

COUPLINGS FROM CMS

A. David (CERN) for the CMS Collaboration

COUPLINGS FROM CMS

A. David (CERN) for the CMS Collaboration

DEVIATIONS FROM CMS

A. David (CERN) for the CMS Collaboration

CMS @HiggsCouplingst2014

[http://cern.ch/go/S6pm]

- □ A. Massironi $H \rightarrow ZZ \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$, $H \rightarrow WW$
- R. Manzoni H and fermions
- A. Martelli Mass measurement
- R. Wolf & R. Castello BSM
- C. Charlot Total width
- □ **M. Xiao** Spin and parity

★ "seen" ☆ "tried"	H→bb	Η→ττ	H→WW	H→ZZ	Н→үү	H→Z ^(*) γ	H→inv.	Н→μμ	H→cc H→HH
ggH		*	*	*	*	☆		☆	
VBF	☆	*	*	☆	*	☆	☆	☆	
VH	*	☆	☆	☆	☆		☆		
ttH	☆	☆	☆		☆				

□ Still much to explore on the rarer ends.

(to the right and to the bottom) (and outside this picture)

Deviations of H(125)

Heavy New Physics

[http://xkcd.com/888/]

- LHC HXSWG WG2
- Decoupling of heavy d.o.f.
- Indirect effects, loops, dim-6 operators, etc.

Light New Physics

- LHC HXSWG WG3
- Other states, degenerate states, etc.

enjoying.higgs@cern.ch

Mass

- Exp. Uncertainties
- **SM** consistency: (m_H, m_W, m_{top})

Spin

Are we happy now?

Charge

Zero. (That was easy.)

Parity

Amplitude decomposition \rightarrow EFT

Scalar couplings

 $\square \ \mathcal{K} \longrightarrow \ \mathcal{K} \ (q) \longrightarrow f(q) \longrightarrow EFT$

- □ Scalar couplings
 - $\blacksquare \ \mathcal{K} \longrightarrow \ \mathcal{K} \ (q) \longrightarrow f(q) \longrightarrow EFT$

9

Fiat 124

13 [http://cern.ch/go/X6rC]

Fiat 505

14 [http://cern.ch/go/X6rC]

Other models?

[http://cern.ch/go/X6rC]

Fiat 850

Other models?

[http://cern.ch/go/X6rC]

Other models?

[http://cern.ch/go/X6rC]

Mass

- Exp. Uncertainties
- SM consistency: (m_H, m_W, m_{top})

🗆 Spin

Are we happy now?

- □ Charge
 - Zero. (That was easy.)
- Parity
 - Amplitude decomposition \rightarrow EFT
- Scalar couplings
 - $\blacksquare \ \mathcal{K} \longrightarrow \ \mathcal{K} \ (q) \longrightarrow f(q) \longrightarrow EFT$

Mass

- Exp. Uncertainties
- SM consistency: $(m_{H'}, m_{W'}, m_{top})$

□ Spin

Are we happy now?

Charge

Zero. (That was easy.)

Parity

Amplitude decomposition \rightarrow EFT

Scalar couplings

 $\square \ \mathcal{K} \longrightarrow \ \mathcal{K} (q) \longrightarrow f(q) \longrightarrow EFT$

Mass

- Exp. Uncertainties
- **S**M consistency: $(m_{H'}, m_{W'}, m_{top})$

□ Spin

- Are we happy now?
- Charge
 - Zero. (That was easy.)
- Parity

Scalar couplings

 $\blacksquare \ \mathcal{K} \longrightarrow \ \mathcal{K} (q) \longrightarrow f(q) \longrightarrow EFT$

$$\begin{split} A(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\left[a_1 - e^{i\phi_{\Lambda_1}} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ a_2 f_{\mu\nu}^{*(Z_1)} f^{*(Z_2),\mu\nu} + a_3 f_{\mu\nu}^{*(Z_1)} \tilde{f}^{*(Z_2),\mu\nu} \\ &+ a_2^{Z\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_3^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ &+ a_2^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} f^{*(\gamma_2),\mu\nu} + a_3^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} \tilde{f}^{*(\gamma_2),\mu\nu} \right) \end{split}$$

enjoying.higgs@cern.ch

Mass

- Exp. Uncertainties
- SM consistency: (m_H, m_W, m_{top})

□ Spin

- Are we happy now?
- Charge
 - Zero. (That was easy.)
- Parity

Amplitude decomposition \rightarrow EFT

- Scalar couplings
 - $\square \ \mathcal{K} \longrightarrow \ \mathcal{K} \ (\mathbf{q}) \longrightarrow \mathbf{f}(\mathbf{q}) \longrightarrow \mathsf{EFT}$

enjoying.higgs@cern.ch

(subm. to EPJC)

Also include further ttH searches:

- JHEP 05(2013)145 ttH, H→bb (7 TeV).
- CMS-PAS-HIG-13-019 ttH, $H \rightarrow b\overline{b}$ and $H \rightarrow \tau\tau$ (8 TeV).
- CMS-PAS-HIG-13-020 ttH, with H decaying to multiple leptons.

enjoying.higgs@cern.ch

Also include further ttH searches:

- JHEP 05(2013)145 ttH, H→bb (7 TeV).
- CMS-PAS-HIG-13-019 ttH, $H \rightarrow b\overline{b}$ and $H \rightarrow t\overline{t}$ (8 TeV).
- CMS-PAS-HIG-13-020 ttH, with H decaying to multiple leptons.

enjoying.higgs@cern.ch

23

> 200 channels > 2'500 floating parameters

H→WW

JHEP 01(2014) 096

PRD 89 (2014) 092007

H→ZZ→4l

PRD 89 (2014) 012003

JHEP 05 (2014) 104

Η→ττ

arXiv:1407.0558 (subm. to EPJC)

Also include further ttH searches:

- JHEP 05(2013)145 ttH, H→bb (7 TeV).
- CMS-PAS-HIG-13-019 ttH, $H \rightarrow b\overline{b}$ and $H \rightarrow \tau\tau$ (8 TeV).
- CMS-PAS-HIG-13-020 ttH, with H decaying to multiple leptons.

