Global fit to Higgs signal strengths and couplings A BSM perspective

David López-Val

based on work together with K. Cranmer & S. Kreiss (NYU New York), M. Rauch (KIT Karlsruhe), T. Plehn (ITP Heidelberg)

1401.0080

CP3 - Université catholique de Louvain

Higgs Couplings 2014, Torino - October 2nd 2014

Pits to data

In the setup of the setup of

Theory uncertainties

The Higgs portray

- Mass
- Width
- Couplings
- Quantum numbers

The Higgs portray

- Mass
- Width
- Couplings
- Quantum numbers

A Standard portray? ...

... or a deeper meaning ?

The Higgs portray

- Mass
- Width
- Couplings
- Quantum numbers

David López-Val - CP3 Université catholique de Louvain Global fit to H signal strengths and couplings - A BSM perspective

Seeking for BSM imprints

 $\mathcal{L}_{\mathsf{SM}} \longrightarrow \mathcal{L}[g'_{\mathsf{SM}}, g_{\mathsf{BSM}}, \phi_{SM}, \phi_{\mathsf{BSM}}]$

$$\mathcal{L}_{\mathsf{SM}} \longrightarrow \mathcal{L}[g'_{\mathsf{SM}}, g_{\mathsf{BSM}}, \phi_{SM}, \phi_{\mathsf{BSM}}]$$

$$\mu_i^p \equiv \frac{\sigma_p \times BR_i}{\sigma_p^{\mathsf{SM}} \times BR_i^{\mathsf{SM}}} = \left(\frac{\sigma_p}{\sigma_p^{\mathsf{SM}}}\right) \left(\frac{\Gamma_i}{\Gamma_i^{\mathsf{SM}}}\right) \left(\frac{\Gamma_{\mathsf{H}}^{\mathsf{SM}}}{\Gamma_{\mathsf{H}}}\right) \equiv 1 + \delta \, \mu_i^p$$

$$g_{xxH} = g_{xxH}^{\mathsf{SM}}(1 + \Delta_x)$$

$$\begin{split} \mathcal{L}_{\mathsf{SM}} &\longrightarrow \mathcal{L}[g'_{\mathsf{SM}}, g_{\mathsf{BSM}}, \phi_{SM}, \phi_{\mathsf{BSM}}] \\ \mu_i^p \equiv \frac{\sigma_p \times BR_i}{\sigma_p^{\mathsf{SM}} \times BR_i^{\mathsf{SM}}} = \begin{pmatrix} \sigma_p \\ \sigma_p^{\mathsf{SM}} \end{pmatrix} \begin{pmatrix} \Gamma_i \\ \Gamma_i^{\mathsf{SM}} \end{pmatrix} \begin{pmatrix} \Gamma_{\mathsf{H}}^{\mathsf{SM}} \\ \Gamma_{\mathsf{H}} \end{pmatrix} \equiv 1 + \delta \, \mu_i^p \\ \\ g_{xxH} = g_{xxH}^{\mathsf{SM}} (1 + \Delta_x) \qquad \Delta_x \sim \mathcal{O}(v^2 / \Lambda^2) \end{split}$$

$$\begin{split} \mathcal{L}_{\text{SM}} &\longrightarrow \mathcal{L}[g_{\text{SM}}', g_{\text{BSM}}, \phi_{SM}, \phi_{\text{BSM}}] \\ \mu_i^p &\equiv \frac{\sigma_p \times BR_i}{\sigma_p^{\text{SM}} \times BR_i^{\text{SM}}} = \left(\frac{\sigma_p}{\sigma_p^{\text{SM}}}\right) \left(\frac{\Gamma_i}{\Gamma_i^{\text{SM}}}\right) \left(\frac{\Gamma_H^{\text{SM}}}{\Gamma_H}\right) \equiv 1 + \delta \,\mu_i^p \\ g_{xxH} &= g_{xxH}^{\text{SM}} (1 + \Delta_x) \qquad \Delta_x \sim \mathcal{O}(v^2/\Lambda^2) \end{split}$$

