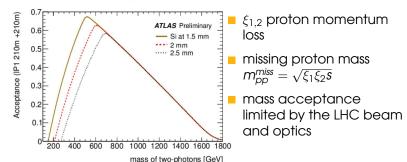


Probing anomalous quartic gauge couplings using proton tagging at the Large Hadron Collider

LHC Working Group on Forward Physics and Diffraction

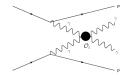
Matthias Saimpert¹
E. Chapon, S. Fichet, G. von Gersdorff,
O. Kepka, B. Lenzi, C. Royon


¹CEA Saclay - Irfu/SPP

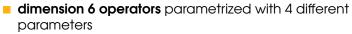
16/04/2014

Forward proton detectors at the LHC

The ATLAS Forward Physics Project (AFP) and the Precision Proton Spectrometer (PPS, CMS/TOTEM)



Exclusive production via photon induced processes



- All particles at the final state are detected: two protons in the forward detectors and two high energy particles in the central detector → strong kinematics constraints
- Requirement of two intact protons + kinematics constraints → strong background reduction
- Final state can be $\gamma\gamma$, WW, ZZ \rightarrow ideal to study anomalous quartic gauge couplings (aQGC)
- aQGC important for various topics: electroweak symmetry breaking, extra-dimension models, ...
- Drawback: reduced cross-sections (intact protons)

$WW\gamma\gamma$ and $ZZ\gamma\gamma$ anomalous couplings

C. Royon, O. Kepka, Phys. Rev. D 78 (2008)

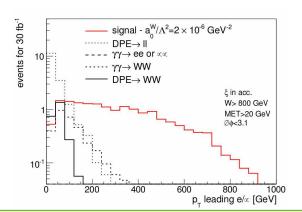
E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)

$$\mathcal{L}_{6}^{0} \sim \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$

$$\mathcal{L}_{6}^{C} \sim \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+})$$

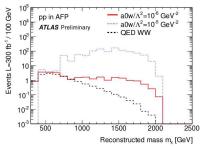
$$- \frac{e^{2}}{16 \cos^{2}(\theta_{W})} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} Z^{\alpha} Z_{\beta}$$

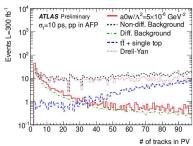
- Only the leptonic decays of the heavy bosons are considered as final states (clean signal)
- **Background considered:** ND WW/ZZ production, dilepton photoproduction, DPE dilepton, DPE WW/ZZ
- Generation and simulation performed with the Forward Physics MC generator (FPMC) interfaced with the fast simulation of the ATLAS detector (ATLFast++ package) ATLAS full simulation also performed and gave similar results



$WW\gamma\gamma$ and $ZZ\gamma\gamma$ anomalous couplings

E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)


■ WW $\gamma\gamma$ signal and background composition passing all the selection but the p_T cut on the leading lepton



Dealing with pile-up at the LHC

ATLAS full simulation study

- The LHC is operated at very high luminosity → high event multiplicites in a single bunch-crossing (pile-up)
 - Cut on the number of tracks fitted to the primary vertex: very efficient to remove remaining pile up after requesting a high mass object to be produced
 - Full simulation results

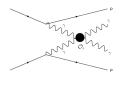
$WW\gamma\gamma$ and $ZZ\gamma\gamma$ sensitivities

E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81 (2010)