enjoying.higgs@cern.ch

26

Signal strength

[CMS-PAS-HIG-14-009]

$$\sigma/\sigma_{\rm SM} = 1.00 \pm 0.13 \left[\pm 0.09 (\text{stat.})^{+0.08}_{-0.07} (\text{theo.}) \pm 0.07 (\text{syst.}) \right]$$

- Grouped by dominant decay:
 - $\chi^2/dof = 0.9/5$
 - p-value = 0.97 (asymptotic)

[CMS-PAS-HIG-14-009]

27

$$\sigma/\sigma_{\rm SM} = 1.00 \pm 0.13 \left[\pm 0.09 (\text{stat.})^{+0.08}_{-0.07} (\text{theo.}) \pm 0.07 (\text{syst.}) \right]$$

□ Grouped by productionCom
μtag:
□ $\chi^2/dof = 5.3/4$ Untagg
μ=□ p-value = 0.26
(asymptotic)VBF ta
μ=Untagged 2.00 aboveVH tagg
μ=SM.tH tagg
μ=

[CMS-PAS-HIG-14-009]

28

$$\sigma/\sigma_{\rm SM} = 1.00 \pm 0.13 \left[\pm 0.09 (\text{stat.})^{+0.08}_{-0.07} (\text{theo.}) \pm 0.07 (\text{syst.}) \right]$$

Grouped by production
 tag and dominant decay:

$$\chi^2 / dof = 10.5 / 16$$

- p-value = 0.84 (asymptotic)
- ttH-tagged 2.0σ above
 SM.
 - Driven by one channel.

In 2012 some theorists speculated...

[http://goo.gl/CVm6s]

After Moriond 2012, new fits disfavor the SM and motivate for New Physics

> red = no Higgs boson green = SM

P. Giardino, K. Kannike, M. Raidal, A. Strumia, 1203.4254

In 2012 some theorists speculated...

[http://goo.gl/CVm6s]

P. Giardino, K. Kannike, M. Raidal, A. Strumia, 1203.4254

In 2012 some theorists speculated...

[http://goo.gl/CVm6s]

32

33

enjoying.higgs@cern.ch @CMSexperiment HC2014

34

Scalar coupling deviations framework

[arXiv:1307.1347]

- Single state, spin 0, and CP-even.
- Narrow-width approximation: ($\sigma \times BR$) = $\sigma \cdot \Gamma / \Gamma_{\mu}$

Scalar coupling deviations framework

[arXiv:1307.1347]

Loops resolved at NLO QCD and LO EWK accuracy.
 Peg the as-of-yet unmeasured to "closest of kin".

Scalar coupling deviations framework

[arXiv:1307.1347]

Total width as dependent function of all κ_i.
 Total width scaled as free parameter: κ_H.

Coupling deviations

[CMS-PAS-HIG-14-009] [arXiv:1307.1347]

- Scaling the couplings to fermions (K_f) and vector bosons (K_V).
- Destructive interference in H→ γγ decay loop breaks degeneracy.

[CMS-PAS-HIG-14-009] [arXiv:1307.1347]

Scaling the couplings to fermions (K_f) and vector bosons (K_{V}). □ All decay channels converging around SM expectation.

Coupling deviations summaries

44

[CMS-PAS-HIG-14-009] [arXiv:1307.1347]

- Summary of the fits of six benchmarks models probing:
 - Fermions and vector bosons.
 - Custodial symmetry.
 - Up/down fermion coupling ratio.
 - Lepton/quark coupling ratio.
 - BSM in loops: gluons and photons.
 - Extra width: BR_{BSM}.
- No significance deviations from SM.

 $\lambda_{xy} = \kappa_x/\kappa_y$

enjoying.higgs@cern.ch (

@CMSexperiment HC2014

Coupling deviations summaries

[CMS-PAS-HIG-14-009] [arXiv:1307.1347]

- Most general
 benchmark
 floating the total
 width.
 - Same ttH-related excess in

$$\lambda_{tg} = \kappa_{top} / \kappa_{gluon}$$
.

$$\lambda_{xy} = \kappa_x / \kappa_y$$
 ; $\kappa_{xy} = \kappa_x \kappa_y / \kappa_H$

[CMS-PAS-HIG-14-009] [arxiv:1207.1693] [arxiv:1303.3570]

46

SOME PERSONAL THOUGHTS ON THE IMMEDIATE FUTURE

Higgs Couplings Workshop 1st - 3rd oct 2014

André David (CERN)

Anatomy of deviations

 $\mu = \frac{(\sigma \cdot BR)_{\text{observed}}}{(\sigma \cdot BR)_{\text{expected}}}$

 Deviations are searched relative to SM expectation.
 Conclusions are only as good as the accuracy and precision of the numerator and denominator.

Anatomy of deviations

$$\mu = \frac{(\sigma \cdot BR)_{\text{observed}}}{(\sigma \cdot BR)_{\text{expected}}}$$

 Deviations are searched relative to SM expectation.
 Conclusions are only as good as the accuracy and precision of the numerator and denominator.

$$\mu = \frac{(\sigma \cdot \mathrm{BR})_{\mathrm{observed}}}{(\sigma \cdot \mathrm{BR})_{\mathrm{expected}}} \mathrm{Data}$$

 Deviations are searched relative to SM expectation.
 Conclusions are only as good as the accuracy and precision of the numerator and denominator.

Theory

uncertainties

- □ PDFs not dominating on μ .
 - ggH vs VBF+VH.
 - PDF4LHC prescription too conservative?
 - Changing soon!
 - PDG σ(α_s) too aggressive?
- NNLO+NNLL not enough to tame large QCD corrections in gluon-fusion?

