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In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D
show

er
splittings.

A
.

S
p
littin

g
p
ro
b
ab

ility
fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig.6.

W
e
callthese

the
conditionalsplitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,

(31)
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g
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W
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m
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parton
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J
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w
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partons
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B
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A
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the
3̄
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of
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m
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and
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draw

n
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the
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B
caries
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3
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is
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the
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form
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depends
on

w
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of
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is
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let
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be

the
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of
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parton
and
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be

the
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k
s <

k
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s <
k
h .
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first
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in
the

lim
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k
s ⇤

k
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splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
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of
parton

J
and

som
e
other
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parton

k.
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the
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parton
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w
here

needed
w
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k(s)
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ply
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approxim
ation

for
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m
atrix

elem
ent

(w
ith
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µ 2h =
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H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p
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(30)

W
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2
p
s · p

h
=
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s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]
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k
s k
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s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
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k
s k

h ⇥ 2sh
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2
p
s · p

k ⇥
k
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k ⇥ 2sk
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p
h · p

k ⇥
k
h k

k ⇥ 2hk
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other
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s �
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⇤
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s �
⇤
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and
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look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting
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is
then
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by
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in
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hich
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s
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itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
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=

A
,
then

the
em

itting
dip
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is
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from
parton

h
=

B
and

parton
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=

k(J
)
L ,
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if
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=

B
,
then

the
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dip
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form
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parton
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and
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of
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on
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of
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w
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p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �
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⇤
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s �
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s �
⇤
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D
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d
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d
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=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h
·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
sk

h[cosh
(y

s�
y
h)�

cos(⇤
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⇤
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⇥
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⇤
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s �
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has

not
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already
at
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the
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the
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=
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w
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⇤
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=
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=
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=
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=
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=
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=
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w
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approxim
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p
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⇤
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⇤
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⇥
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e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=
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=
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=
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=
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=
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=
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p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
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⇤
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⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
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⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
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⇤
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⇥
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⇤
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⇥
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In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition,

k
s <

k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
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=
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=
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w
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p
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In this section, we define the main part of the simplified shower, QCD
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g +
g is represented by a function H

ggg as

illustrated in Fig. 6. W
e call these the conditional splitting probabilities. Here the condition
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ggg for a g ⌅

g +
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caries the 3̄ color of the mother and is drawn on the left, while B
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the 3 color of the mother and is drawn on the right. The form
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e let h
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k(J)R . The choice of k depends on which of
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parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,

(31)
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In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)
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In
this

section,
w
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define

the
m
ain

part
of

the
sim
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show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
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if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)
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g
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F
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6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)
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=
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⇤
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⇤
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by
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in
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and
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on
w
hich

of
the
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let
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e
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of
the

harder
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and
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e
the

lab
el
of

the
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parton:

k
s
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k
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k
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k
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look
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em

itted
from
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dip

ole
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of
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J
and

som
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other
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call
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parton

k.
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=

A
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then

the
em
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dip
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is

form
ed

from
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h
=
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and
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=

k(J
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w
hile

if
s
=
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,
then
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form
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from
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=
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=
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of
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dep
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on
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hich

of
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daughter
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is
parton
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so
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w
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p
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s �
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⇤
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s �
⇤
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w
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s �
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⇤
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s �
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s �
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ISR jet
neutrino

Ideally one would like to use all radiation related to 
hard process to discriminate signal from background
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Applications of Matrix Element Method:

2005 [Abazov et al., Nature (2004), D0 Collab.]  

Plenty of recent applications in Higgs physics:

Spin/Parity

2010

1988 [Kondo, J.Phys.Soc.Jap. (1988)]Rec. of events with MET

top quark physics
[Abulencia et al., PRD 73 (2005), CDF Collab.]  
[Abazov et al., PLB 617 (2005), D0 Collab.]

1998 Anomalous gauge couplings [Diehl, Nachtmann Eur. 
Phys. J. C1 (1998)]

Automated implementation in MadWeight
[Artoisenet et al, JHEP 1012 (2010)]
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Figure 3: A diagram illustrating gluon radiation from an incoming quark. The resulting

cone-like structure persists through hadronisation and, hence, forms a jet. This process

develops similarly if the incoming quark is replaced by a gluon.

It is often advantageous to work in the CM frame of the collision. However, this is not

always coincident with the rest frame of the detector. In light of this, it is sensible to

measure Lorentz invariant quantities. Collisions possess cylindrical symmetry around their

beam axis and, as a consequence, when the CM frame does not coincide with the detector

frame, it will be, on average, boosted along the beam axis. As �, the azimuthal angle,

lies in a plane perpendicular to the beam axis this makes it Lorentz invariant under such

boosts; it is therefore a practical quantity. However, ✓, the angle a particle makes with the

beam axis, is an unsuitable parameter as it is not Lorentz invariant under these boosts; its

transformation, tan(✓0) = � tan(✓), causes �✓0 to be an unpleasant expression. A parameter

with more pleasing properties under these boosts is desired.

