JET BINS AND JET SUBSTRUCTURE

ANDREA BANFI University of Sussex

HIGGS COUPLINGS 2014

JET-VETO CROSS SECTIONS: WHY?

Experimental analyses involving the Higgs select exclusive jet samples

- $H \rightarrow WW$: the zero-jet bin is least contaminated by huge top-antitop background
- Two-jet exclusive samples needed to separate VFB from gluon fusion

THE ZERO-JET CROSS SECTION

♀ zero-jet cross section ⇔ jet veto
 condition, all jets have $p_{t,jet} < p_{t,veto}$

HIGGS PLUS ZERO-JETS AT FIXED ORDER

The Higgs cross section in gluon fusion has been computed at very high accuracy

$$d\sigma_{\geq 0-\text{jet}} \sim \alpha_s^2 \left(1 + \underbrace{\alpha_s}_{\text{NLO}} + \underbrace{\alpha_s^2}_{\text{NNLO}} + \dots \right)$$

finite m_t, m_b	NLO	[Spira et al. NPB 453 (1995) 17]
large- m_t	NNLO	[Anastasiou Melnikov Petriello NPB 724 (2005) 197]
		[Catani Grazzini PRL 98 (2007) 222002]
large- m_W	QCD-EW	[Anastasiou Boughezal Petriello JHEP 04 (2009) 003]

- Uncertainties in the Higgs total cross section σ_{tot} are small, of order 7-8%
- These calculations are implemented in computer codes (FEHiP, HNNLO) producing exclusive events \Rightarrow directly compute σ_{0-jet} at NNLO
- First steps have been made towards NNNLO

[see e.g. Anastasiou et al. 1302.4379, 1311.1425, 1403.4616]

NEED FOR RESUMMATION

 At fixed-order, various ways of treating uncertainties (scale variations, Stewart-Tackmann, efficiency method) give different results

• Resummation of large logarithms $\ln(m_H/p_{t,veto})$ needed to have stable predictions in the region considered at the LHC $p_{t,veto} \simeq 25 - 30 \,\text{GeV}$

NNLL+NNLO RESUMMATIONS

NNLL resummation matched to NNLO is implemented in the code JetVHeto <u>http://jetvheto.hepforge.org/</u>

[AB Monni Salam Zanderighi PRL 109 (2012) 202001]

The same result has been obtained by two groups in the framework of Soft-Collinear Effective Theory (SCET)

> [Becher Neubert JHEP 07 (2012) 108] [Becher Neubert Rothen JHEP 10 (2013) 125] [Stewart Tackmann Walsh Zuberi PRD89 (2014) 054001]

Further improvements:

Ingredients beyond NNLL accuracy

[Becher Neubert Rothen JHEP 10 (2013) 125] [Stewart Tackmann Walsh Zuberi PRD89 (2014) 054001]

Effect of top and bottom masses in loops

[AB Monni Zanderighi JHEP 01 (2014) 097]

PREDICTIONS FOR JET-VETO EFFICIENCY

• Uncertainties of the jet-veto efficiency: independent variation of all scales by a factor two around $m_H/2$, and of schemes to match NNLL to NNLO

- Reduction of theoretical uncertainty from NNLO to NNLL+NNLO
- Uncertainty would be further reduced with a larger jet radius

UNCERTAINTIES: JVE METHOD

- Jet-veto efficiency (JVE) method for theoretical uncertainties
 - Compute the zero-jet cross section from $\sigma_{0-jet} = \epsilon(p_{t,veto}) \sigma_{tot}$
 - Treat uncertainties in σ_{tot} and $\epsilon(p_{t,veto})$ as uncorrelated

e.g. R = 0.4, $p_{t,veto} = 25 \text{ GeV}$: $\delta \sigma_{0-jet} \sim 10\%$ [NNLL+NNLO] $\delta \sigma_{0-jet} \sim 13.8\%$ [NNLL+NNLO + JVE σ_{tot}^{NNLO}] $\delta \sigma_{0-jet} \sim 12.8\%$ [NNLL+NNLO + JVE σ_{tot}^{HXSWG}]

 Uncertainties still sizeable at NNLL+NNLO, large corrections expected from H+1jet@NNLO (gg published, full only preliminary results by BCMPS)

> [Boughezal Caola Melnikov Petriello Schulze JHEP 06 (2013) 072] [Chen Gehrmann Glover Jaquier 1408.5325]