Theory uncertainties: MHOU

[arXiv:1307.1843] [http://cern.ch/go/V8xJ]

- Scale variations are not theory uncertainties.
- The uncertainty is due to missing higher orders.
- □ Take gluon-gluon fusion:
 - All series terms are positive.
 - We can try and complete the series instead of always being off.

$$\frac{\sigma_{gg}(\sqrt{s}, M_H)}{\sigma_{gg}^{LO}(\sqrt{s}, M_H)} = 1 + \sum_{n=1}^{\infty} \alpha_s^n(\mu_R) \ K_{gg}^n(\sqrt{s}, \mu = M_H)$$

$$\frac{8 \text{ TeV} \quad \mu = M_H/2 \quad \mu = M_H \quad \mu = 2M_H}{K_{gg}^1 \quad 11.879}$$

$$K_{gg}^2 \quad 72.254$$

$$K_{gg}^3 \quad 168.98 \pm 30.87 \quad 377.20 \pm 30.78 \quad 681.72 \pm 29.93$$

- \square $\mu = 1$ means that the data match the SM.
 - **D** Uncertainty on μ quantifies the compatibility with the SM:
 - μ = 1.3 ±1.2 is inconclusive and "more data is needed", but
 - $\mu = 2.0 \pm 0.2$ could mean New Physics (or a systematic effect).

$\mu = 1$ means that the data match the SM.

- **D** Uncertainty on μ quantifies the compatibility with the SM:
 - $\mu = 1.3 \pm 1.2$ usually means "more data needed", but
 - $\mu = 2.0 \pm 0.2$ could mean New Physics (or systematic effect).

- $\mu = 1$ means that the data match the SM.
 - Uncertainty on μ quantifies the compatibility with the SM:
 - $\mu = 3 \pm 5$ usually means "more data needed", but
 - $\mu = 2.0 \pm 0.2$ could mean New Physics (or systematic effect).

- \square μ = 1 means that the data match the SM.
 - \blacksquare Uncertainty on μ quantifies the compatibility with the SM:
 - $\mu = 3 \pm 5$ usually means "more data needed", but
 - μ = 2.0 ±0.2 could mean New Physics (or systematic effect).

Imprecise measurement compatible with anything. Inconclusive, "more data or better theory needed".

Precise measurement **compatible** with the SM. Large deviations excluded!

Precise measurement **incompatible** with the SM! Evidence of a deviation **or exp./theory bias**.

> "New Physics ⇒ Deviation" but "Deviation ⇒ New Physics" See, e.g., http://cern.ch/go/W8wW

SM theorists contribute as much to the conclusions as experimentalists !

59

Effective field theory (EFT): the idea

[NPB 268 (1986) 621]

- Instead of an experimentally-driven basis of parameters use a basis of QFT operators that may be more aligned with the BSM physics.
- EFT allows to perform accurate calculations
 - NLO EWK effects, etc.
 - More sensitive interpretation.
- 59 dim-6 operators already mapped out in 1986.
 - Which operators to keep?
 - What about dim-8?
 - What about loop processes?

First steps in YR3

Table 52: Dimension-6 operators involving Higgs doublet fields or gauge-boson fields. For all $\psi^2 \Phi^3$, $\psi^2 X \Phi$ operators and for $\mathcal{O}_{\Phi ud}$ the hermitian conjugates must be included as well.