- Best limits from LEP, OPAL (Phys. Rev. D **70** (2004) 032005) of the order of 0.02-0.04 GeV $^{-2}$ for each coupling
- Recent papers from D0 and CMS for $WW\gamma\gamma$ with reach of the order of 10^{-4} GeV⁻² (CMS-PAS-FSQ-12-010)
- Sensitivites predicted at the LHC (P. J. Bell, ArXiV:0907.5299) of the order of a few 10⁻⁴ GeV⁻²
- Sensitivities predictions with AFP (30 and 200 fb⁻¹) improvement by a factor $\simeq 100$

		limits $[10^{-6} \mathrm{GeV}^{-2}]$				limits $[10^{-6} \text{GeV}^{-2}]$			
	form factor	$\left a_0^W/\Lambda^2\right $	$\left a_C^W/\Lambda^2\right $	$\left a_0^Z/\Lambda^2\right $	$\left a_C^Z/\Lambda^2\right $	$\left a_0^W/\Lambda^2\right $	$\left a_C^W/\Lambda^2\right $	$\left a_0^Z/\Lambda^2\right $	$\left a_C^Z/\Lambda^2\right $
95% c.1 {	$\Lambda_{cut} = \infty$	1.2	4.2	2.8	10	0.7	2.4	1.1	4.1
	$\Lambda_{cut} = \infty$ $\Lambda_{cut} = 2 \text{TeV}$	2.6	9.4	6.4	24	1.4	5.2	2.5	9.2
3σ evidence $\Big\{$	$\Lambda_{cut} = \infty$ $\Lambda_{cut} = 2 \text{ TeV}$	1.6	5.8	4.0	14	0.85	3.0	1.6	5.7
	$\Lambda_{cut} = 2\text{TeV}$	3.6	13	9.0	34	1.8	6.7	3.5	13
5σ discovery $\Big\{$	$\Lambda_{cut} = \infty$ $\Lambda_{cut} = 2 \text{ TeV}$	2.3 5.4	9.7	6.2	23	1.2	4.3	4.1	8.9
	$\Lambda_{cut} = 2 \text{TeV}$	5.4	20	14	52	2.7	9.6	5.5	20

$\gamma\gamma\gamma\gamma$ anomalous couplings (2013-2014)



- Direct coupling absent from the SM*
 *loop induced production measurable at the LHC with heavy ions (D. D'Enterria, G. Da Silveira, PRL 111 (2013)
- New couplings predicted by strongly-interacting composite states, extra-dimensions, ...
- No constraints from collider experiments

$\gamma\gamma\gamma\gamma$ anomalous couplings (2013-2014)

- Direct coupling absent from the SM*
 - *loop induced production measurable at the LHC with heavy ions (D. D'Enterria, G. Da Silveira, PRL 111 (2013)
- New couplings predicted by strongly-interacting composite states, extra-dimensions, ...
- No constraints from collider experiments
- Small couplings, high luminosity required, $\mu > 50$. (300 fb⁻¹ of data expected at the LHC at $\sqrt{s} = 14$ TeV)
- **Huge background** if only 2 high energy γ required (SM $\gamma\gamma$ production + fakes from electrons and jets)
- Additional requirement of **two intact protons** with forward detectors highly suppresses the background

Operators of the $\gamma\gamma\gamma\gamma$ couplings

R.S. Gupta, Phys. Rev. D 85 (2012) 014006

S. Fichet and G. von Gersdorff, arXiv:1311.6815

$$L_{4\gamma} = \frac{\zeta_1^{\gamma}}{F_{\mu\nu}} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \frac{\zeta_2^{\gamma}}{F_{\mu\nu}} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu} \text{ (dimension 8)}$$

Unitary breaks down at large scale $\Lambda' \to \mathbf{use}$ of a form factor (f.f.) at the amplitude level

We use
$$f.f = \frac{1}{1+(\frac{\hat{s}\gamma\gamma}{2})^2}$$
 with $\Lambda' = 1$ TeV

Operators of the $\gamma\gamma\gamma\gamma$ couplings

R.S. Gupta, Phys. Rev. D 85 (2012) 014006

S. Fichet and G. von Gersdorff, arXiv:1311.6815

$$L_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu} \text{ (dimension 8)}$$

Unitary breaks down at large scale $\Lambda' \to \mathbf{use}$ of a form factor (f.f.) at the amplitude level