Rapidity is a velocity-like parameter that parameterises Lorentz boosts; in fact, it is an

angle of rotation in the hyperbolic plane. Rapidities along the same axis are additive; they

encode the velocity addition formula under standard addition. This additive transformation

property is much more tangible. By considering a particle moving with four-momentum

pµ = (E/c, ~p), as measured in the CM frame, its rapidity along the beam axis, y, can be

obtained. This rapidity corresponds to that of a boost that causes the momentum along the

beam-axis to vanish; the explicit result is,

y =
1

2
ln

✓
E + cpL
E � cpL

◆
=

1

2
ln

✓
1 + � cos(✓)

1� � cos(✓)

◆
,

where pL represents the longitudinal momentum, and ✓ is the angle that the particle makes

with the beam axis. Taking the ultra-relativistic limit,

⌘ ⌘ lim
�!1

y = � ln


tan

✓
✓

2

◆�
(17)

defines the pseudorapidity ⌘; a result that is trivial for massless particles. As this definition
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The	
  form	
  of	
  the	
  transfer	
  func=on:

Complex,	
  high-­‐dimensional	
  gaussian	
  distribu=on!

resolu=on	
  in

Energy

azimuthal	
  angle

rapidity

Transfer	
  func=on	
  introduces	
  new	
  peaks	
  on	
  top	
  of	
  propagators

13Higgs couplings             Turin      Michael Spannowsky            02.10.2014                   



Subtleties of the convolution

1)

2)
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• Can be calculated at different order in pert. series  
(LO, NLO)

• Some kinematic configurations induce large logs  
(need resummation)
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• Number of final state objects limited to exclusive process

• Transfer function fit dependent (input from experiment)

• Integration very time consuming -> limits final state multiplicity

• Final state multiplicity fixed (exclusive process)
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a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,

(31)
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is
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by
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function
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ere
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is
that

the
m
other

parton
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not
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at

a
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w
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⌅
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+
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el
J
and

w
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supp
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that

the
daughter

partons
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lab
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A
and

B
,
w
here

A
caries

the
3̄
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of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw
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on

the
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he

form
of

the
splitting

probability

dep
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on
w
hich

of
the

tw
o
daughter

partons
is
the
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e
let

h
b
e
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el

of
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harder
daughter

parton
and
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b
e
the
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of
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softer
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parton:
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h.

B
y
definition,
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<
k
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the
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s⇤

k
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T
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is
then
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inated

by
graphs

in
w
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s
is
em
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from

a
dip

ole
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of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep
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on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent
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ith

µ
2s
=
µ

2h
=
0),

H
d
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C
A
�
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2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
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(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
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2+
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s�
⇤
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k
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.

S
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littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,
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for
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+
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splitting
vertex

for
a
Q
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D
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g
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g
+
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is
represented

by
a
function

H
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as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,
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and
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and
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the
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s <
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look
at

the
splitting

in
the
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it
k
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k
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hich
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of
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and

som
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call
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If
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=
A
,
then

the
em

itting
dipole
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form
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parton
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=
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and

parton
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=
k(J

)
L , w

hile
if
s
=
B
, then
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em

itting
dipole

is
form
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from
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h
=
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and
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=
k(J

)
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he
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of
k
depends

on
w
hich

of

the
tw
o
daughter
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is
parton

s, so
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here

needed
w
e
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ill use

the
notation
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instead

of
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ply
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For
H
,
w
e
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w
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for
the
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µ 2h =
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A �
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W
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h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)
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In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)
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of
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ro
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ility

fo
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g
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g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
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hat

w
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should

choose
for

H
ggg

for
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⌅
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W
e
take
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m
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to

carry
the

lab
el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)
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of
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ro
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ility

fo
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g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
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call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
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should

choose
for

H
ggg

for
a
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+
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take

the
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to

carry
the

lab
el

J
and

w
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supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
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the
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color

of
the

m
other

and
is
draw

n
on
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left,

w
hile

B
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the
3
color

of
the

m
other

and
is
draw

n
on
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right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,

(31)
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is
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the
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is
that
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split
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a
higher
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and
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that
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and
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,
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of
the
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and
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on
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w
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the
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of
the
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and
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T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
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daughter

partons
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the
softer.

W
e
let

h
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e
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lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
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k
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W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
2sk

,

2
p
h · p

k ⇥
k
h k

k
⇥
2h
k
,
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In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
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neutrino

Hard Interaction Matching between 4-momentum 
of jet and parton not perfect

Need to 
account for!

tth: di-lepton vs semileptonic channel
[Artoisenet et al. PRL 111 (2013)]
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• Analysis with 4 b-jets and std 
reconstruction as input to MEM

• Full integration over invisible 
particles

Projection at 14 TeV

• Using Matrix Element Method 
di-lepton channel as sensitive 
than single-lepton channel

• However, single-lepton 
channel uses standard input, 
boosted region not captured
[Plehn, Salam, MS PRL 104 (2009)]
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[Artoisenet et al. PRL 111 (2013)]



We want to study more objects in final state -> 


Transfer function limits us. Do we always need it?