$$\begin{split} \mathcal{L}_{\mathsf{SM}} &\longrightarrow \mathcal{L}[g'_{\mathsf{SM}}, g_{\mathsf{BSM}}, \phi_{SM}, \phi_{\mathsf{BSM}}] \\ \mu_i^p &\equiv \frac{\sigma_p \times BR_i}{\sigma_p^{\mathsf{SM}} \times BR_i^{\mathsf{SM}}} = \left(\frac{\sigma_p}{\sigma_p^{\mathsf{SM}}}\right) \left(\frac{\Gamma_i}{\Gamma_i^{\mathsf{SM}}}\right) \left(\frac{\Gamma_H^{\mathsf{SM}}}{\Gamma_H}\right) \equiv 1 + \delta \,\mu_i^p \\ g_{xxH} &= g_{xxH}^{\mathsf{SM}} (1 + \Delta_x) \qquad \Delta_x \sim \mathcal{O}(v^2 / \Lambda^2) \end{split}$$

Seeking for BSM imprints

Higgs signal strength & coupling deviations

a windown to BSM

Target questions

- What are the key BSM imprints and to which structures are these linked?
- What are their typical sizes and distinctive correlations?
- What is the *minimal* perturbative UV-completion to a **free Higgs coupling setup**?
- How do these confront to data?
- How do these differ from theoretical uncertainties?

Coupling patterns

2 Fits to data

I Free coupling setup

Theory uncertainties

5 Summary

Coupling patterns

Coupling patterns – overview

Multiscalar sectors induce distinctive coupling shifts

Coupling patterns - overview

Multiscalar sectors induce distinctive coupling shifts

Higgs couplings to gauge bosons

$g_{xxH} = g_{xxH}^{SM}(1 + \Delta_x)$		hVV			
EXTENSION	MODEL	universal rescaling		non-universal rescaling	
singlet	inert ($v_S = 0$) EWSB ($v_S \neq 0$)	θ	$\Delta_V < 0$		
	inert ($v_d = 0$)				
	type-l	$\alpha - \beta$	$\Delta_V < 0$	$\mathcal{O}(y_f,\lambda_H)$	$\Delta_V \gtrless 0$
doublet	type-II-IV	$\alpha - \beta$	$\Delta_V < 0$	$\mathcal{O}(y_f,\lambda_H)$	$\Delta_V \gtrless 0$
	aligned, MFV	$\alpha - \beta$	$\Delta_V < 0$	$\mathcal{O}(y_f,\lambda_H)$	$\Delta_V \gtrless 0$
singlet+doublet		$\alpha - \beta, \theta$	$\Delta_V < 0$	$\mathcal{O}(y_f,\lambda_H)$	$\Delta_V \gtrless 0$
triplet				$lpha,eta_n,eta_c$	$\Delta_V \gtrless 0$

Coupling patterns - overview

Multiscalar sectors induce distinctive coupling shifts

Higgs couplings to fermions

$g_{xxH} = g_{xxH}^{SM}(1 + \Delta_x)$		$hfar{f}$				
extension	model	universal rescaling		non-universal rescaling		
singlet	inert ($v_S = 0$)					
Singlet	EWSB ($v_S \neq 0$)	θ	$\Delta_f < 0$			
	inert ($v_d = 0$)					
	type-l	$\alpha - \beta$	$\Delta_f \gtrless 0$	$\mathcal{O}(y_f,\lambda_H)$	$\Delta_f \gtrless 0$	
doublet	type-II			$\alpha - \beta, \mathcal{O}(y_f, \lambda_H)$	$\Delta_f \gtrless 0$	
	aligned/MFV	y_f ,	$\Delta_f \gtrless 0$	$y_f, \mathcal{O}(y_f, \lambda_H)$	$\Delta_f \gtrless 0$	
singlet+doublet		$y_f, heta$	$\Delta_f \gtrless 0$	$y_f, \mathcal{O}(y_f, \lambda_H)$	$\Delta_f \gtrless 0$	
triplet		β_n	$\Delta_f \gtrless 0$	$\mathcal{O}(y_f,\lambda_H)$	$\Delta_f \gtrless 0$	

Free coupling setup

Theory uncertainties

♠ The simplest extension

DARK SINGLET

Dark singlet

🔶 The simplest extension

DARK SINGLET

 $V(\Phi,S) = \mu_1^2 (\Phi^{\dagger} \Phi) + \lambda_1 |\Phi^{\dagger} \Phi|^2 + \lambda_3 |\Phi^{\dagger} \Phi|S^2 - \text{e.g. McDonald ['94]}$