Φ^6 and $\Phi^4 D^2$	$\psi^2 \Phi^3$	X^3
${\cal O}_{\Phi}=(\Phi^{\dagger}\Phi)^3$	$\mathcal{O}_{\mathrm{e}\Phi} = (\Phi^{\dagger}\Phi)(\bar{l}\Gamma_{\mathrm{e}}\mathrm{e}\Phi)$	$\mathcal{O}_G = f^{ABC} G^{A\nu}_\mu G^{B\rho}_\nu G^{C\mu}_\rho$
$\mathcal{O}_{\Phi\Box} = (\Phi^{\dagger}\Phi)\Box(\Phi^{\dagger}\Phi)$	${\cal O}_{u\Phi}=(\Phi^\dagger\Phi)(\bar{q}\Gamma_u u\widetilde{\Phi})$	$\mathcal{O}_{\widetilde{G}} = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$
$\mathcal{O}_{\Phi D} = (\Phi^{\dagger} D^{\mu} \Phi)^* (\Phi^{\dagger} D_{\mu} \Phi)$	${\cal O}_{d\Phi} = (\Phi^\dagger \Phi) (\bar q \Gamma_d d\Phi)$	$\mathcal{O}_{\mathrm{W}} = \varepsilon^{IJK} \mathrm{W}^{I\nu}_{\mu} \mathrm{W}^{J\rho}_{\nu} \mathrm{W}^{K\mu}_{\rho}$
		$\mathcal{O}_{\widetilde{\mathbf{W}}} = \varepsilon^{IJK} \widetilde{\mathbf{W}}_{\mu}^{I\nu} \mathbf{W}_{\nu}^{J\rho} \mathbf{W}_{\rho}^{K\mu}$
$X^2 \Phi^2$	$\psi^2 \mathrm{X} \Phi$	$\psi^2 \Phi^2 D$
$\mathcal{O}_{\Phi G} = (\Phi^{\dagger} \Phi) G^A_{\mu\nu} G^{A\mu\nu}$	$\mathcal{O}_{\mathbf{u}G} = (\bar{\mathbf{q}}\sigma^{\mu\nu}\frac{\lambda^A}{2}\Gamma_{\mathbf{u}}\mathbf{u}\widetilde{\Phi})G^A_{\mu\nu}$	$\mathcal{O}_{\Phi l}^{(1)} = (\Phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{l} \gamma^{\mu} l)$
$\mathcal{O}_{\Phi\widetilde{G}}=(\Phi^{\dagger}\Phi)\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	$\mathcal{O}_{\mathrm{d}G} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^A}{2}\Gamma_{\mathrm{d}}\mathrm{d}\Phi)G^A_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{l}}^{(3)} = (\Phi^{\dagger} \mathrm{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi) (\bar{\mathrm{l}} \gamma^{\mu} \tau^{I} \mathrm{l})$
$\mathcal{O}_{\Phi \mathrm{W}} = (\Phi^{\dagger} \Phi) \mathrm{W}^{I}_{\mu u} \mathrm{W}^{I \mu u}$	$\mathcal{O}_{\mathrm{eW}} = (\bar{\mathrm{l}}\sigma^{\mu\nu}\Gamma_{\mathrm{e}}\mathrm{e}\tau^{I}\Phi)\mathrm{W}^{I}_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{e}} = (\Phi^\dagger \mathrm{i} \stackrel{\leftrightarrow}{D}_\mu \Phi) (\bar{\mathrm{e}} \gamma^\mu \mathrm{e})$
$\mathcal{O}_{\Phi \widetilde{\mathbf{W}}} = (\Phi^{\dagger} \Phi) \widetilde{\mathbf{W}}^{I}_{\mu \nu} \mathbf{W}^{I \mu \nu}$	$\mathcal{O}_{\mathrm{uW}} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\Gamma_{\mathrm{u}}\mathrm{u}\tau^{I}\widetilde{\Phi})\mathrm{W}^{I}_{\mu\nu}$	$\mathcal{O}^{(1)}_{\Phi \mathrm{q}} = (\Phi^\dagger \mathrm{i} \stackrel{\leftrightarrow}{D}_\mu \Phi) (\bar{\mathrm{q}} \gamma^\mu \mathrm{q})$
$\mathcal{O}_{\Phi B} = (\Phi^{\dagger} \Phi) B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{\rm dW} = (\bar{\mathbf{q}} \sigma^{\mu\nu} \Gamma_{\rm d} \mathbf{d} \tau^I \Phi) \mathbf{W}^I_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{q}}^{(3)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi)(\bar{\mathbf{q}} \gamma^{\mu} \tau^{I} \mathbf{q})$
$\mathcal{O}_{\Phi\widetilde{\mathbf{B}}}=(\Phi^{\dagger}\Phi)\widetilde{\mathbf{B}}_{\mu\nu}\mathbf{B}^{\mu\nu}$	$\mathcal{O}_{eB} = (\bar{l}\sigma^{\mu\nu}\Gamma_{e}e\Phi)B_{\mu\nu}$	$\mathcal{O}_{\Phi\mathrm{u}} = (\Phi^\dagger \mathrm{i} \overset{\leftrightarrow}{D}_\mu \Phi) (\bar{\mathrm{u}} \gamma^\mu \mathrm{u})$
$\mathcal{O}_{\Phi WB} = (\Phi^{\dagger} \tau^{I} \Phi) W^{I}_{\underline{\mu}\nu} B^{\mu\nu}$	$\mathcal{O}_{uB} = (\bar{q}\sigma^{\mu\nu}\Gamma_{u}u\widetilde{\Phi})B_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{d}} = (\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} \Phi) (\bar{\mathrm{d}} \gamma^{\mu} \mathrm{d})$
$\mathcal{O}_{\Phi \widetilde{\mathbf{W}} \mathbf{B}} = (\Phi^{\dagger} \tau^{I} \Phi) \widetilde{\mathbf{W}}_{\mu \nu}^{I} \mathbf{B}^{\mu \nu}$	$\mathcal{O}_{dB} = (\bar{q}\sigma^{\mu\nu}\Gamma_{d}d\Phi)B_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{ud}} = \mathrm{i}(\widetilde{\Phi}^{\dagger} D_{\mu} \Phi)(\bar{\mathrm{u}} \gamma^{\mu} \Gamma_{\mathrm{ud}} \mathrm{d})$

Table 53: Alternative basis of dimension-6 operators involving Higgs doublet fields or gauge-boson fields.