Transfer functions only important if matrix element varies quickly:
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FIG. 2: 2-jet and 3-jet likelihoods Q̃2,3 for the cuts as described in the text and
p

s = 14 TeV. We show the influence of various
event generation modes, where “2j” refers to generating pp! hjj ! ��jj events from 2 jet matrix elements+parton shower,
“matched” refers to a matched 2j/3j sample, and “full t, b” stands for 2-jet events, including the full one loop mass dependence,
interfaced to the parton shower. We also show the influence of detector and photon resolution e↵ects.
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FIG. 3: Purification of GF vs. WBF on the basis of the likelihood Q̃2,3.

For the numerical implementation of Eqs. (2.1) and
(2.3) we rely on a combination of MadGraph v4 [19]
and Vbfnlo [20].

B. Event generation and selection

We generate two and three jet CKKW-matched [21]
and un-matched samples with Sherpa [22], which imple-
ments the e↵ective top approximation in the gluon fusion

channels [23]. The events are generated with Sherpa’s
default CT10 [24] pdf set to avoid biasing the analysis of
the likelihood distributions.

It is known that the e↵ective theory does not pro-
vide a valid description of the phenomenology as soon
as we are sensitive to momentum transfers larger than
the top mass, e.g. pT,j � mt. Cross sections, on the
other hand, are reproduced at the percent level, which
follows from smaller e↵ective theory cross sections for
pT,h . mt cancelling the excess with respect to the
full calculation for pT,h & mt. For large momentum
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For the numerical implementation of Eqs. (2.1) and
(2.3) we rely on a combination of MadGraph v4 [19]
and Vbfnlo [20].

B. Event generation and selection

We generate two and three jet CKKW-matched [21]
and un-matched samples with Sherpa [22], which imple-
ments the e↵ective top approximation in the gluon fusion

channels [23]. The events are generated with Sherpa’s
default CT10 [24] pdf set to avoid biasing the analysis of
the likelihood distributions.

It is known that the e↵ective theory does not pro-
vide a valid description of the phenomenology as soon
as we are sensitive to momentum transfers larger than
the top mass, e.g. pT,j � mt. Cross sections, on the
other hand, are reproduced at the percent level, which
follows from smaller e↵ective theory cross sections for
pT,h . mt cancelling the excess with respect to the
full calculation for pT,h & mt. For large momentum

˜Qn = � log


|MWBF

(pp! (h! ��)jn
)|2

|MGF
(pp! (h! ��)jn

)|2

�

Higgs reconstructed, but no transfer function for jets:
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[Andersen, Englert, 
MS PRD 84 (2013)]
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FIG. 6: The matrix element observables Q̃2, Q̃3, Q̃
b
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3 for 8 TeV, employing the Higgs search’ 2-jet category cuts of
Ref. [1].
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FIG. 7: Exclusive number of jets distribution for LHC 8 TeV.

III. APPLICATION TO HIGGS IN
ASSOCIATION WITH TWO JETS AT 8 TEV

We can straightforwardly adopt the strategy of
Sec. II A to the current 8 TeV setup. The ATLAS se-
lection for the two jet category of the h → γγ search is
as follows [1]: We cluster anti-kT jets [33] with Fast-

Jet [17] for D = 0.4 and select at least two jets with
pT,j ≥ 25 GeV and pT,j ≥ 30 in the more forward region
2.5 ≤ |ηj | ≤ 4.5. The hardest jets are required to have
a rapidity gap |∆ηjj | ≥ 2.8 and the dijet system has
to recoil against the diphoton system in the transverse
plane ∆φ(jj, γγ) ≥ 2.6. Again as in Sec. II we require

a Higgs mass reconstruction within 20 GeV interval cen-
tered around mh = 126 GeV.
The exclusive number of jets for this selection is again

shown in Fig. 7; and we find agreement of our analy-
sis with the experiment’s quoted number of 3 expected
events in 4.7 fb−1. Obviously, there is again no need to
go beyond n = 3.

Finally we again analyze the potential S/B improve-
ment (where B refers to the irreducible background for
our purposes), which is the key limiting factor when deal-
ing with the small event rates for the 8 TeV run. Fig. 6
shows a similar behavior as Fig. 5, we infer that we can at
least gain a factor of 100% in S/B without cutting into
the signal count in the currently applied selection. All
remarks of the 14 TeV results generalize to the lower en-
ergy of 8 TeV, and again the GF and WBF signals rates
are affected identically by selecting events according to
Q̃b

2,3.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have applied the matrix element
method to pp → (h → γγ)jj production and investi-
gated the prospects to separate the GF and WBF contri-
butions. This is of utmost importance for CP analyses of
the newly discovered particle, as well as for the measure-
ment of its couplings to known matter. The same method

S/B % 100%

We want to study more objects in final state -> 


Transfer function limits us. Do we always need it?