Dark singlet

🔶 The simplest extension

DARK SINGLET

 $V(\Phi,S) = \mu_1^2 (\Phi^{\dagger} \Phi) + \lambda_1 |\Phi^{\dagger} \Phi|^2 + \lambda_3 |\Phi^{\dagger} \Phi|S^2 - \text{e.g. McDonald ['94]}$

$$\Gamma_{\rm inv} = \frac{\lambda_3^2 v^2}{32\pi \, m_h} \, \sqrt{1 - \frac{4m_s^2}{m_h^2}} \equiv \xi^2 \, \Gamma_{\rm SM} \qquad {\rm with} \qquad \mu_{p,d} = \frac{\Gamma_{\rm SM}}{\Gamma_{\rm SM} + \Gamma_{\rm inv}} = 1 - \xi^2 + \mathcal{O}(\xi^3) \; . \label{eq:gamma}$$

Dark singlet

🔶 The simplest extension . . .

DARK SINGLET

 $V(\Phi,S) = \mu_1^2 \left(\Phi^{\dagger} \Phi \right) + \lambda_1 \left| \Phi^{\dagger} \Phi \right|^2 + \lambda_3 \left| \Phi^{\dagger} \Phi \right| S^2 - \text{e.g. McDonald ['94]}$

David López-Val - CP3 Université catholique de Louvain

Global fit to H signal strengths and couplings - A BSM perspective

♠ Increasing complexity ... NFC 2HDM at decoupling

Hierarchical 2HDM

 $\begin{aligned} & \text{Increasing complexity} \dots \text{ NFC 2HDM at decoupling} \\ & \xi \equiv \cos(\beta - \alpha) \simeq \frac{v^2}{M_{\text{heavy}}^2} \quad \boxed{\xi \ll 1 \Rightarrow \sin \alpha \sim \cos \beta} \quad \xi \simeq \frac{2 \tan \beta}{1 + \tan^2 \beta} \end{aligned}$

Hierarchical 2HDM

Hierarchical 2HDM

Increasing complexity ... NFC 2HDM at decoupling $\xi \equiv \cos(\beta - \alpha) \simeq \frac{v^2}{M_{\rm L}^2}$ $\xi \simeq \frac{2\tan\beta}{1+\tan^2\beta}$ $\xi \ll 1 \Rightarrow \sin \alpha \sim \cos \beta$ $1 + \Delta_v \simeq 1 - \xi^2 / 2$ $1 + \Delta_t \simeq 1 + \cot\beta\,\xi - \xi^2/2$ $1 + \Delta_b \simeq 1 + \cot\beta\,\xi - \xi^2/2$ $1 + \Delta_v \simeq 1 - \xi^2 / 2$ $1 + \Delta_t \simeq 1 + \cot\beta\xi - \xi^2/2$ $1 + \Delta_b \simeq 1 - \tan\beta \xi - \xi^2/2$ $\Delta_{\gamma}(\Delta_f(\tan\beta,\xi), m_{\mu\pm}^2(\xi), \tilde{\lambda}(\xi))$ $\Delta_q = \Delta_q (\Delta_f (\tan \beta, \xi))$ 1.5 1.5 2HDM - Type I μ_{GF.w}-μ 1.5 1.5 μ_{GF,VV}-μ_{VBF,VV} μ_{GF,ττ}-μ_{VBF,ττ} μ_{GF,VV}-μ_{VBF,VV} 0.5 0.5 2HDM - Type II μ_{GF w}-μ_{VBF w} μ_{GF,ττ}-μ_{VBF,ττ} μ_{GFW} 1.5 $\mu_{GF,VV} \mu_{VBF,\tau\tau}$ $\mu_{GE,\tau\tau}$ - $\mu_{VBF, \sqrt{V}}$ $\mu_{GE,VV}$ 0.: 0.6 $\sin(\beta - \alpha)$ $\sin(\beta - \alpha)$

David López-Val - CP3 Université catholique de Louvain

Global fit to H signal strengths and couplings - A BSM perspective

DLV, Plehn, Rauch 1308.1979

Aligned 2HDM

🔶 Aligned 2HDM

Pich, Tuzón ['09]

David López-Val - CP3 Université catholique de Louvain Global fit to H signal strengths and couplings - A BSM perspective

Aligned 2HDM

🔶 Aligned 2HDM

Pich, Tuzón ['09]