We use
$$f.f = \frac{1}{1 + (\frac{\hat{s}_{\gamma\gamma}}{\lambda t^2})^2}$$
 with $\Lambda' = 1$ TeV

f.f. not necessary when the new particles have a large enough mass

Operators of the $\gamma\gamma\gamma\gamma$ couplings

R.S. Gupta, Phys. Rev. D **85** (2012) 014006

S. Fichet and G. von Gersdorff, arXiv:1311.6815

$$L_{4\gamma} = \frac{\zeta_1^{\gamma}}{F_{\mu\nu}} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \frac{\zeta_2^{\gamma}}{F_{\mu\nu}} F^{\nu\rho} F_{\rho\sigma} F^{\sigma\mu} \text{ (dimension 8)}$$

■ Unitary breaks down at large scale $\Lambda' \rightarrow$ use of a form factor (f.f.) at the amplitude level

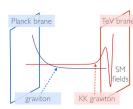
We use
$$f.f = \frac{1}{1 + (\frac{\hat{s}_{\gamma\gamma}}{d^2})^2}$$
 with $\Lambda' = 1$ TeV

- f.f. not necessary when the new particles have a large enough mass
- The signal showed in the plots of this presentation are for a signal with $\zeta_1 > 0$ and $\zeta_2 = 0$ and with f.f. ζ_1 and ζ_2 have the same angular behaviour
- A table with sensitivities for both ζ_1 and ζ_2 are given at the end of the presentation

New physics contributions to 4γ couplings

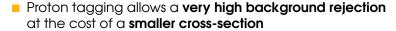
New charged particles via loops

- Effective coupling only depends on the mass, charge and spin : $\zeta_i^{\gamma} \propto c_i^s Q^4 m^{-4}$
- Example: top partners


New neutral particles at tree level

- Effective coupling depends on mass, spin and the non-renormalizable $\gamma\gamma X$ coupling $\zeta_i^{\gamma} \propto b_i^s f^{-2} m^{-2}$
- Example: KK gravitons, dilaton/radion (warped extra-dim)

if coupling \simeq TeV and $m_{KK} \simeq$ few TeV \rightarrow predictions of $\zeta_i^{\gamma} \simeq 10^{-14} \cdot 10^{-13}$ GeV⁻⁴, which we are sensitive



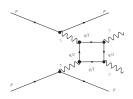
Where does proton tagging do better?

- Proton tagging allows a very high background rejection at the cost of a smaller cross-section
 - A single observation has a high significance
 - Ideal to probe small deviations from the Standard Model like aQGC
 - ex: new charged particles via loops, ADD gravity effects, ...
 - Should be less competitive on resonances searches ex: new neutral particles at tree level
 - Very difficult to quantify precisely the improvements compared to the central detector alone (in progress)

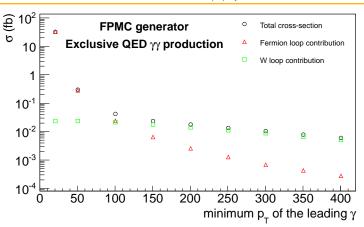
Where does proton tagging do better?

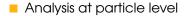
- A single observation has a high significance
- Ideal to probe small deviations from the Standard Model like aQGC
 ex: new charged particles via loops, ADD gravity effects, ...
- Should be less competitive on resonances searches ex: new neutral particles at tree level
- Very difficult to quantify precisely the improvements compared to the central detector alone (in progress)
- For the first time, we reach sensitivities allowing to probe directly a large class of new models
 - Warped extra-dimensions: KK gravitons, radion/dilaton, high κ untested domain (Randall-Sundrum model)
 - Strongly-interacting composite states, monopoles: generic searches of new heavy charged particles

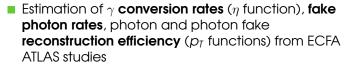
- Evaluate the LHC potential to probe 4γ couplings using proton tagging
 - **4** γ aQGC operators implemented in the **FPMC generator** in summer 2013
 - Pile-up simulation with Pythia8 minimum bias events
 - Background estimation (very small)
 - The backgrounds from pile-up should dominate
 - 2 scenarios were considered
 - LHC full stat (ATLAS or CMS) : 300 fb⁻¹, $\mu = 50$
 - HL-LHC (ATLAS) : 3000 fb $^{-1}$, $\mu = 200$


