M C, 1.99M C++, 1.90M Fortran, 1.38M Python),
distribution of things incl. many like CMS externals (zlib, Python,
lapack, etc.)

• Molecular Dynamics
(again), 1.33 MSLOC C

• Uses MPI, with possibility
of CUDA-based
acceleration

• Started by group at
Groningen University,
now appears to have
support and developers
in Sweden, Germany, US

• (Example) Project ideas:

Now back to HEP....

• Originally an EU funded project: SISSA (Trieste), U.Udine,
TNO (NL), UvA (NL), CERN. Open Source, GPL.

• Version 1.1, 151k Python.

• Long list of installations (next slide). Many are HENP
collaborating institutions, from which (it appears)
sometimes the tool begins to be used by others. (Network
effect!)

Worldwide list of sites (111 total)

PSI

ESA/ESTEC

Classifying Scientific Software - Use Models

• Roughly three categories:

• Groups that use canned packages to do the heavy lifting

• Groups that write their own software from the bottom up

• Groups that are part of larger communities with
Frameworks, etc.

• This is from F.Wuerthwein, characterizing what he saw as
applications on the OSG.

Lots of interesting models

• Multiple methods of "Distribution" creation (AstroPy, CCP4)

• Tools with much more widespread use by a diverse
community (R, HDF5)

• Wider use via "network" effects (InDiCo)

• Large (parallel) C++ packages (NAMD, LAMMPS) and C
packages (gromacs)

• Large C++ (and other) codes (CCP4)

Strengths of HEP

• Very large collaborations with a clear notion of "common
software and computing". Significant engineering effort,
managed coherently. We can, and need to, be quite
ambitious!

• Tradition of pushing software and computing limits.

• Result is a scale for coherence that is impressive: adoption of
ideas or technology by an experiment can rapidly create very
large user communities. We "natively" handle distributed
collaboration and collaboration at a distance

Summary

• HEP has a lot to offer the world at large, and not just for
"distributed computing". To the extent that this is expected
of us, we can probably deliver if we learn how.

• The rest of the world also has a lot offer us, we should
embrace that, too...

• This "bug hunt" surely missed a lot of things: if you know of
other interesting software packages, fields with interesting
development models or have ideas as to where
collaborations as above might be beneficial, I would be
interested to hear them...

Thanks for listening....