UNCERTAINTIES: NNNLLP PREDICTIONS

NNNLLp predictions include terms beyond NNLL

[Becher Neubert Rothen JHEP 10 (2013) 125]

• Uncertainties in σ_{0-jet} : variation of all scales by a factor of two around m_H and estimate of missing NNNLL R-dependent terms

e.g.
$$R = 0.4, p_{t,veto} = 25 \,\text{GeV} : \delta \sigma_{0-jet} \sim 9\%$$

Results include resummation of π^2 in virtual corrections: total cross section different from $\sigma_{\rm tot}^{\rm HXSWG}$

UNCERTAINTIES: NNLL'+NNLO

- Uncertainties on σ_{0-jet} are evaluated by varying all scales around m_H with profiling functions [Stewart Tackmann Walsh Zuberi PRD89 (2014) 054001]
- Theory uncertainty reduced by performing π^2 resummation

e.g.
$$R = 0.4, p_{t,veto} = 25 \,\text{GeV}$$
:
 $\delta \sigma_{0-\text{jet}} \sim 12.8\% \xrightarrow{\pi^2 \text{ res.}} \delta \sigma_{0-\text{jet}} \sim 9.6\%$

ZERO-JET SUMMARY

LHC $\sqrt{s} = 8 \,\mathrm{TeV}$ MSTW2008NNLO

	$\sigma_{0-\text{jet}}(25 \text{GeV}, R = 0.4) [\text{pb}]$	$\sigma_{0-\text{jet}}(30 \text{GeV}, R = 0.5) [\text{pb}]$	
BMSZ	11.81 ± 1.51	12.86 ± 1.47	large- m_t
B'NR	$11.25^{+0.77}_{-1.25} {}^{(+0.65)}_{(-1.15)}$	n/a	large- m_t
STWZ'	$12.67 \pm 1.22_{\text{pert}} (\pm 0.46_{\text{clust}})$	$13.85 \pm 0.87_{\text{pert}} (\pm 0.24_{\text{clust}})$	large- m_t
BMZ	11.59 ± 1.72	12.64 ± 1.79	exact m_t, m_b

- All results are compatible within uncertainties
- Theoretical uncertainties are between 10% and 15%
- Inclusion of mass effects increases the uncertainty

Comparing the various approaches is difficult because of different values of σ_{tot}

ACROSS JET BINS WITH JVE

The JVE method can be generalised to arbitrary jet multiplicities

 $\sigma_{0-\text{jet}} = \epsilon \sigma_{\text{tot}} \quad \sigma_{1-\text{jet}} = \epsilon_1 (1-\epsilon) \sigma_{\text{tot}} \quad \sigma_{\geq 2-\text{jets}} = (1-\epsilon_1)(1-\epsilon) \sigma_{\text{tot}}$

- Uncertainties in the efficiency require considering different schemes to define the efficiency in terms of total cross sections
- The method does not need modification when resummed predictions become available
- The correlation matrix $Cov[\sigma_{tot}, \sigma_{\geq 1-jet}, \sigma_{\geq 2-jets}]$ can be computed by considering $\sigma_{tot}, \epsilon, \epsilon_1$ as uncorrelated

[Les Houches proceedings 1405.1067]

ACROSS JET BINS WITH BLPTW

 Combination of resummed predictions and fixed-oder for different jet multiplicities
 [Boughezal Liu Petriello Tackmann Walsh JHEP 10 (2013) 125]

$$\sigma_{\text{tot}} = \sigma_0(p_T^{\text{cut}}) + \sigma_1(\underbrace{[p_T^{\text{cut}}, \infty]}_{\text{range of } p_{TJ}}; p_T^{\text{cut}}) + \sigma_{\geq 2}(p_T^{\text{cut}})$$

$$NNLL'+NNLO$$
[Stewart Tackmann Walsh Zuberi PRD89 (2014) 054001]

• Problem: the one-jet cross section can be resummed only for $p_{TJ} \gg p_T^{cut}$

NLL'+NLO

$$\sigma_1([p_T^{\text{cut}}, \infty]; p_T^{\text{cut}}) = \sigma_1([p_T^{\text{cut}}, p_T^{\text{off}}]; p_T^{\text{cut}}) + \sigma_1([p_T^{\text{off}}, \infty]; p_T^{\text{cut}})$$