- Evaluate the LHC potential to probe 4γ couplings using proton tagging
 - **4** γ aQGC operators implemented in the **FPMC generator** in summer 2013
 - Pile-up simulation with Pythia8 minimum bias events
 - Background estimation (very small)
 - The backgrounds from pile-up should dominate
 - 2 scenarios were considered
 - LHC full stat (ATLAS or CMS) : 300 fb $^{-1}$, $\mu=50$
 - HL-LHC (ATLAS) : 3000 fb $^{-1}$, $\mu = 200$
- New: implementation of generic new heavy-charged fermions/vectors contributions to the 4γ couplings in FPMC (full amplitude)

- Evaluate the LHC potential to probe 4γ couplings using proton tagging
 - **4** γ aQGC operators implemented in the **FPMC generator** in summer 2013
 - Pile-up simulation with Pythia8 minimum bias events
 - Background estimation (very small)
 - The backgrounds from pile-up should dominate
 - 2 scenarios were considered
 - LHC full stat (ATLAS or CMS) : 300 fb $^{-1}$, $\mu = 50$
 - HL-LHC (ATLAS) : 3000 fb $^{-1}$, $\mu = 200$
- New: implementation of generic new heavy-charged fermions/vectors contributions to the 4γ couplings in FPMC (full amplitude)
- New: update of the exclusive $\gamma\gamma$ SM production, adding the W loop contribution and the fermion masses


SM QED exclusive $\gamma\gamma$ production


- Different loop contributions: fermions (quarks, leptons), vectors (W)
- W loop contribution and massive fermions added to the process in FPMC rev.913 (negligible at low mass but not at high mass)
- Interferences SM/Exotics added for the full amplitude calculation


SM QED exclusive $\gamma\gamma$ production

- W loop non negligeable for $p_{T,\gamma} > 50$ GeV
- QCD and DPE contributions to be added
- \blacksquare Same plot for the $\gamma\gamma$ mass is being made
- Mass of the fermions taken into account

- **Smearing** of 1% in γ energies, 0.001 in η and ϕ (absolute), 2% for ξ to mimic detector resolution
- Requirement of at least one converted photon \rightarrow constraint on the γ vertex, possibility to combine with forward proton timing measurement
- Selection on high p_T^{γ} , high diphoton mass, $\Delta \Phi^{\gamma\gamma}$, match proton missing/ $\gamma\gamma$ mass (see S12-S17)

Final outputs

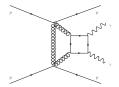
- 5σ and 95% C.L sensitivities on the $\gamma\gamma\gamma\gamma$ vertex (effective field theory)
- M-Q exclusion plane for generic exotic fermions/vectors (full amplitude)

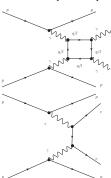
Conversion, fake and efficiency reconstruction rates

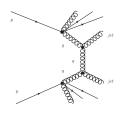
- Inputs from the ECFA ATLAS studies
- Photon conversion factors: 15% in the barrel, 30% in the end-caps
- Photon and electron reconstruction efficiency: $Eff(p_T) = 0.76 1.98 \ exp^{\frac{-p_T}{16.1(GeV)}}$
- **Photon fake factors:** 1% for electron European Strategy studies
- **Fake photon p**_T **for jets:** gaussian draw (Mean=75%, σ =13%) on the jet p_T and use of

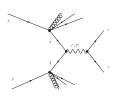
$$Eff_{fake}(p_T) = 0.0093 \text{ exp}^{\frac{-min(p_T, 200 \text{GeV})}{17.5(\text{GeV})}}$$