Φ^6 and $\Phi^4 D^2$	$\psi^2 \Phi^3$	X ³			
$\mathcal{O}_6' = (\Phi^\dagger \Phi)^3$	$\mathcal{O}_{e\Phi}' = (\Phi^{\dagger}\Phi)(\overline{l}\Gamma_{e}e\Phi)$	$\mathcal{O}_G' = f^{ABC} G^{A\nu}_\mu G^{B\rho}_\nu G^{C\mu}_\rho$			
$\mathcal{O}'_\Phi = \partial_\mu (\Phi^\dagger \Phi) \partial^\mu (\Phi^\dagger \Phi)$	$\mathcal{O}_{\mathrm{u}\Phi}' = (\Phi^\dagger \Phi) (\bar{q}\Gamma_\mathrm{u}\mathrm{u}\widetilde{\Phi})$	$\mathcal{O}_{\widetilde{G}}' = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			
$\mathcal{O}_{\mathrm{T}}' = (\Phi^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} \Phi) (\Phi^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} \Phi)$	$\mathcal{O}_{\mathrm{d}\Phi}' = (\Phi^\dagger \Phi) (\bar{\mathbf{q}} \Gamma_d d\Phi)$	$\mathcal{O}'_{\mathrm{W}} = \varepsilon^{IJK} \mathrm{W}^{I\nu}_{\mu} \mathrm{W}^{J\rho}_{\nu} \mathrm{W}^{K\mu}_{\rho}$			
		$\mathcal{O}'_{\widetilde{\mathbf{W}}} = \varepsilon^{IJK} \widetilde{\mathbf{W}}_{\mu}^{I\nu} \mathbf{W}_{\nu}^{J\rho} \mathbf{W}_{\rho}^{K\mu}$			
$X^2 \Phi^2$	$\psi^2 X \Phi$	$\psi^2 \Phi^2 D$			
$\mathcal{O}_{\mathrm{D}W}^{\prime} = \left(\Phi^{\dagger} \tau^{I} \mathrm{i} \overleftarrow{D^{\mu}} \Phi \right) \left(D^{\nu} \mathrm{W}_{\mu\nu} \right)^{I}$	$\mathcal{O}'_{\mathrm{u}G} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^A}{2}\Gamma_{\mathrm{u}}\mathrm{u}\widetilde{\Phi})G^A_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{l}}^{\prime(1)} = (\Phi^{\dagger} \mathbf{i} \stackrel{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\mathbf{l}} \gamma^{\mu} \mathbf{l})$			
$\mathcal{O}_{D\mathrm{B}}^{\prime} = \left(\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D^{\mu}} \Phi \right) \left(\partial^{\nu} \mathrm{B}_{\mu\nu} \right)$	$\mathcal{O}_{\mathrm{d}G}' = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^A}{2}\Gamma_{\mathrm{d}}\mathrm{d}\Phi)G^A_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{l}}^{\prime(3)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}{}_{\mu}^{I} \Phi) (\bar{\mathbf{l}} \gamma^{\mu} \tau^{I} \mathbf{l})$			
$\mathcal{O}'_{D\Phi\mathbf{W}} = \mathbf{i}(D^{\mu}\Phi)^{\dagger}\tau^{I}(D^{\nu}\Phi)\mathbf{W}^{I}_{\mu\nu}$	$\mathcal{O}_{\rm eW}^{\prime} = (\bar{\mathbf{l}} \sigma^{\mu\nu} \Gamma_{\rm e} \mathbf{e} \tau^{I} \Phi) \mathbf{W}_{\mu\nu}^{I}$	$\mathcal{O}'_{\Phi \mathrm{e}} = (\Phi^\dagger \mathrm{i} \stackrel{\leftrightarrow}{D}_\mu \Phi) (\bar{\mathrm{e}} \gamma^\mu \mathrm{e})$			
$\mathcal{O}_{D\Phi\widetilde{W}}' = \mathrm{i}(D^{\mu}\Phi)^{\dagger}\tau^{I}(D^{\nu}\Phi)\widetilde{W}_{\mu\nu}^{I}$	$\mathcal{O}'_{\mathrm{uW}} = (\bar{\mathbf{q}}\sigma^{\mu\nu}\Gamma_{\mathrm{u}}\mathbf{u}\tau^{I}\widetilde{\Phi})\mathbf{W}^{I}_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{q}}^{\prime(1)} = (\Phi^{\dagger} \mathbf{i} \stackrel{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\mathbf{q}} \gamma^{\mu} \mathbf{q})$			
$\mathcal{O}_{D\Phi\mathbf{B}}^{\prime}=\mathbf{i}(D^{\mu}\Phi)^{\dagger}(D^{\nu}\Phi)\mathbf{B}_{\mu\nu}$	$\mathcal{O}_{\mathrm{dW}}^{\prime} = (\bar{\mathbf{q}} \sigma^{\mu\nu} \Gamma_{\mathrm{d}} \mathbf{d} \tau^{I} \Phi) \mathbf{W}_{\mu\nu}^{I}$	$\mathcal{O}_{\Phi \mathbf{q}}^{\prime(3)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi) (\bar{\mathbf{q}} \gamma^{\mu} \tau^{I} \mathbf{q})$			
$\mathcal{O}_{D\Phi\widetilde{\mathbf{B}}}^{\prime}=\mathbf{i}(D^{\mu}\Phi)^{\dagger}(D^{\nu}\Phi)\widetilde{\mathbf{B}}_{\mu\nu}$	$\mathcal{O}_{\rm eB}' = (\bar{l}\sigma^{\mu\nu}\Gamma_{\rm e}\mathrm{e}\Phi)B_{\mu\nu}$	$\mathcal{O}'_{\Phi \mathbf{u}} = (\Phi^{\dagger} \mathbf{i} \stackrel{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\mathbf{u}} \gamma^{\mu} \mathbf{u})$			
$\mathcal{O}_{\Phi \mathrm{B}}^{\prime} = (\Phi^{\dagger} \Phi) B_{\mu\nu} \mathrm{B}^{\mu\nu}$	$\mathcal{O}'_{uB} = (\bar{q}\sigma^{\mu\nu}\Gamma_{u}u\widetilde{\Phi})B_{\mu\nu}$	$\mathcal{O}'_{\Phi \mathrm{d}} = (\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} \Phi) (\bar{\mathrm{d}} \gamma^{\mu} \mathrm{d})$			
$\mathcal{O}_{\Phi\widetilde{\mathbf{B}}}^{\prime}=(\Phi^{\dagger}\Phi)\mathbf{B}_{\mu\nu}\widetilde{\mathbf{B}}^{\mu\nu}$	$\mathcal{O}_{\rm dB}' = (\bar{\rm q} \sigma^{\mu\nu} \Gamma_{\rm d} {\rm d} \Phi) {\rm B}_{\mu\nu}$	$\mathcal{O}'_{\Phi \mathrm{ud}} = \mathrm{i}(\widetilde{\Phi}^{\dagger} D_{\mu} \Phi)(\bar{\mathrm{u}} \gamma^{\mu} \Gamma_{\mathrm{ud}} \mathrm{d})$			
$\mathcal{O}_{\Phi G}^{\prime} = \Phi^{\dagger} \Phi G^A_{\mu\nu} G^{A\mu\nu}$					
$\mathcal{O}'_{\Phi \widetilde{G}} = \Phi^{\dagger} \Phi G^A_{\mu\nu} \widetilde{G}^{A\mu\nu}$					

A Rosetta stone for Higgs EFT

A possible roadmap

63

64

Decay	γ	γ*/Z*	Z
γ	\checkmark	\checkmark	1
γ*/Z*		? (∨BF)	✔ (VH)
Z			✓ (H*)

The future is in precision and accuracy

65

We've just started and there's a long and exciting way to go:

- Go from O(10%) measurements to differential.
- Go from "seen" to O(%) measurements.
- Go from limits on rare things to observations.
- Reduce theory uncertainties.
- Explore the full potential of the LHC and its upgrades.

All it takes is one deviation to point us on the right way beyond the SM.

Conclusion

WINTER IS COMING

We've just started and there's a long and exciting way to go:

- Go from O(10%) measurements to differential.
- Go from "seen" to O(%) measurements.
- Go from limits on rare things to observations.
- Reduce theory uncertainties.
- Explore the full potential of the LHC and its upgrades.

All it takes is one deviation to point us on the right way beyond the SM.

Need topics for discussion?