Transfer functions only important if matrix element varies quickly:
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Higgs reconstructed, but no transfer function for jets:

18Higgs couplings             Turin      Michael Spannowsky            02.10.2014                   



After removing transfer function we can improve on precision 
of matrix element
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Matrix element method at NLO:
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Boost along transverse and 
longitudinal direction such that LO 

final state multiplicity momenta balance

[Campbell, Giele, Williams JHEP 1211 (2012)]

Born phase space, but long. boost not 
unique, need longitud. integration

Calculate

Application to H->4l
(boost easier to identify)

virtual for born topology

real for jet function

sensitivity LO vs NLO improvement ~ 10%
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Shower approximation for matrix element, i.e. shower deconstruction:

partons from the hard interaction emit 
other partons (gluons and quarks)

These emissions are enhanced if they 
are collinear and/or soft with respect to 
the emitting parton
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Figure 3: A diagram illustrating gluon radiation from an incoming quark. The resulting

cone-like structure persists through hadronisation and, hence, forms a jet. This process

develops similarly if the incoming quark is replaced by a gluon.

It is often advantageous to work in the CM frame of the collision. However, this is not

always coincident with the rest frame of the detector. In light of this, it is sensible to

measure Lorentz invariant quantities. Collisions possess cylindrical symmetry around their

beam axis and, as a consequence, when the CM frame does not coincide with the detector

frame, it will be, on average, boosted along the beam axis. As �, the azimuthal angle,

lies in a plane perpendicular to the beam axis this makes it Lorentz invariant under such

boosts; it is therefore a practical quantity. However, ✓, the angle a particle makes with the

beam axis, is an unsuitable parameter as it is not Lorentz invariant under these boosts; its

transformation, tan(✓0) = � tan(✓), causes �✓0 to be an unpleasant expression. A parameter

with more pleasing properties under these boosts is desired.

Rapidity is a velocity-like parameter that parameterises Lorentz boosts; in fact, it is an

angle of rotation in the hyperbolic plane. Rapidities along the same axis are additive; they

encode the velocity addition formula under standard addition. This additive transformation

property is much more tangible. By considering a particle moving with four-momentum

pµ = (E/c, ~p), as measured in the CM frame, its rapidity along the beam axis, y, can be

obtained. This rapidity corresponds to that of a boost that causes the momentum along the

beam-axis to vanish; the explicit result is,

y =
1

2
ln

✓
E + cpL
E � cpL

◆
=

1

2
ln

✓
1 + � cos(✓)

1� � cos(✓)

◆
,

where pL represents the longitudinal momentum, and ✓ is the angle that the particle makes

with the beam axis. Taking the ultra-relativistic limit,

⌘ ⌘ lim
�!1

y = � ln


tan

✓
✓

2

◆�
(17)

defines the pseudorapidity ⌘; a result that is trivial for massless particles. As this definition
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hard scale

hadronization


scale

propagator-lines = Sudakov factors
vertices = Splitting functions

and Sudakov factors allow semiclassical approximation of quantum 
process:

Factorization of emissions in soft/collinear limit 

Can calculate weight for shower history iteratively
Can use smaller objects and more objects (more information)
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This approach can be used as a tagger for  
Higgs bosons in H -> bb

p p

Higgs boson!?

In boosted resonances radiation collimated,  
need Sudakov factors for valid description
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Fat jet: R=1.2, anti-kT

Build all possible shower histories

signal vs background hypothesis based 
on:

‣ Emission probabilities


‣ Color connection


‣ Kinematic requirements


‣ b-tag information
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FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]

⇥ kskh[(ys � yh)
2 + (⇤s � ⇤h)

2]

= kskh ⇥
2
sh ,

2 ps · pk ⇥ kskk ⇥
2
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2 ph · pk ⇥ khkk ⇥
2
hk ,

(31)
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FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]
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2 + (⇤s � ⇤h)
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VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.
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VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]

⇥ kskh[(ys � yh)
2 + (⇤s � ⇤h)

2]

= kskh ⇥
2
sh ,

2 ps · pk ⇥ kskk ⇥
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sk ,

2 ph · pk ⇥ khkk ⇥
2
hk ,

(31)
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FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]

⇥ kskh[(ys � yh)
2 + (⇤s � ⇤h)

2]

= kskh ⇥
2
sh ,

2 ps · pk ⇥ kskk ⇥
2
sk ,

2 ph · pk ⇥ khkk ⇥
2
hk ,

(31)
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VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),
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CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use
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VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]

⇥ kskh[(ys � yh)
2 + (⇤s � ⇤h)

2]

= kskh ⇥
2
sh ,

2 ps · pk ⇥ kskk ⇥
2
sk ,

2 ph · pk ⇥ khkk ⇥
2
hk ,

(31)