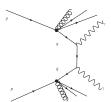

almost no fake γ from jets at very high p_T


Backgrounds (FPMC, ExHuME)



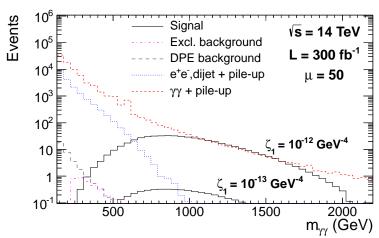

Exclusive QED (FPMC)


Pile-up backgrounds (HERWIG 6.5)


Dijet

Drell-Yan

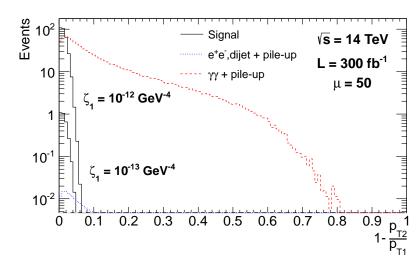
Diphoton


+ protons generated from **minimum bias events** (Pythia 8)

transported to the forward detectors through the LHC magnets with FPTracker/MADX

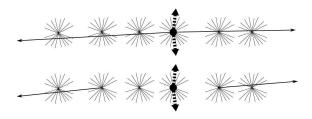
Mass distribution of signal and backgrounds

 \blacksquare 0.015 < ξ < 0.15, $|\eta|$ < 2.37, $p_{71,2}^{\gamma}$ > 50 GeV ONLY



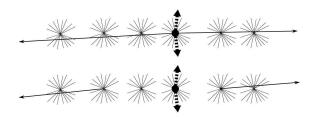
 \blacksquare By requesting $m_{\gamma\gamma} >$ 600 GeV, Only pile-up backgrounds remain

Exclusive signal: p_T ratio



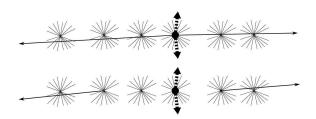
 \blacksquare p_T ratio distribution after p_T and $m_{\gamma\gamma}$ cuts

Forward detectors measurements



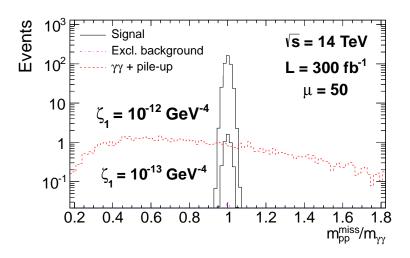
■ **Proton missing mass** measurement with 3% resolution in case of double tag

Forward detectors measurements



- Proton missing mass measurement with 3% resolution in case of double tag
- It matches the central $\gamma\gamma$ mass for signal. Can match as well for pile-up backgrounds as a statistical fluctuation

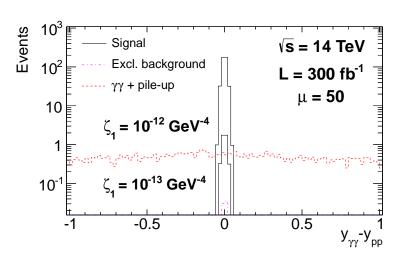
Forward detectors measurements

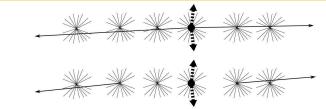


- **Proton missing mass** measurement with 3% resolution in case of double tag
- It matches the central $\gamma\gamma$ mass for signal. Can match as well for pile-up backgrounds as a statistical fluctuation
- Double tag probability from pile-up protons on forward detectors (no mass requirement):

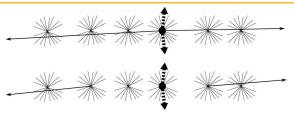
32% (
$$\mu$$
 = 50) 66% (μ = 100) 93% (μ = 200)