- Deviations: precision (uncertainties) vs. accuracy (higher orders) of SM expectation.
- "Lumi doubling": ATLAS+CMS vs. uniform & comprehensive (theory) uncertainties.
- Tools: calculators vs. generators.
- LHC Run 2: more exclusive, more differential, more off-shell, more HVV, more Yukawas (discover VHbb, ttH).
- Towards EFT:

CMS

- Consistency and validity: every complexity-reducing assumption must come with (in)validation experimental tests.
- Consistency: observables vs. "inferables". Global fit of EWPD, a{T,Q}GC, and Higgs.
- Consistency: EFT effects in background processes.
- Accuracy: $|\dim 4 + \dim 6 + \dim 8 + \dots|^2 = d4^2 + d4 \times d6 (+ d6^2 + d4 \times d8) (+ d8^2 + d6 \times d8) + \dots$
- Validity: dim-8 in high-q² tails and/or where there is no tree-level dim-6.
- The many sides of the **HVV hexahedron**:
 - $H \rightarrow \{\gamma \gamma, \gamma \gamma^*, Z\gamma^*, ZZ\}$, plus VH and VBF (and how can the W fit in this picture?).
- **Experiment-Theory information interchange** interface.

The beautiful boring 2014 Universe

[arXiv:1303.5062] [ATLAS-CONF-NOTE-2014-009] [CMS-PAS-HIG-14-009]

Up above: "Simple sixparameter ACDM".

Down below: (Not-as-simple) ~20-parameter Standard Model of Particle Physics.

Looking forward to LHC combination and surprises at higher energy: PeV neutrinos, LHC 13 TeV, ...

"...and references therein."

- Experiments' pages on Higgs results:
 - ATLAS: <u>http://cern.ch/go/7IDT</u>
 - □ CMS: <u>http://cern.ch/go/6qmZ</u>
 - Tevatron: <u>http://cern.ch/go/h9jX</u>
 - CDF: <u>http://cern.ch/go/q8NV</u>
 - D0: <u>http://cern.ch/go/9Djq</u>
- Partial list of conferences and workshops:
 - Higgs Days 2013: <u>http://cern.ch/go/6zBp</u>
 - ECFA HL-LHC workshop: <u>http://cern.ch/go/SFW6</u>
 - Higgs EFT 2013: <u>http://cern.ch/go/bR7w</u>
 - Higgs Couplings 2013: <u>http://cern.ch/go/THp9</u>
 - Moriond 2014: <u>http://cern.ch/go/k8FP</u>
 - Bernasque 2014: <u>http://cern.ch/go/Pz7l</u>
 - ICHEP 2014: <u>http://cern.ch/go/8Btf</u>
 - Rencontres du Vietnam 2014: <u>http://cern.ch/go/9ZJJ</u>
 - Zuoz Summer School 2014: <u>http://cern.ch/go/9SHw</u>

enjoying.higgs@cern.ch

The challenge of combining

- Include five main decays and searches for ttH production.
- 207 channels.
- 2519 parameters.
 - 219 H→γγ background
 - parameters.

					Luminosity (fb^{-1})	
	Decay tag and production	tag	Expected signal composition		No. of	categories
					7 TeV	8 TeV
	$H \rightarrow \gamma \gamma$ [20], Section 2.1				5.1	19.7
		Untagged	76–93% ggH	0.8-2.1%	4	5
		2-jet VBF	50-80% VBF 1.0-1.3' ≈95% VH (WH/ZH ≈ 5) 1.3'		2	3
	$\gamma\gamma$	Leptonic VH			2	2
		E_{T}^{miss} VH	70–80% VH (WH/ZH \approx 1) 1.3%		1	1
		2-jet VH	≈65% VH (WH/ZH ≈ 5) 1.0–1.3°		1	1
		Leptonic ttH	≈95% tīH	1.1%	. +	1
		Multijet tīH	>90% tīH	1.1%	1'	1
	$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ [18], Section 2.2	,			5.1	19.7
	4µ, 2e2µ, 4e	2-jet	42% VBF + VH		3	3
		Other	≈90% ggH	1.3, 1.8, 2.2%+	3	3
	$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ [17]. Section 2.3				4.9	19.4
		0-iet	96–98% ggH	еи: 16% [‡]	2	2
		1-jet	82-84% ggH	eu: 17%‡	2	2
	$ee + \mu\mu$, $e\mu$	2-jet VBF	78–86% VBF	cpi. 1770	2	2
		2-jet VH	31–40% VH		2	2
	3/31/ WH	SE-SS SE-OS	$\approx 100\%$ WH up to $20\% \tau\tau$		2	2
	$\ell\ell \perp \ell'\nu$ ii 7 H	01-00,01-00	~100% 7H		4	4
	$H \rightarrow \tau \tau$ [19] Section 2.4	εεε, εεμ, μμμ, μμε	~100 /0 211		10	10.7
	$11 \rightarrow t t [19], 5ection 2.4$	0 iot	~98% ~~H	11 1494	4.5	19.7
	$e au_{ m h}, \mu au_{ m h}$	0-jet	≈96% ggri	11-14%	4	-
		1-jet	70-80% ggn	12-16%	5	5
	$ au_{ m h} au_{ m h}$	2-jet VDF	/3-83% VBF	10-10%	2	4
		1-jet 2 jot VBE	67-70% ggr	10-12 %	-	2
		2-jet VDF	00% VDF	16 209/	-	1
	eµ	0-jet	≈98% ggri, 23–30% WW	10-20%	2	2
		1-jet	75-80% ggH, 31-38% WW	18-19%	2	2
		2-jet VBF	79–94% VBF, 37–45% WW	14-19%	1	2
		0-jet	88–98% ggH		4	4
	ee, µµ	1-jet	74–78% ggH, ≈17% WW ^	2 40/ 1 / 1 /1 +	4	4
		2-jet CJV	≈50% VBF, ≈45% ggH, 17–	24% WW *	2	2
	$\ell\ell + LL' ZH$	$LL' = \tau_h \tau_h, \ell \tau_h, e\mu$	$\approx 15\%$ (70%) WW for $LL' =$	$\ell \tau_{\rm h} ({\rm e}\mu)$	8	8
	$\ell + \tau_{\rm h} \tau_{\rm h}$ WH		\approx 96% VH, ZH/WH \approx 0.1		2	2
	$\ell + \ell' \tau_h WH$		$ZH/WH \approx 5\%$, 9–11% WW		2	4
	VH with H \rightarrow bb [16], Section 2.5				5.1	18.9
	W($\ell \nu$)bb	$p_{\rm T}({\rm V})$ bins	≈100% VH, 96–98% WH		4	6
	$W(\tau_h \nu)bb$		93% WH	$\approx 10\%$	-	1
	$Z(\ell\ell)bb$	$p_{\rm T}({\rm V})$ bins	≈100% ZH		4	4
Y	Z(νν)bb	$p_{\rm T}({\rm V})$ bins	≈100% VH, 62–76% ZH		2	3
1	ttH with H \rightarrow hadrons [14, 28], Section 2.6				5.0	19.3
	$H \to bb$	tt lepton+jets	\approx 90% bb but \approx 24% WW in	$\geq 6j + 2b$	7	7
		tī dilepton	45-85% bb, 8-35% WW, 4-1	4% ττ	2	3
4	$H \rightarrow \tau_h \tau_h$	tī lepton+jets	68–80% ττ, 13–22% WW, 5–	-13% bb	-	6
	ttH with H \rightarrow leptons [29], Section 2.6				-	19.6
	2ℓ-SS		WW/ $\tau\tau \approx 3$		-	6
	3ℓ		WW/ $\tau\tau \approx 3$		-	2
	40		$WW \cdot \tau \tau \cdot 77 \approx 3 \cdot 2 \cdot 1$		-	1