13

g

FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g
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VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]

⇥ kskh[(ys � yh)
2 + (⇤s � ⇤h)

2]

= kskh ⇥
2
sh ,

2 ps · pk ⇥ kskk ⇥
2
sk ,
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2
hk ,

(31)
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FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]

⇥ kskh[(ys � yh)
2 + (⇤s � ⇤h)

2]

= kskh ⇥
2
sh ,

2 ps · pk ⇥ kskk ⇥
2
sk ,

2 ph · pk ⇥ khkk ⇥
2
hk ,

(31)
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imperfect b-tagging (60%,2%) no b-tag required

Results for Higgs boson:

section but with ⇥MC({p, t}N ) < ⇥0, we raise the total background cross section within the

cut while keeping the signal cross section the same. Thus using contours of ⇥MC({p, t}N )

to define our cut is the best that we can do.

What value of ⇥0 should one choose? For a simple optimized cut based analysis with

a given amount of integrated luminosity, one would choose ⇥0 so as to maximize the ratio

of the expected number of signal events to the square root of the expected number of

background events. We discuss this further in section 14.

Instead of using an optimized cut on ⇥MC to separate signal from background, one

could imagine using a log likelihood ratio constructed from ⇥MC. We do not discuss that

method in this paper.

Now we must face the fact that to construct ⇥MC({p, t}N ), we would need two things:

the di�erential cross section to find microjets {p, t}N in background events and then the

di�erential cross section to find microjets {p, t}N in signal events. In each case, we would

consider this di�erential cross section in a parton shower approximation to the full theory.

Unfortunately for us, a parton shower produces d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N
by producing Monte Carlo events at random according to these distributions. If we have 10

microjets described by 4 momentum variables each and we divide each of these 40 variables

into 12 bins, then we have approximately 1240/10! � 1036 total bins (accounting for the

interchange symmetry among the 10 microjets). The parton shower Monte Carlo event

generator will fill these bins with events, but it will be a long time before we have of order

100 counts per bin in order to estimate d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N at each

bin center. Thus it is not practical to calculate ⇥MC({p, t}N ) numerically by generating

Monte Carlo events. It is also not practical to calculate ⇥MC({p, t}N ) analytically using

the shower algorithms in Pythia or Herwig. These programs are very complicated, so

that we have no hope of finding PMC({p, t}N |S) and PMC({p, t}N |B) for either of them.

2.4 Probabilities according to simplified shower

What we need is an observable ⇥({p, t}N ) that is an approximation to ⇥MC({p, t}N ) such

that we can calculate ⇥({p, t}N ) analytically for any given {p, t}N . For this purpose, we

define a simple, approximate shower algorithm, which we will call the simplified shower

algorithm. We let P ({p, t}N |S) and P ({p, t}N |B) be the probabilities to produce the mi-

crojet configuration {p, t}N in, respectively, signal and background events according to the

simplified shower algorithm. Define

⇥({p, t}N ) =
P ({p, t}N |S)
P ({p, t}N |B) . (2.9)

This function, ⇥({p, t}N ) without the “MC” subscript, is the observable that we use. We

may call the calculation of ⇥({p, t}N ) shower deconstruction.

The parton state with N microjets is a possible intermediate state in a parton shower.

We seek to determine the probability that this intermediate state with parameters {p, t}N
is generated. We try to build enough into the simpler shower to provide a reasonable

approximation to QCD and the rest of the standard model. Furthermore, we can define

the shower so that the deconstruction is as simple as we can make it, even if that means that

– 7 –FIG. 1: d�
MC

(B)/d log� for background events (upper curve) and d�
MC

(S)/d log� for signal
events (lower curve) for samples of signal and background events generated by Pythia. We use
the cuts described in Sec. II A.

This function, �({p, t}N) without the “MC” subscript, is the observable that we use. We
may call the calculation of �({p, t}N) shower deconstruction.

The parton state with N microjets is a possible intermediate state in a parton shower.
We seek to determine the probability that this intermediate state with parameters {p, t}N
is generated. We try to build enough into the simpler shower to provide a reasonable ap-
proximation to QCD and the rest of the standard model. Furthermore, we can define the
shower so that the deconstruction is as simple as we can make it, even if that means that
the corresponding shower algorithm is not so practical as an event generator. For instance,
an implementation of the simplified shower algorithm as an event generator might generate
weighted events in a way that makes unweighting the events costly in computer time. Addi-
tionally, probability conservation might be only approximate, so that the generated weights
for di↵erent outcomes do not sum exactly to one. No matter: we are not going to use the
simplified shower algorithm to generate events anyway. Additionally, we can ignore any
factors in P ({p, t}N |S) and P ({p, t}N |B) that are common between them for each {p, t}N
since such factors cancel in �.