Mass matching and pile-up

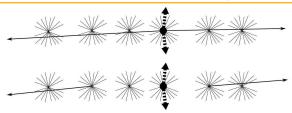


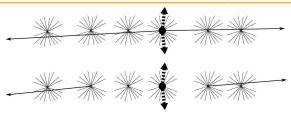

■ A mass window of 3% (= resolution) is required in the event selection

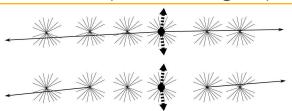
Rapidity cut


- $|y_{\gamma\gamma} y_{pp}| < 0.03$ with $y_{pp} = (0.5 * ln(\frac{\xi_1}{\xi_2}))$
- \blacksquare Small width for signal due to the resolution on $y_{\gamma\gamma}$ and $\xi_{1,2}$

Proton timing will be measured by forward detectors

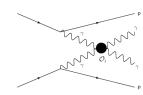



- Proton timing will be measured by forward detectors
 - 10 ps resolution assumed → proton vertex constrained within 2.1 milimeters



- Proton timing will be measured by forward detectors
 - 10 ps resolution assumed → proton vertex constrained within 2.1 milimeters
 - Requirement of 1 converted $\gamma \rightarrow <$ 1 mm resolution on the γ vertex

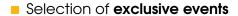
- Proton timing will be measured by forward detectors
 - 10 ps resolution assumed → proton vertex constrained within 2.1 milimeters
 - Requirement of 1 converted $\gamma \rightarrow <$ 1 mm resolution on the γ vertex
 - Resolution driven by forward timing detectors


- Proton timing will be measured by forward detectors
 - 10 ps resolution assumed → proton vertex constrained within 2.1 milimeters
 - Requirement of 1 converted $\gamma \rightarrow <$ 1 mm resolution on the γ vertex
 - Resolution driven by forward timing detectors
- \blacksquare additional background rejection factor of 40 at $\mu=50$
- No need to use it for us, robustness of the analysis
- can be used for unknown backgrounds (beam-induced)

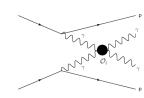
Event selection summary

Kinematic cuts

- $p_{T1}^{\gamma} > 200 \text{ GeV}, p_{T2}^{\gamma} > 100 \text{ GeV}$
- $2 m_{\gamma\gamma} > 600 \text{ GeV}$

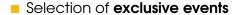


Event selection summary



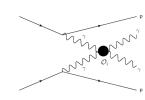
$$p_{T1}^{\gamma} > 200 \text{ GeV}, p_{T2}^{\gamma} > 100 \text{ GeV}$$

$$m_{\gamma\gamma} > 600 \text{ GeV}$$


- $\frac{p_{72}}{p_{71}} > 0.95$
- $|\Delta \Phi| > \pi 0.01$

Event selection summary

Kinematic cuts


- $p_{T1}^{\gamma} > 200 \text{ GeV}, p_{T2}^{\gamma} > 100 \text{ GeV}$
- $m_{\gamma\gamma} > 600 \text{ GeV}$

- $\frac{p_{12}}{p_{11}} > 0.95$
- $|\Delta \Phi| > \pi 0.01$

- $m_{pp}^{miss} = m_{\gamma\gamma} \pm 3\%$
- $|y_{\gamma\gamma} y_{DD}| < 0.03$ with $y_{pp} = (0.5 * ln(\frac{\xi_1}{\xi_2}))$
- 3 Possible proton timing measurement with forward detectors

Expected events for $\zeta_1^{\gamma} = 2 \cdot 10^{-13} \cdot \text{GeV}^{-4}$

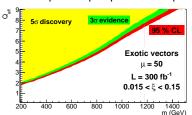
 \sqrt{s} = 14 TeV, L = 300 fb⁻¹, at least one converted γ