enjoying.higgs@cern.ch

$H \rightarrow VV$ results in combination

[JHEP 01 (2014) 096] [PRD 89 (2014) 092007] [CMS-PAS-HIG-14-009]

What changed?

- **BR(H\rightarrowVV) changes by 4 5%.**
 - H→WW and H→ZZ paper results evaluated at H→ZZ m_H result: m_H = 125.6 GeV.
 - Combined mass slightly lower: m_H = 125.0 GeV.
- □ In the combination $H \rightarrow WW$ includes the ttH, H

decaying to multi-lepton result: $\sigma/\sigma_{SM} = 3.7 \pm 1.5$.

σ/σ _{sm}	Individual publication	Combination
H→ZZ	0.93	1.00
H→WW	0.72	0.83

[CMS-PAS-HIG-13-020] [http://cern.ch/go/FKr9]

Very extensive cross-checks performed: http://cern.ch/go/Xv8S

77

Significance of excesses

[CMS-PAS-HIG-14-009]

Channel grouping	Significance (σ)				
Charmer grouping	Observed	Expected			
$H \rightarrow ZZ$ tagged	6.5	6.3			
$H \rightarrow \gamma \gamma$ tagged	5.6	5.3			
$H \rightarrow WW$ tagged	4.7	5.4			
Grouped as in Ref. [17]	4.3	5.4			
$H \rightarrow \tau \tau$ tagged	3.8	3.9			
Grouped as in Ref. [19]	3.9	3.9			
$H \rightarrow bb tagged$	2.0	2.3			
Grouped as in Ref. [16]	2.1	2.3			

Combined production measurement

[CMS-PAS-HIG-14-009]

enjoying.higgs@cern.ch (

Production mode scaling assuming SM BR structure

 $\square \ \mu_{ggH} = 0.85 ^{+0.11}_{-0.09} (stat.) ^{+0.11}_{-0.08} (theo.) ^{+0.10}_{-0.09} (syst.)$

Coupling deviations

[CMS-PAS-HIG-14-009] [arXiv:1307.1347]

- Scaling the couplings to fermions (κ_f) and vector bosons (κ_v).
- □ Interference in H→ γγ decay resolves degeneracy.

Coupling deviations summaries

82

[CMS-PAS-HIG-14-009] [arXiv:1307.1347]	Model Best-fit result		Comment			
	Parameters	Table in Ref. [27]	Parameter	68% CL	95% CL	Comment
	κ_Z , λ_{WZ} ($\kappa_{\rm f}$ =1)	-	$\lambda_{ m WZ}$	$0.94\substack{+0.22\\-0.18}$	[0.61,1.45]	$\lambda_{WZ} = \kappa_W / \kappa_Z$ using ZZ and 0/1-jet WW channels.
	$\kappa_{\rm Z}, \lambda_{\rm WZ}, \kappa_{\rm f}$	44 (top)	$\lambda_{ m WZ}$	$0.91\substack{+0.14 \\ -0.12}$	[0.70,1.22]	$\lambda_{WZ} = \kappa_W / \kappa_Z$ from full combination.
	$\kappa_{ m V},\kappa_{ m f}$	43 (top)	$\kappa_{ m V}$	$1.01\substack{+0.07 \\ -0.07}$	[0.88,1.15]	$\kappa_{\rm V}$ scales couplings to W and Z bosons.
		(top)	$\kappa_{ m f}$	$0.89\substack{+0.14 \\ -0.13}$	[0.64,1.16]	$\kappa_{\rm f}$ scales couplings to all fermions.
	Х. Х.	48	$\kappa_{ m g}$	$0.89\substack{+0.10\\-0.10}$	[0.69,1.10]	Effective couplings to
	$\kappa g, \kappa \gamma$	(top)	κ_{γ}	$1.15\substack{+0.13 \\ -0.13}$	[0.89,1.42]	gluons (g) and photons (γ).
	$\kappa_{\rm g}, \kappa_{\gamma}, {\rm BR}_{\rm BSM}$	48 (middle)	BR _{BSM}	≤ 0.13	[0.00,0.32]	Branching fraction for BSM decays.
	$\kappa_{\rm V}, \lambda_{\rm du}, \kappa_{\rm u}$	46 (top)	$\lambda_{ m du}$	$1.01\substack{+0.20 \\ -0.19}$	[0.66,1.43]	$\lambda_{du} = \kappa_u / \kappa_d$, relating up-type and down-type fermions.
	$\kappa_{ m V}, \lambda_{\ell m q}, \kappa_{ m q}$	47 (top)	$\lambda_{\ell \mathrm{q}}$	$1.02\substack{+0.22\\-0.21}$	[0.61,1.49]	$\lambda_{\ell q} = \kappa_{\ell} / \kappa_{q}$, relating leptons and quarks.
			$\kappa_{ m g}$	$0.76\substack{+0.15\\-0.13}$	[0.51,1.09]	
	Kar Kar Ku		κ_{γ}	$0.99^{+0.18}_{-0.17}$	[0.66,1.37]	
	ng) ny ny	Similar to	$\kappa_{ m V}$	$0.97^{+0.15}_{-0.16}$	[0.64,1.26]	
	$\kappa_{\rm b}, \kappa_{\tau}, \kappa_{\rm t}$	50 (top)	$\kappa_{ m b}$	$0.67^{+0.31}_{-0.32}$	[0.00,1.31]	Down-type quarks (via b).
			$\kappa_{ au}$	$0.83^{+0.19}_{-0.18}$	[0.48,1.22]	Charged leptons (via τ).
			κ _t	$1.61^{+0.33}_{-0.32}$	[0.97,2.28]	Up-type quarks (via t).
	as above		חח	< 0.04		
	plus BK _{BSM}	-	BK _{BSM}	≤ 0.34	[0.00,0.58]	
	and $\kappa_{\rm V} \leq 1$					

