
Multi-core jobs at the RAL Tier-1

Andrew Lahiff, Alastair Dewhurst, John Kelly

February 25th 2014

• RAL supports many VOs

– ALICE, ATLAS, CMS, LHCb

– ~12 non-LHC VOs

• Size of batch system

– Currently over 9300 job slots

• Used Torque/Maui for many years

– Reliability/stability degraded as number of cores/WNs increased

• Migrated to HTCondor last year

– Started running production ATLAS/CMS jobs in June, parallel to

production Torque/Maui

– In November fully moved to HTCondor

• Multi-core usage

– ATLAS almost continuously since November

– CMS have run a few test jobs

– No interest so far from other VOs 2

Introduction

Submission of multi-core jobs to RAL

• ATLAS and CMS only using ARC CEs (no CREAM!)

• Configuration

– Setup with only a single queue

– Any VO can run multi-core jobs if they want to

• Just have to request > 1 CPU. E.g. add to XRSL/GlobusURL:

(count=8)

• Any number of CPUs can be requested (2, 4, 8, 31, …)

– But a job requesting 402 CPUs, for example, is unlikely to run 

– Memory requirements

• Jobs also request how much memory they need, e.g.

 (memory=2000)

• For multi-core jobs this is the memory required (in MB) per core

– Total memory required passed from CE to HTCondor

3

Job submission

• Multi-core worker nodes in HTCondor – 3 possibilities

1. Divide resources evenly (default)

• 1 core per slot

• Memory divided equally between slots

• Fixed number of slots

2. Define slot types

• Specify (static) resources available to each slot, don’t need to be

divided equally

• Fixed number of slots

3. Partitionable slots

 (see next slide)

• Clearly

– Choices 1 & 2 not suitable for environments where jobs have

different memory & core requirements

4

Worker node configuration

• We’re using partitionable slots

– All WNs configured to have partitionable slots

– Each WN has a single partitionable slot with a fixed set of resources

(cores, memory, disk, swap, …)

– These resources can then be divided up as necessary for jobs

• Dynamic slots created from the partitionable slot

• When dynamic slots exit, merge back into the partitionable slot

• When any single resource is used up (e.g. memory), no more dynamic

slots can be created

– Enables us to run jobs with different memory requirements, as well

as jobs requiring different numbers of cores

– Our configuration:
 NUM_SLOTS = 1

 SLOT_TYPE_1 = cpus=100%,mem=100%,auto

 NUM_SLOTS_TYPE_1 = 1

 SLOT_TYPE_1_PARTITIONABLE = TRUE

5

Worker node configuration

– Initially just had a single accounting group for all ATLAS production

jobs

• Single & multi-core jobs in the same accounting group

• Problem: fairshare could be maintained by just running single core jobs

– Added accounting groups for ATLAS & CMS multi-core jobs

– Force accounting groups to be specified for jobs using SUBMIT_EXPRS

on CEs

• Easy to include groups for multi-core jobs, e.g.:
AccountingGroup =

…

 ifThenElse(regexp("patl",Owner) && RequestCpus > 1, “group_ATLAS.prodatls_multicore", \

 ifThenElse(regexp("patl",Owner), “group_ATLAS.prodatls", \

…

SUBMIT_EXPRS = $(SUBMIT_EXPRS) AccountingGroup

6

Fairshares

• If lots of single core jobs are idle & running, how does a

multi-core job start?

– By default it probably won’t

• condor_defrag daemon

– Finds worker nodes to drain, drains them & cancels draining when

necessary

• drain = no new jobs can start but existing jobs continue to run

– Many configurable parameters, including:

• How often to run

• Maximum number of machines running multi-core jobs

• Maximum concurrent draining machines

• Expression that specifies which machines to drain

• Expression that specifies when to cancel draining

• Expression that specifies which machines are already running multi-core

jobs

• Expression that specifies which machines are more desirable to drain
7

Defrag daemon

• Improvements to default configuration (1)

– condor_defrag originally designed for enabling whole node jobs to

run

• We currently want to run 8-core jobs, not whole node jobs

– Definition of “whole” machines

• Only drain up to 8-cores, not entire machines

• Changed the default:
 DEFRAG_WHOLE_MACHINE_EXPR = Cpus == TotalCpus && Offline=!=True

 to
 DEFRAG_WHOLE_MACHINE_EXPR = ((Cpus == TotalCpus) || (Cpus >= 8)) && Offline=!=True

 Here Cpus = free CPUs

8

Defrag daemon

• Improvements to default configuration (2)

– Which machines are more desirable to drain

• We assume that:

– On average all jobs have the same wall time

– Wall time used by jobs is not related to the wall time they request

• Weighting factor

Number of cores available for draining / Number of cores that need draining

• Changed the default:

 DEFRAG_RANK = -ExpectedMachineGracefulDrainingBadput

 to:

 DEFRAG_RANK = ifThenElse(Cpus >= 8, -10, (TotalCpus - Cpus)/(8.0 - Cpus))

• Why make this change?