Our construction will be far from perfect, and it can be useful even if it is not perfect.
We will use Pythia to measure the cross section d�

MC

(S)/d log� to have signal events with
a given value of � and the corresponding cross section d�

MC

(B)/d log� to have background
events with this value of �. In Fig. 1, we show these two functions for the simplified shower
as defined in the following sections. In this illustration, we see that increasing � favors signal
compared to background.

There is another way to present the results in Fig. 1 that is more informative. Let us

7

FIG. 17: Plot of s2/b versus s, where s and b are defined in Eq. (10). We use samples of signal and
background events generated by Pythia as in Fig. 1. This is the same plot as in Fig. 2 except that
we plot s2/b instead of s/b. The total signal cross section with the cuts used is �

MC

(S) = 1.57 fb.
We also show a point corresponding to a signal cross section �

BDRS

(S) = 0.22 fb and background
cross section �

BDRS

(B) = 0.44 fb that we obtained using the method of Ref. [4].

In Fig. 1, we displayed the � distribution for signal and background. We used this
information to display s/b as a function of s in Fig. 2. In order to understand the statistical
significance of a counting experiment with a simple cut on �, we have seen above that one
wants to look at the maximum of s2/b. For that reason, in Fig. 17, we display the information
from Fig. 2 as a plot of s2/b versus s. We have used here the function �({p, t}N) from our
simplified shower algorithm. If we could somehow use �

MC

({p, t}N), using the same Monte
Carlo that we use to generate events, we would obtain a curve for s2/b versus s that is
everywhere higher. No algorithm could produce a curve above this limiting curve, but we
have no way of determining the limiting curve.

We see in Fig. 17 that one can achieve a fairly good statistical significance with, say,
an integrated luminosity of

R
dL = 30 fb�1. With s2/b ⇡ 0.26 and this luminosity we

have N(S)/
p

N(B) ⇡ 2.8. We can compare to the method of Ref. [4] (BDRS). Applying
this method with our data sample, we find a signal cross section �

BDRS

(S) = 0.22 fb and
background cross section �

BDRS

(B) = 0.44 fb. We have plotted this point in Fig. 17. The
corresponding statistical significance with

R
dL = 30 fb�1 is 1.8. Of course, this analysis

ignores all systematic uncertainties.
In the analysis presented above, we include events with zero, one, and two b-tags. Then

shower deconstruction has to overcome a signal to background ratio of about 1/1700 in the
complete event sample in order to extract a few events with a signal to background ratio of
order 1. One suspects that, in fact, the events with zero or one b-tags do not contribute much
to the discriminating power of the method. Accordingly, we now explore what happens when
we give shower deconstruction an easier job by restricting the event sample to just events in
which there are two b-tagged microjets among the three microjets with the highest transverse

34

BDRS

Shower 
deconstruction
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Next step, merge hard matrix element with shower approx.:
First attempt of Event Deconstruction in pp -> Z’ -> tt

)rlog(
-14 -12 -10 -8 -6 -4 -2 0

)r
/d

lo
g(

m
 d

m
1/

0

0.05

0.1

0.15

0.2

0.25 Z’
tt

Dijets

For full Event Deconstruction many steps missing:
• Include full model of Initial State Radiation

• Add model for soft/non-pert radiation
• Improved sampling over histories

• Merge high-mult. matrix elements (CKKW)
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Summary

• Matrix Element Method is active field of research 
[see also MEM Workshops in Louvain (2013) and Zurich (2014)]
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parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J
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the
em
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dipole
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form

ed
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h
=
A
and

parton
k
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k(J
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choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.
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H
,
w
e
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the
dipole

approxim
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the

squared
m
atrix

elem
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µ 2s =
µ 2h =
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H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
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2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]
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k
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h ⇥ 2sh
,

2
p
s · p

k ⇥
k
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k ⇥ 2sk
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p
h · p

k ⇥
k
h k

k ⇥ 2hk
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⌅
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is
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by
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function
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as

illustrated
in

F
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W
e
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the
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probabilities.
H
ere

the
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is
that

the
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parton
has

not
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already
at

a
higher

virtuality.
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for

H
ggg

for
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⌅
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+
g
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the
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el
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and
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that

the
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B
,
w
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3̄
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of
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other

and
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draw
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the
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the
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the
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other
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the
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form
of

the
splitting

probability
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ends

on
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hich

of
the
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daughter
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is

the
softer.

W
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let
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b
e
the

lab
el

of
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harder
daughter

parton
and

s
b
e
the
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el
of

the
softer
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parton:

k
s
<

k
h .

B
y
definition,
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k
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first

look
at

the
splitting

in
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lim
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k
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k
h .