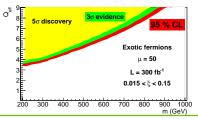
Cut / Process	Signal	Excl.	DPE	e ⁺ e ⁻ ,dijet + pu	$\gamma\gamma$ + pu
$0.015 < \xi < 0.15, p_{\text{T1/2}} > 50 \text{GeV}$	20.8	3.7	48.2	2.8 · 10 ⁴	1.0 · 10 ⁵
$p_{\rm T1} > 200 {\rm GeV}, p_{\rm T2} > 100 {\rm GeV}$	17.6	0.2	0.2	1.6	2968
$m_{\gamma\gamma} > 600$ GeV	16.6	0.1	0	0.2	1023
$p_{\rm T2}/p_{\rm T1} > 0.95, \Delta\phi > \pi - 0.01$	16.2	0.1	0	0	80.2
$\sqrt{\xi_1\xi_2s}=m_{\gamma\gamma}\pm 3\%$	15.7	0.1	0	0	2.8
$ y_{\gamma\gamma} - y_{pp} < 0.03$	15.1	0.1	0	0	0

- Signal selection efficiency > 70% (after preselection)
 - Acceptance increased by a factor 3-4 when adding unconverted photons (with EM "pointing")
- - 1.5 background events expected at μ = 200 Robust analysis, very good background control
 - proton time-of-flight **not used**Possible additional rejection factor of 40 at μ = 50

Final discovery (5 σ) and exclusion (95% CL) sensitivities on ζ_1 and ζ_2

S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert, arXiv:1312.5153 (2013)


Luminosity	300 fb ⁻¹	300 fb ⁻¹	300 fb ⁻¹	3000 fb ⁻¹		
pile-up (μ)	pile-up (μ) 50		50	200		
coupling	\geq 1 conv. γ	\geq 1 conv. γ	all γ	all γ		
(GeV ⁻⁴)	5 σ	95% CL	95% CL	95% CL		
ζ ₁ f.f.	ζ_1 f.f. $1 \cdot 10^{-13}$		5 · 10 ⁻¹⁴	2.5 · 10 ⁻¹⁴		
ζ_1 no f.f.	$3.5 \cdot 10^{-14}$	2.5 · 10 ⁻¹⁴	1.5 · 10 ⁻¹⁴	7 · 10 ⁻¹⁵		
ζ ₂ f.f.			1 · 10 ⁻¹³	4.5 · 10 ⁻¹⁴		
ζ_2 no f.f.	$7.5 \cdot 10^{-14}$	5.5 · 10 ⁻¹⁴	3 · 10 ⁻¹⁴	1.5 · 10 ⁻¹⁴		


 KK gravitons and strongly-coupled dilaton/radion (warped extra-dimensions) can be discovered in the multi-TeV range

Full amplitude computation for generic heavy charged fermions/vectors contributions (preliminary)

- The existence of new heavy charged particles will enhance the $\gamma\gamma\gamma\gamma$ coupling at high mass via loops
- This enhancement can be parametrized by **only the** mass and the effective charge $Q_{eff} = Q.N^{1/4}$, N multiplicity
- Generic implementation for fermions and vectors implemented in FPMC
- Paper in preparation, preliminary M-Q_{eff} exclusion plane

Full amplitude computation for generic heavy charged fermions/vectors contributions (preliminary)

Link full amplitude - effective field theory

$$\zeta_i^{\gamma} = c_i^s Q_{\rm eff}^4 m^{-4} \alpha_{\rm em}^2$$
, $c_i \simeq$ 0.01 (0.1) for fermions (vectors)

Typical sensitivity with the full amplitude calculation

$$M = 800 \text{ GeV}$$
, $Q_{eff} > 7$ (4) for fermions (vectors)

- Gives a coupling of $\simeq 10^{-15}$ in terms of ζ_i
- Corresponds to the sensitivity we had using the effective field theory → successful cross-check of the method