Analytical dependence					
	h ⁰	H ⁰	A ⁰		
$1 + \Delta_{W}$	$\sin(eta-lpha)$	$\cos(eta-lpha)$	0		
$1+\Delta_{\rm Z}$	$\sin(\beta - \alpha)$	$\cos(eta-lpha)$	0		
$1 + \Delta_t$	$\frac{\cos\alpha}{\sin\beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{1}{\tan\beta}$		
$1 + \Delta_b$	$-rac{\sin(lpha-\gamma_b)}{\cos(eta-\gamma_b)}$	$rac{\cos(lpha-\gamma_b)}{\cos(eta-\gamma_b)}$	$\tan(\beta - \gamma_b)$		
$1 + \Delta_{\tau}$	$-rac{\sin(lpha-\gamma_ au)}{\cos(eta-\gamma_ au)}$	$rac{\cos(lpha-\gamma_ au)}{\cos(eta-\gamma_ au)}$	$\tan(\beta - \gamma_{\tau})$		
$1 + \Delta_{\gamma}$	$\Delta_{\gamma}(\alpha,\tan\beta,m_{12}^2,m_{H^{\pm}}^2)$	$\Delta_{\gamma}(\alpha, \tan\beta, m_{12}^2, m_{H^{\pm}}^2)$	$\Delta_{\gamma}(\alpha, \tan \beta)$		
$1 + \Delta_g$	$\Delta_g(\Delta_t, \Delta_b)$	$\Delta_g(\Delta_t, \Delta_b)$	$\Delta_g(\Delta_t, \Delta_b)$		

Type I:
$$\gamma_{b, au}=\pi/2$$

Type II: $\gamma_{b,\tau}=0$

David López-Val - CP3 Université catholique de Louvain

Global fit to H signal strengths and couplings - A BSM perspective

Aligned 2HDM

Correlated relative log-likelihood $-2\Delta \log \mathcal{L}$

DLV, Plehn, Rauch 1308.1979

Aligned 2HDM

	unconstrained		constrained	J
	$\tan < 1$	$\tan\beta>1$	$\tan\beta < 1$	$\tan\beta>1$
an eta	0.338	1.231	0.890	1.324
$\sin \alpha$	-0.977	-0.871	-0.900	-0.810
$\gamma_b/(2\pi)$	0.744	0.261	0.732	0.267
$\gamma_{\tau}/(2\pi)$	0.389	0.070	0.542	0.678
M_H	750.5	257.3	587.2	487.4
$ ilde{\lambda}$	-3.00	0.44	3.80	2.88
Δ_V	-0.006	-0.069	-0.038	-0.044
Δ_t	-0.332	-0.367	-0.345	-0.265
Δ_b	-0.298	-0.412	-0.281	-0.318
Δ_{τ}	0.176	0.107	0.099	-0.102
Δ_{γ}	-0.058	-0.045	-0.034	-0.031
Δ_{γ}^{tot}	0.023	-0.036	0.009	-0.017
$-2\log \mathcal{L}$	26.6	26.9	27.1	28.5

DLV, Plehn, Rauch 1308.1979

Coupling patterns

2 Fits to data

Is Free coupling setup

Theory uncertainties

5 Summary

Higgs Coupling in the 2HDM – LO patterns

Higgs coupling deviations – a parameter space portray

Higgs Coupling in the 2HDM: quantum effects

David López-Val - CP3 Université catholique de Louvain

Global fit to H signal strengths and couplings - A BSM perspective

LHC data: free couplings VS 2HDM

LHC data: free couplings VS 2HDM

David López-Val - CP3 Université catholique de Louvain Global fit to H signal strengths and couplings - A BSM perspective

Coupling patterns

2 Fits to data

I Free coupling setup

Theory uncertainties

5 Summary

 \Leftrightarrow

A word on theory uncertainties

🔶 BSM & TH uncertainties

Coupling shifts

↔ Signal strength correlations

David López-Val - CP3 Université catholique de Louvain Global fit to H signal strengths and couplings - A BSM perspective

Free coupling setup

Theory uncertainties

Summary

Summary

- Trademark scenarios excluded e.g. fermiophobia
- Trademark scenarios allowed e.g. sign-flipped bottom Yukawas
- Constraints are tigher for Type-II 2HDM
- Best-fit points favor $an \beta \simeq 1$ and alignment parameters in between the NFC limits.