T
he
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inated
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graphs

in
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hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call
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parton

k.
If
s
=

A
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then

the
em

itting
dip

ole
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form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
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choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
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needed
w
e
w
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the

notation
k(s)

instead
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sim
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H
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w
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start
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dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent
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µ
2s
=

µ
2h
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0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k
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W
e
use
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p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]
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k
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h [(y
s �

y
h ) 2
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s �
⇤
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2sh

,

2
p
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that

the
daughter

partons
are

lab
elled

A
and

B
,
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of
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of
the
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W
e
let
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b
e
the

lab
el

of
the

harder
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and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
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B
y
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k
s
<

k
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W
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first

look
at

the
splitting

in
the

lim
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k
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k
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T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
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T
he

choice
of

k
dep

ends
on

w
hich

of

the
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daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
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F
or

H
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w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k
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(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k
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k
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k
⇥
2h
k
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for
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+
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is
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by
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function
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as
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in
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that
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not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el

J
and

w
e
supp

ose
that
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,
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the
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of
the
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and
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hile
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the
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of
the
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and
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form
of

the
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probability

dep
ends

on
w
hich

of
the
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partons
is

the
softer.

W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
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of

k
dep

ends
on

w
hich

of
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daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill
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the

notation
k(s)

instead

of
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ply
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F
or

H
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w
e
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w
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dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
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k
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p
s · p
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e
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s · p
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=

2k
s k
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s �

y
h )�

cos(⇤
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⇤
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⇥
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s �

y
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s �
⇤
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k
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p
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s �
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⇤
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s �
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s �
⇤
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In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
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n
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=

0),

H
d
ip
ole⇥
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⇤
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⇥
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⇤
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⇥
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B
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other

and
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draw
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the
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B
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the
3
color

of
the

m
other

and
is
draw
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the
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of
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e
let

h
b
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the

lab
el

of
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harder
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and
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b
e
the

lab
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daughter
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k
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<
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h.
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at

the
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in
the
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k
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then
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from
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ole
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=
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=
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=
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w
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⇤
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that
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are
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m
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the
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w
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approxim
ation

for
the

squared
m
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dip

ole ⇥
C

A �
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h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)
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p
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=
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s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]
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h [(y
s �

y
h ) 2
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s �
⇤
h ) 2
]
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p
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k ⇥
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h k

k ⇥ 2hk
,
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the
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the
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=
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w
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⇤
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in
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,
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the
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and
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of
the
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and
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on
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of
the
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let

h
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e
the
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el

of
the

harder
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and

s
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e
the
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el
of

the
softer

daughter
parton:

k
s
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k
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B
y
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k
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k
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look
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the
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in
the

lim
it
k
s ⇤

k
h .

T
he

splitting
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is
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em

itted
from
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ole
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of
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and

som
e
other
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call

it
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k.
If
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=
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then
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em
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is

form
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from
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h
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and
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=
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if
s
=
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,
then
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=
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=
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on
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of
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w
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p
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s �
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⇤
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s �
⇤
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ecallthesetheconditionalsplittingprobabilities.Herethecondition

isthatthem
otherparton

hasnotsplitalready
ata

highervirtuality.

Letusexam
ine

whatwe
should

choose
forH

ggg
fora

g⌅
g+

g
splitting.

W
e
take

the

m
otherparton

to
carry

the
labelJ

and
we

suppose
thatthe

daughterpartonsare
labelled

A
and

B
,whereA

cariesthe3̄
colorofthem

otherand
isdrawn

on
theleft,whileB

caries

the
3
colorofthe

m
otherand

isdrawn
on

the
right.

The
form

ofthe
splitting

probability

dependson
which

ofthe
two

daughterpartonsisthe
softer.

W
e
leth

be
the

labelofthe

harderdaughterparton
and

s
bethelabelofthesofterdaughterparton:ks

<
kh.

By
definition,ks

<
kh.W

e
firstlook

atthe
splitting

in
the

lim
itks⇤

kh.Thesplitting

probabilityisthen
dom

inated
bygraphsin

which
parton

sisem
itted

from
adipoleconsisting

ofparton
J
and

som
e
otherparton,callitparton

k.
Ifs

=
A,then

the
em
itting

dipole
is

form
ed
from

parton
h
=
B
and

parton
k
=
k(J)L,whileifs=

B
,then

theem
itting

dipole

isform
ed
from

parton
h
=
A
and

parton
k
=
k(J)R.

The
choice

ofk
dependson

which
of

thetwo
daughterpartonsisparton

s,so
whereneeded

wewillusethenotation
k(s)instead

ofsim
ply

k.

For
H
,we

start
with

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(with

µ
2
s
=
µ
2
h
=
0),

H
dipole⇥

C
A�s

2

2ph·pk

2ps·ph
2ps·pk

.

(30)

W
euse

2ps·ph
=
2kskh[cosh(ys�

yh)�
cos(⇤s�

⇤h)]

⇥
kskh[(ys�

yh)
2+

(⇤s�
⇤h)

2]

=
kskh

⇥
2
sh
,

2ps·pk⇥
kskk⇥

2
sk
,

2ph·pk⇥
khkk⇥

2
hk
,

(31)

13

jet

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
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d
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p
arton
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e
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W
e
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b
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th
e
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er
d
au

ghter
p
arton

an
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s
b
e
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e
lab

el
of

th
e
softer

d
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ghter
p
arton

:
k
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<

k
h.

