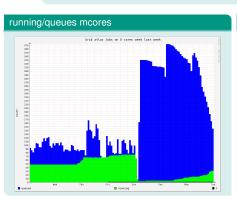
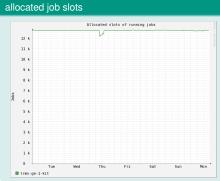
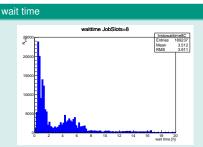

KIT: MCore Status

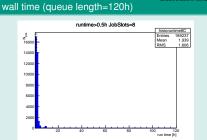
- batch system: SGE with dynamic PE on one queue
- observed waves of ATLAS multi job slot jobs
- occasionally freed nodes manually

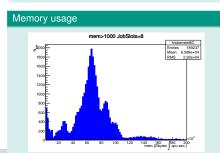


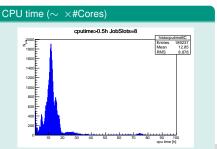


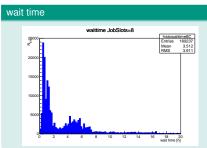
KIT: MCore Status

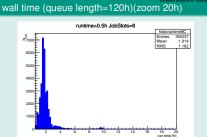

- getting experiences with job slot reservations
- → need more statistics for impact on utilization/efficiency
- what effect on utilization acceptable for ramp-ups? (How often will ramp-ups occur? Eff. drops shared between all VOs?)

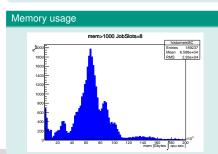


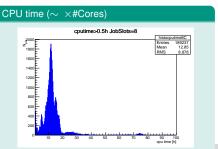


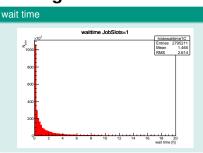

KIT: MCore 2014. Jan - mid Feb

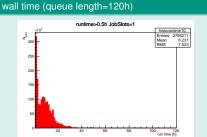


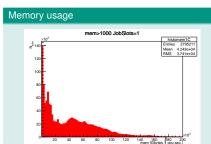


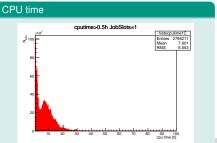


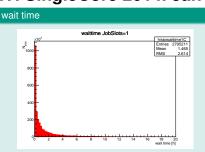

KIT: MCore 2014. Jan - mid Feb

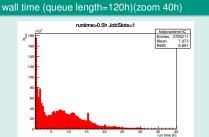


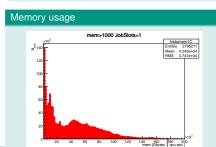


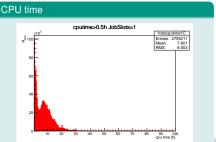



KIT: SingleCore 2014. Jan - mid Feb








KIT: SingleCore 2014. Jan - mid Feb

HPC Experiences@KIT

HPC vs. WNs

- exchanged experiences with HPC team
 - → cluster utilization and job wait times
- HPC cluster #1 (2848 cores)
 - \bullet for jobs_513..1024 cores $\,\sim\,$ cluster size_18\%..36\%
 - wait time: 10h..150h
 - cluster utilization: 80%..95%
- HPC cluster #2 (6560 cores)
 - \bullet for jobs $_{1025..2048\,cores}\,\sim\,$ cluster size $_{15\%..31\%}$
 - wait time: 60h..280h
 - cluster utilization: 77%..89%
- ∼ compare with GridKa WorkerNodes
 - mcore_{8 cores} = 33% on node_{24 Cores}
 - GridKa WN utilization: 94.5%

Questions/Discussion

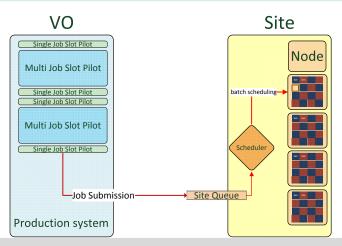
- if scheduler going to utilize wall time prediction needs HEP-SPEC06 secs
 - how exact have HS06 to be for a VO/for a site?
 - HS06 scores are designed to scale with the average performance of typical HEP job mix. Be aware that there is absolutely no warranty that it scales with every individual job!
- how are inefficiencies being accounted?
 - no official requirements on WLCG sites
 - is it reasonable to account a VO when a job's run time deviates by $\times \sigma$ from the prediction and spoiling the scheduler?
 - currently no wall time prediction provided per WLCG job
 - no duty of VOs to supply wall time predictions precise enough to avoid gaps/optimize scheduling
 - it is accountable to the VO submitting a mcore job?
 - is it solemnly a site issue?
- how large is the effect in the end?
 - how many ramp-up periods for how long
 - with steady stream of mcores negligible after x?

Questions/Discussion

- system states with efficient utilization of bare metal?
 - high entropy: many(?) short(m, h, ?) jobs filling free slots
 - what max. wall time prediction variance necessary for good scheduling? (necessary at all?)
 - low entropy: long(h, d, ?) with accurate wall time estimation
 - what max. wall time prediction variance necessary for good scheduling?
 - sites with mixed VO users
 - stable mixed state possible?
 - or implicit/explicit segmentation inevitable?
- → how efficient could an ideal scheduler be under which variances in which state?
- i.e. how large would the inefficiency in node utilization become under which variance?
 - if the wall time prediction is binned, i.e., in finite numbers of attainable run times/queues, how does the efficiency evolve with the number of prediction time slots?