Conclusion

- Forward proton tagging at the LHC seems promising to probe anomalous Quartic Gauge Couplings
 - proton tagging associated by high energy object detections in the central EM calorimeter allow to completely suppress the background
 - $WW\gamma\gamma$ and $ZZ\gamma\gamma$ couplings already studied with positive outputs (improvement by a factor > **100**)
 - $\gamma\gamma\gamma\gamma$ coupling: sensitivities around $10^{-13} 10^{-14}$ GeV⁻⁴, down to $7 \cdot 10^{-15}$ GeV⁻⁴ \rightarrow allows to probe directly a large panel of new physics models no previous constraints from collider experiments
- γγγγ coupling: a channel probing exotic heavy charged vectors/fermions (even scalars, sensitivity is smaller) in a completely model-independent way
 - sensitive for vectors (fermions) up to 1400 (920) GeV

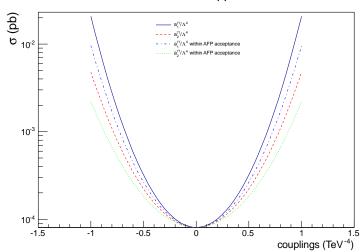
Conclusion

- Effective field theory: 5σ discovery with less luminosity (1 fb⁻¹, 10 fb⁻¹, 50 fb⁻¹): $7 \cdot 10^{-13}$, $2 \cdot 10^{-13}$, $9 \cdot 10^{-14}$ GeV⁻⁴
- $\sim \gamma \gamma \gamma \gamma$ paper submitted : arXiv:1312.5153
- More detailed paper including the full amplitude calculations for loop contributions in preparation

Probing anomalous quartic gauge couplings using proton tagging at the Large Hadron Collider

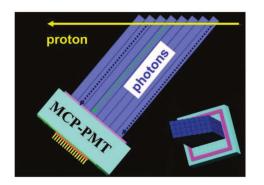
Back-up

Matthias Saimpert¹
E. Chapon, S. Fichet, G. von Gersdorff,
O. Kepka, B. Lenzi, C. Royon


¹CEA Saclay - Irfu/SPP

16/04/2014

Integrated total cross-section against couplings



Form factor applied

Forward timing detectors: inefficiencies due to pile-up protons

	Inefficiencies - 2mm bar detector										
Ì	Bar	1	2	3	4	5	6	7	8	9	10
ĺ	$\mu = 50$	0.129	0.085	0.067	0.057	0.049	0.046	0.043	0.040	0.036	0.011
ĺ	$\mu = 100$	0.185	0.122	0.097	0.082	0.071	0.066	0.062	0.057	0.051	0.016

M. Saimpert. Search for new states of matter wih the ATLAS experiment at the LHC, Master Thesis MINES ParisTech (2013)

The BSM amplitudes

- Loops of spin 0,1/2, 1 new electric particles contribute to 4γ . Because all vertices are fixed by gauge invariance, the NP contributions depend only on spin, mass and
- For example in the effective theory limit : $\zeta_i^{\gamma} = \alpha_{em}^2 Q^4 m^{-4} N c_{i,s}$

$$c_{1,s} = \begin{cases} \frac{1}{288} & s = 0 \\ -\frac{1}{36} & s = \frac{1}{2} \\ -\frac{5}{22} & s = 1 \end{cases}, \quad c_{2,s} = \begin{cases} \frac{1}{360} & s = 0 \\ \frac{7}{90} & s = \frac{1}{2} \\ \frac{27}{40} & s = 1 \end{cases}$$
 Scalar loops are smaller!

- Full amplitudes for fermions and vectors are now implemented in FPMC.
- Amplitudes get enhanced near the threshold

$\gamma\gamma\gamma\gamma$ full amplitude calculation (S. Fichet)

The SM background

- All electric particles of the SM contribute : leptons, quarks and W bosons
- The imaginary part of certain W helicity amplitudes grows with the energy, while the fermion ampliudes are finite. Background is dominated by the W loop
- When the new particle is real, it interfers with the W loop.
 - On-shell NP signal enhanced by SM interference
- All SM background amplitudes are implemented in FPMC (+ swiches to separately turn off them)
- One can check that SM fermions contributions are negligible.
 - Keeping only the W loop provides a huge gain of CPU time!