KIT: MCore Status

Week #5

- observed waves of ATLAS multi job slot jobs
- probably related to more general issues while job submission
- manually freed nodes on Thursday for vain

KIT: MCore Statistics 2014.Jan

KIT: MCore Statistics 2014.Jan

KIT: SingleCore Statistics 2014.Jan

KIT: SingleCore Statistics 2014.Jan

HPC Experiences@KIT

HPC vs. WNs

- exchanged experiences with HPC team
 - → cluster utilization and job wait times
- HPC cluster #1 (2848 cores)
 - for jobs_{513..1024 cores} ~ cluster size_{18%..36%}
 - wait time: 10h..150h
 - cluster utilization: 80%..95%
- HPC cluster #2 (6560 cores)
 - for jobs_{1025..2048 cores} \sim cluster size_{15%..31%}
 - wait time: 60h..280h
 - cluster utilization: 77%..89%
- ~ compare with GridKa WorkerNodes
 - mcore_{8 cores} = 33% on node_{24 Cores}
 - GridKa WN utilisation: 2013: 91.8%, since 2013. Nov 94.5%

Addendum: Questions/Discussion

Addendum: Questions/Discussion

some illustrations

(got the impression that sometimes discussions were going talking at cross purposes)

Addendum: Questions/Discussion

- wall time etc is measured in HEPSpec seconds
 - how excact have HEPSpecs to be for a VO/for a site?
- regardless where mcore jobs are scheduled → efficient scheduling relies on wall time prediction a priori
- how good can a VO predict a job's run time? I.e., how is the variance distributed between comparing predicted and actual wall times?
 - → how efficient could an ideal scheduler be under which variances?
 - i.e. how large would the inefficiency in node utilization become under which variance?
- if the wall time prediction is binned, i.e., in finite numbers of attainable run times/queues, how does the efficiency evolve with the number of prediction time slots?
- how are inefficiencies be accounted?
 - is it reasonable to account a VO when a job's run time deviates by $\times \sigma$ from the prediction and spoiling the scheduler?
 - it is accountable to the VO submitting a mcore job?
 - is it solemnly a site issue?

VO-Site job submission

- site setup: one long run queue
 - crucial: batch system efficiency
 - inefficient ~ oscillating fair shareadjustment/job allocation

VO-Site job submission

- site setup: multiple queues various length
 - administration effort
 - non-WLCG users?

Multi Job Slot Jobs

- request for multiple job slots for one job
 - constraint: congruent job slots

Multi Job Slot Jobs

- all job slots on one node
- farm ≠ HPC cluster

Job scheduling

- efficient scheduling [valid for scheduling either at site and at VO]
 - → crucial: reliable walltime prediction for job
- scheduling at site
 - would need to scale walltime in HEPSpec seconds!
 - BDII published HEPSpecs accurate enough?

Scheduling@Site: prediction emulation

- → no per job walltime prediction
 - scheduling@site via queue length
 - pprox more coarse walltime prediction \leftrightarrow multiple queues with increasing length
 - multiple VO and site queues

Scheduling@Site: prediction emulation

- → no per job walltime prediction
 - scheduling@site via queue length
 - pprox more coarse walltime prediction \leftrightarrow multiple queues with increasing length
 - multiple VO queues to job parameter translation

Node view of single & multi job slot jobs

- CPUs with n job slots
- multiple single & multi job slot jobs from different VOs
- time in measured in HEPSpec sec.!

Real time vs HEPSpec time

- walltime etc in HEPSpec sec.
- batch system would need to scale according to HEPSpecs
- \leadsto job walltime predictions in HEPSpec

Congruent Payloads

- Congruent Payloads
- one payload per single job slot job
- one payload per multi job slot job

VO Scheduler: Multiple Payloads per Multi Job Slot Job

- multiple payloads reloaded in multi job slot pilot
- scheduler within pilot
- scheduling/job allocation gaps within VO

Site Scheduler

- scheduling multi job slot job at site
- applying to both: single/multiple payloads per multi job slot job
- constraint: x congruent job slots, i.e., x free slots on a discrete node
- for optimal scheduling: scheduler depends on accurate walltime prediction in HEPSpec

Site Scheduler

- who is accounted for scheduling gaps?
 - VO requesting multi job slot resource?
 - VO of preceeding single job slot job?

Site Scheduler

- i.e. how to handle in-accurate walltime predictions
 - VO requesting resource for xh while job submission
 - acutal resource usage is yh < xh</p>
 - sites with WLCG and non-WLCG users?