[Liu Petriello PRD87 (2013) 014018, PRD87 (2013) 094027]

 $\sigma_1([p_T^{\text{cut}}, p_T^{\text{off}}]; p_T^{\text{cut}}) = [\sigma_0(p_T^{\text{off}}) - \sigma_0(p_T^{\text{cut}})] - [\sigma_{\geq 2}(p_T^{\text{cut}}, p_T^{\text{cut}}) - \sigma_{\geq 2}(p_T^{\text{cut}}, p_T^{\text{off}})]$ NNLL'+NNLO NLO

H+1JET CROSS SECTION

Considerable reduction of theoretical uncertainties with resummation

e.g. $R = 0.4, p_{t,veto} = 25 \,\text{GeV}: \delta\sigma_{1-jet}^{\text{NLO}} \sim 40\% \rightarrow \delta\sigma_{1-jet}^{\text{BLPTW}} \sim 16.5\%$

Also here the total cross section includes π^2 resummation and differs from HXSWG

UNCERTAINTIES AT THE LHC

Comparison among different methods

anti –
$$k_t$$
 jets, $R = 0.4$, $p_{t,veto} = 25 \text{ GeV}$

BOOSTED HIGGS SEARCHES

It all started with the Higgs, twenty years ago

[Seymour ZPC62 (1994) 127]

 Famous 2008 BDRS paper, showing discovery potential for a 120 GeV Higgs in VH production at LHC14

[Butterworth Davison Rubin Salam PRL 100 (2008) 242001]

BOOSTED STRATEGY

• Suppose we have a Higgs with $p_t \gg m_H$

The angular separation between the decay products decreases with increasing transverse momentum

$$\Delta R_{b\bar{b}}^2 \simeq \frac{m_H^2}{z(1-z)p_t^2}$$

BOOSTED STRATEGY

• Suppose we have a Higgs with $p_t \gg m_H$

The angular separation between the decay products decreases with increasing transverse momentum

$$\Delta R_{b\bar{b}}^2 \simeq \frac{m_H^2}{z(1-z)p_t^2}$$

Two b-jets fall into the same "fat" jet

eld

nere are some or the tools/taggers employed to investigate jet substructure

WHAT DO THE TAGGERS DO?

A tagger for jet substructure should

- clean the jets from soft junk
- identify the sub-jets from the decay products of a heavy particle
- discriminate between signal jets and "boring" QCD jets
- be robust again initial state ad initial initial state and initinitial state and initial state and initial state and initial

Filtering in

COMPARE THREE DIFFERENT TAGGERS

Trimming

[Krohn Thaler Wang JHEP 02 (2010) 084]

[Butterworth Davison Rubin Salam PRL 100 (2008) 242001]

Mass-drop tagger (MDT)

decluster & repeat until discard soft junk

pictures by G. Salam

JET-MASS WITH DIFFERENT TAGGERS

Compare the invariant mass distribution of background QCD jets

[Dasgupta Fregoso Marzani Salam JHEP 09 (2013) 029]

JET-MASS WITH DIFFERENT TAGGERS

The performance of various jet taggers can be compared by looking at the invariant mass of background QCD jets

gluon jets (Pyth

ANALYTIC STUDIES...

The relevant features of the various taggers can be understood analytically!

... TRIGGER IMPROVEMENTS

Y-pruning and modified MDT (mMDT) have better behaviour than the original taggers

 The mMDT mass distribution is free from all soft-collinear logarithms? m [GeV], for p_t = 3 TeV, R = 1
 10
 100
 100
 100
 100
 100
 100

PERFORMANCE OF IMPROVED TAGGERS

 The improved taggers perform better in discriminating signal from background [Dasgupta Fregoso Marzani Salam JHEP 09 (2013) 029]

0.002 0 0 40 60 80 100 120 140 160 180 200 40 60 80 100 120 140 160 180 200 20 20 m [GeV] m [GeV]