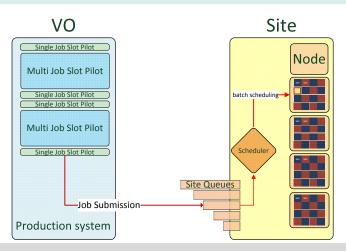
Addendum

Addendum

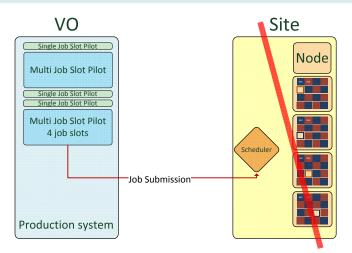

some illustrations

(got the impression that sometimes discussions were going talking at cross purposes)

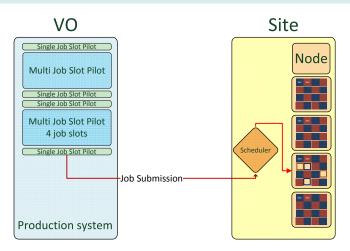
VO-Site job submission


- site setup: one long run queue
 - crucial: batch system efficiency
 - inefficient ~ oscillating fair share adjustment/job allocation

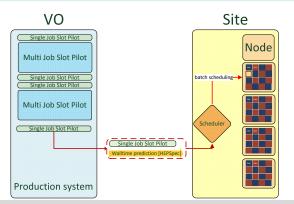
VO-Site job submission


- site setup: multiple queues various length
 - administration effort
 - non-WLCG users?

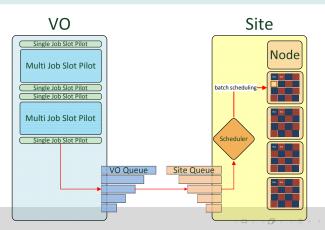
Multi Job Slot Jobs


- request for multiple job slots for one job
 - constraint: congruent job slots

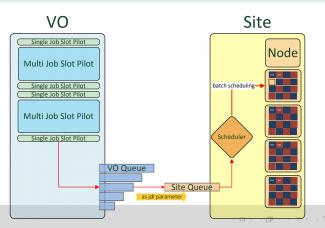
Multi Job Slot Jobs


- all job slots on one node
- farm ≠ HPC cluster

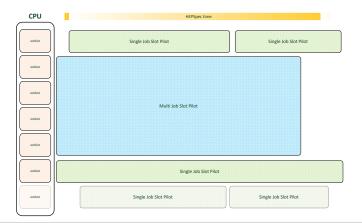
Job scheduling


- efficient scheduling [valid for scheduling either at site and at VO]
 - \rightarrow crucial: reliable wall time prediction for job
- scheduling at site
 - would need to scale wall time in HS06 seconds!
 - BDII published HEP-SPEC06 accurate enough?

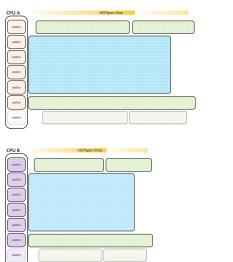
Scheduling@Site: prediction emulation


- → no per job wall time prediction
 - scheduling@site via queue length
 - $\approx\,$ more coarse wall time prediction \leftrightarrow multiple queues with increasing length
 - multiple VO and site queues

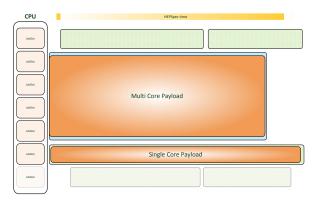
Scheduling@Site: prediction emulation


- → no per job wall time prediction
 - scheduling@site via queue length
 - $\approx\,$ more coarse wall time prediction \leftrightarrow multiple queues with increasing length
 - multiple VO queues to job parameter translation

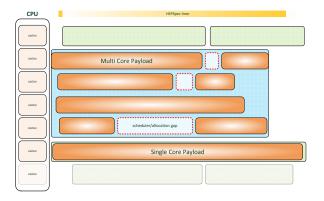
Node view of single & multi job slot jobs


- CPUs with n job slots
- multiple single & multi job slot jobs from different VOs
- time in measured in HEP-SPEC06 sec.!

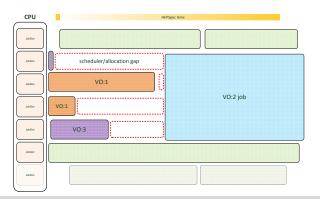
Real time vs HS06 time


- wall time etc in HS06 sec.
- batch system would need to scale according to HS06
- → job wall time predictions in HS06

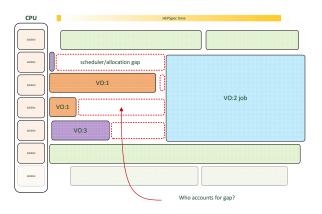
Congruent Payloads


- Congruent Payloads
- one payload per single job slot job
- one payload per multi job slot job

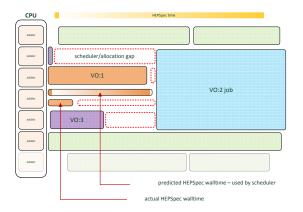
VO Scheduler: Multiple Payloads per Multi Job Slot Job


- multiple payloads reloaded in multi job slot pilot
- scheduler within pilot
- scheduling/job allocation gaps within VO

Site Scheduler


- scheduling multi job slot job at site
- applying to both: single/multiple payloads per multi job slot job
- constraint: x congruent job slots, i.e., x free slots on a discrete node
- for optimal scheduling: scheduler depends on accurate wall time prediction in HS06

Site Scheduler


- who is accounted for scheduling gaps?
 - VO requesting multi job slot resource?
 - VO of preceding single job slot job?

Site Scheduler

- i.e. how to handle in-accurate wall time predictions
 - VO requesting resource for xh while job submission
 - actual resource usage is yh < xh</p>
 - sites with WLCG and non-WLCG users?