enjoying.higgs@cern.ch @CM

Resolving SM contributions

[CMS-PAS-HIG-14-009] [arxiv:1303.3570]

- Individual coupling scaling factors:
 - $\square K_W, K_Z, K_b, K_t, K_{\tau}.$
 - All loops resolved:
 - κ_γ(κ_W, κ_t)
 - κ_g(κ_t, κ_b)
 - SMH width scaled.
- "Reduced" couplings as function of "mass":
 λ_f = κ_f (m_f/vev)
 (g_V/2vev)^{1/2} = κ_V^{1/2} (m_V/vev)

Mass power parametrization

[CMS-PAS-HIG-14-009] [arxiv:1207.1693]

[ATL-PHYS-PUB-2011-11, CMS NOTE-2011/005]

	Test statistic	Profiled?	Test statistic sampling
LEP	$q_{\mu} = -2 \ln rac{\mathcal{L}(data \mu, ilde{ heta})}{\mathcal{L}(data 0, ilde{ heta})}$	no	Bayesian-frequentist hybrid
Tevatron	$q_{\mu} \;=\; -2\lnrac{\mathcal{L}(data \mu,\hat{ heta}_{\mu})}{\mathcal{L}(data 0,\hat{ heta}_{0})}$	yes	Bayesian-frequentist hybrid
LHC	$\widetilde{q}_{\mu} \;=\; -2\lnrac{\mathcal{L}(data \mu,\hat{ heta}_{\mu})}{\mathcal{L}(data \hat{\mu},\hat{ heta})}$	yes $(0 \le \hat{\mu} \le \mu)$	frequentist

- **LEP:** nuisances parameters (θ) kept at nominal values (\sim).
- **Tevatron:** maximise likelihood against nuisances (^).
 - Denominator considers **background-only hypothesis** (μ=0).
- □ **LHC**: frequentist profiled likelihood.
 - Denominator considers global best-fit likelihood with floating signal strength.
 - Nice asymptotic properties, savings in computational power.

Breaking down uncertainties

Nuisances grouped into stat, theo, other.

- **stat** includes $H \rightarrow \gamma \gamma$ background parameters.
- **theo** includes QCD scales, PDF+ α_s , UEPS, and BR.
- **syst** = theo \cup other.
- Procedures:

For (stat)+(syst):

- σ_{all} from scan floating
 all nuisances.
- σ_{stat} from scan
 floating stat group
 only.

$$\bullet \sigma_{syst} = \sigma_{all} \ominus \sigma_{stat}.$$

For (stat)+(theo)+(other)

- σ_{all} from scan floating all nuisances.
- σ_{stat} from scan floating
 stat group only.
- σ_{stat+other} from scan
 floating stat and other.

•
$$\sigma_{\text{theo}} = \sigma_{\text{all}} \ominus \sigma_{\text{stat+other}}$$

$$\bullet \sigma_{\mathsf{other}} = \sigma_{\mathsf{all}} \ominus \sigma_{\mathsf{stat}} \ominus \sigma_{\mathsf{theo}}.$$

enjoying.higgs@cern.ch

@CMSexperiment HC2014

CMS

VH, $H \rightarrow b\overline{b}$ vignettes

[PRD 89 (2014) 012003]

enjoying.higgs@cern.ch

H→ττ vignettes

[JHEP 05 (2014) 104]

□ 3.2σ (3.7σ exp.) $\sigma \sigma_{\rm SM} = 0.78 \pm 0.27$

CMS, 4.9 fb⁻¹ at 7 TeV, 19.7 fb⁻¹ at 8 TeV

enjoying.higgs@cern.ch

Fermion decay combination vignette

[Nature Physics, doi:10/1038/nphys3005]

enjoying.higgs@cern.ch @

H→WW vignettes

[JHEP 01 (2014) 096]

enjoying.higgs@cern.ch

[PRD 89 (2014) 092007]

PRD 89 (2014) 092007

enjoying.higgs@cern.ch @CMSexperiment HC2014

best fit μ

deviant.higgs@cern.ch HC2014

- \Box | dim-4 + dim-6 + dim-8 + ... | ² =
 - $= d4^{2} + d4 \times d6 (+ d6^{2} + d4 \times d8) (+ d8^{2} + d6 \times d8) + \dots$

Weeding of the negligible, keeping of the sizable.

- Delicate choices because of:
 - Tails of large q values where dim-8 may not be so small.
 - Where there is no dim-6 tree contribution, dim-8 is leading.
- And let's not forget interferences.
 - Backgrounds are also physics processes.

- □ From 2499 dim-6 operators to 59/76 operators.
 - Symmetries guide culling:
 - Flavour, ~custodial, CP
 - Each assumption must come with test measurements/ observables.
- But down from ~60 should be guided by experimental sensitivity and consistently:
 include LEP, Tevatron, etc experimental constraints.
 bridge with aTGC/aQGC searches.