– Previously only older 8-core machines were selected for draining

– Now machines with the most numbers of cores are selected for draining

» 8-cores become available more quickly

9

Defrag daemon

The job runtime in cpu-seconds that

would be lost if graceful draining

were initiated at the time the

machine’s ad was published. Assumes

jobs will run to their walltime limit.

Used CPUs / (8 – Free CPUs)

• Effect of change to DEFRAG_RANK

• Effect of switching off condor_defrag

– Will number of running multi-core jobs quickly reduce to zero?

– Number of running multi-core jobs decreased slowly

10

Defrag daemon

Cancelled all draining

worker nodes

Running multi-core jobs

Conclusion:

Need to drain slots continuously

to maintain number of running

multi-core jobs

Past month
 Jobs idle/running Multi-core jobs idle/running

Limit of number of running ATLAS multi-core jobs has been their

fairshare

Originally saw a sawtooth pattern of running multi-core jobs

• ATLAS then made a change to keep a smoother supply of multi-core jobs

11

Recent jobs

Wall times since 1st Feb

 12

Recent jobs

ATLAS production

(single core)

ATLAS analysis

(single core)

ATLAS production

(multi core)

ATLAS ‘timefloor’ parameter

- Analysis pilots running < 1 hour will pick up

another job

- To help with draining, might change this or

add a short analysis queue

- Might add timefloor parameter to multi-core

queue so that the slots are kept longer

Wait times since 1st Feb

 13

Recent jobs

ATLAS production

(single core)

ATLAS production

(multi core)

Time to drain 8 slots

14

Recent jobs

• Defrag daemon is currently quite simple

– Not aware of demand (e.g. idle multi-core jobs)

– Drains a constant number of worker nodes all the time

• Added monitoring of wasted CPUs due to draining

– Past month

– We an clearly see the wastage – it’s not hidden within a multi-core

pilot running a mixture of single & multi-core jobs

• Important question: can we reduce the number of wasted

CPUs?

15

Wasted resources

Attempting to

reduce

wasted

resources

(next slide)

• Method to reduce wasted resources

– Cron which sets parameters of defrag daemon based on running &

idle multi-core jobs

• In particular number of concurrent draining WNs

• Runs every 30 mins

– 1st attempt very simple, considers 3 situations

• Many idle multi-core jobs, few running multi-core jobs

– Need aggressive draining

• Many idle multi-core jobs, many running multi-core jobs

– Need less aggressive draining – just enough to maintain number of currently

running multi-core jobs

• Otherwise

– Very low amount of draining required

16

Wasted resources

• Example from 24th Feb

17

Wasted resources

Aggressive draining

Less aggressive draining

Multi-core jobs only shown

• BDII hasn’t been a priority

– ATLAS and CMS don’t even use it!

– Currently:
$ ldapsearch -x -h arc-ce01.gridpp.rl.ac.uk -p 2135 -LLL -b o=grid |

grep "GlueHostArchitectureSMPSize:”

GlueHostArchitectureSMPSize: 1

– May fix this if someone needs it

• Accounting

– ARC CEs send accounting records directly to APEL brokers

– With latest ARC rpms multi-core jobs are handled correctly

18

Information system /

accounting

• Reducing wasted resources

– Improvements to script which adjusts defrag daemon parameters

– Make multi-core slots “sticky”

• It takes time & resources to provide multi-core slots

• After a multi-core job runs, prefer to run another multi-core job rather

than multiple single core jobs

– Try to run “short” jobs on slots which are draining?

• Multiple multi-core jobs per WN

– By default, condor_defrag assumes “whole node” rather than “multi-

core” jobs

– Currently will have at most 1 multi-core job per WN

(unless there aren’t many single core jobs to run)

– Modify condor_defrag configuration as necessary to allow this

19

Future plans