B
y
d
efi
n
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,
k
s
<

k
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W
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e
sp
littin
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s⇤

k
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h
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ab
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w
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p
arton

s
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d
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p
arton
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an

d
som

e
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p
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If
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=
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e
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=
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=
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=
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=
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=
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k
(s)

in
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of
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d
ip
ole

ap
p
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squ
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m
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=
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�
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p
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⇤
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⇥
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⇤
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⇥
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Summary

• Matrix Element Method is active field of research 
[see also MEM Workshops in Louvain (2013) and Zurich (2014)]

• Measurement of Higgs properties relies on reconstruction  
MEM can be important tool in many processes
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w
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define

the
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the
sim
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show
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Q
C
D
show

er
splittings.

A
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S
p
littin

g
p
ro
b
ab

ility
fo
r
g
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g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig.6.

W
e
callthese

the
conditionalsplitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam
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w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
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if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,

(31)
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p
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s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h
·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h
·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h
·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h
·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h
·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

Proton

Proton

ISR jet

ISR jet

Anti-top

Higgs

top

W

W

electron

b-jet

b-jet

b-jet

b-jet

jet

jet

FIG
.6:Splitting

functionsforfinalstate
Q
CD

splittingsthatare
m
odeled

asg⌅
g+

g

V
I.

FIN
A
L
STAT

E
Q
C
D
SH

O
W
ER

SP
LIT

T
IN
G
S

In
thissection,wedefinethem

ain
partofthesim

plified
shower,QCD

showersplittings.

A
.

Splitting
probability

for
g⌅

g+
g

Thesplitting
vertex

fora
QCD

splitting
g⌅

g+
g
isrepresented

by
a
function

H
ggg
as

illustrated
in
Fig.6.W

ecallthesetheconditionalsplittingprobabilities.Herethecondition

isthatthem
otherparton

hasnotsplitalready
ata

highervirtuality.

Letusexam
ine

whatwe
should

choose
forH

ggg
fora

g⌅
g+

g
splitting.

W
e
take

the

m
otherparton

to
carry

the
labelJ

and
we

suppose
thatthe

daughterpartonsare
labelled

A
and

B
,whereA

cariesthe3̄
colorofthem

otherand
isdrawn

on
theleft,whileB

caries

the
3
colorofthe

m
otherand

isdrawn
on

the
right.

The
form

ofthe
splitting

probability

dependson
which

ofthe
two

daughterpartonsisthe
softer.

W
e
leth

be
the

labelofthe

harderdaughterparton
and

s
bethelabelofthesofterdaughterparton:ks

<
kh.

By
definition,ks

<
kh.W

e
firstlook

atthe
splitting

in
the

lim
itks⇤

kh.Thesplitting

probabilityisthen
dom

inated
bygraphsin

which
parton

sisem
itted

from
adipoleconsisting

ofparton
J
and

som
e
otherparton,callitparton

k.
Ifs

=
A,then

the
em
itting

dipole
is

form
ed
from

parton
h
=
B
and

parton
k
=
k(J)L,whileifs=

B
,then

theem
itting

dipole

isform
ed
from

parton
h
=
A
and

parton
k
=
k(J)R.

The
choice

ofk
dependson

which
of

thetwo
daughterpartonsisparton

s,so
whereneeded

wewillusethenotation
k(s)instead

ofsim
ply

k.

For
H
,we

start
with

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(with

µ
2
s
=
µ
2
h
=
0),

H
dipole⇥

C
A�s

2

2ph·pk

2ps·ph
2ps·pk

.

(30)

W
euse

2ps·ph
=
2kskh[cosh(ys�

yh)�
cos(⇤s�

⇤h)]

⇥
kskh[(ys�

yh)
2+

(⇤s�
⇤h)

2]

=
kskh

⇥
2
sh
,

2ps·pk⇥
kskk⇥

2
sk
,

2ph·pk⇥
khkk⇥

2
hk
,

(31)

13

jet

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h
·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
sk

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]
=

k
sk

h
⇥
2sh

,
2
p
s·p

k
⇥

k
sk

k
⇥
2sk

,
2
p
h
·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h
·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
sk

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]
=

k
sk

h
⇥
2sh

,
2
p
s·p

k
⇥

k
sk

k
⇥
2sk

,
2
p
h
·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

ISR jet
neutrino

My#method##
Shower#Deconstruc2on#

Standard
methods#

Standard  
 MEM

Future MEM

• My personal view:
Event Deconstruction, i.e. Pattern Recognition for full event

30Higgs couplings             Turin      Michael Spannowsky            02.10.2014                   

Summary

• Matrix Element Method is active field of research 
[see also MEM Workshops in Louvain (2013) and Zurich (2014)]

• Measurement of Higgs properties relies on reconstruction  
MEM can be important tool in many processes