 $\beta < 0$ kills QCD jets at low invariant mass, similar to Y-pruning

0.01

HIGHLIGHTS

- Higgs cross section with zero jets
 - Three different procedures that agree at NNLL+NNLO accuracy
 - All predictions give an uncertainty of order 10-13%
 - Banfi-Monni-Zanderighi: inclusion of top and bottom mass effects gives a larger uncertainty, of order 14%
- Uncertainties across jet bins
 - JVE method can be generalised to an arbitrary jet multiplicity
 - New BLPTW method that takes advantage of resummation of the exclusive one-jet cross section
- New ideas for jet substructure studies
 - Analytical resummation methods are bringing new insight in the field and helping devise better tools/tagger
 - These ideas are being validated against experimental data (see BOOST 2014)

HIGHLIGHTS

- Higgs cross section with zero jets
 - Three different procedures that agree at NNLL+NNLO accuracy
 - All predictions give an uncertainty of order 10-13%
 - Banfi-Monni-Zanderighi: inclusion of top and bottom mass effects gives a larger uncertainty, of order 14%
- Uncertainties across jet bins
 - JVE method can be generalised to an arbitrary jet multiplicity
 - New BLPTW method that takes advantage of resummation of the exclusive one-jet cross section
- New ideas for jet substructure studies
 - Analytical resummation methods are bringing new insight in the field and helping devise better tools/tagger
 - These ideas are being validated against experimental data (see BOOST 2014)

Thank you for your attention!

- We have combined the NNLL resummation with NNLO, using three matching schemes (a), (b) and (c)
 [AB Monni Salam Zanderighi '12]
- Central value: scheme (a) with $\mu_R = \mu_F = Q = m_H/2$

Q is the resummation scale: $\ln(m_H/p_{t,veto}) \rightarrow \ln(Q/p_{t,veto})$

- We have combined the NNLL resummation with NNLO, using three matching schemes (a), (b) and (c)
 [AB Monni Salam Zanderighi '12]
- Central value: scheme (a) with $\mu_R = \mu_F = Q = m_H/2$ Q is the resummation scale: $\ln(m_H/p_{t,veto}) \rightarrow \ln(Q/p_{t,veto})$

- We have combined the NNLL resummation with NNLO, using three matching schemes (a), (b) and (c)
 [AB Monni Salam Zanderighi '12]
- Central value: scheme (a) with $\mu_R = \mu_F = Q = m_H/2$ Q is the resummation scale: $\ln(m_H/p_{t,veto}) \rightarrow \ln(Q/p_{t,veto})$

• Variation of
$$\mu_R$$
, μ_F with $Q = m_H/2$
$$\frac{m_H}{4} \le \mu_R$$
, $\mu_F \le m_H$
$$\frac{1}{2} \le \frac{\mu_R}{\mu_F} \le 2$$

• Variation of
$$Q$$
 with $\mu_R, \mu_F = m_H/2$

$$\frac{m_H}{4} \le Q \le m_H$$

- We have combined the NNLL resummation with NNLO, using three matching schemes (a), (b) and (c) [AB Monni Salam Zanderighi '12]
- Central value: scheme (a) with $\mu_R = \mu_F = Q = m_H/2$ Q is the resummation scale: $\ln(m_H/p_{t,veto}) \rightarrow \ln(Q/p_{t,veto})$

• Variation of
$$\mu_R$$
, μ_F with $Q = m_H/2$
$$\frac{m_H}{4} \le \mu_R$$
, $\mu_F \le m_H$
$$\frac{1}{2} \le \frac{\mu_R}{\mu_F} \le 2$$

• Variation of Q with $\mu_R, \mu_F = m_H/2$

$$\frac{m_H}{4} \le Q \le m_H$$

Schemes (b) and (c) with $\mu_R = \mu_F = Q = m_H/2$

- We have combined the NNLL resummation with NNLO, using three matching schemes (a), (b) and (c) [AB Monni Salam Zanderighi '12]
- Central value: scheme (a) with $\mu_R = \mu_F = Q = m_H/2$ Q is the resummation scale: $\ln(m_H/p_{t,veto}) \rightarrow \ln(Q/p_{t,veto})$

• Variation of
$$\mu_R$$
, μ_F with $Q = m_H/2$
$$\frac{m_H}{4} \le \mu_R$$
, $\mu_F \le m_H$
$$\frac{1}{2} \le \frac{\mu_R}{\mu_F} \le 2$$

• Variation of Q with $\mu_R, \mu_F = m_H/2$

$$\frac{m_H}{4} \le Q \le m_H$$

- Schemes (b) and (c) with $\mu_R = \mu_F = Q = m_H/2$
- Total uncertainty: envelope

