Discussion:
 $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$SM predictions

David M. Straub

Junior Research Group "New Physics" Excellence Cluster Universe, Munich

Disclaimer

- These are some plots and comments to aid the discussion, not a seminar
- References missing
- Numerics are preliminary
- All numbers (including mistakes!) obtained by me, comments about other people's work might be inaccurate
- Slides do not make much sense by themselves (please contact me if you have questions, david.straub@tum.de)
- Thanks to Aoife Bharucha for providing preliminary LCSR results

Outline

(1) High $q^{2}=$ low recoil
(2) Low $q^{2}=$ large recoil

High q^{2} : ingredients

1. Effective Wilson coefficients
2. Form factors
3. Violation of quark-hadron duality (resonances)

Effective Wilson coefficients

- perturbative uncertainties are small
- $C_{7,9}^{\text {eff }}$: important to include two-loop virtual corrections!
[Asatryan et al., Seidel, Beneke/Feldmann/Seidel, Greub/Pilipp/Schupbach, ...]
- Lead to a $O(10 \%)$ suppression of the BRs
- Attention - different sign convention of [Seidel] vs. [Asatryan et al.] !
- Not included in [Bouchard et al. 1306.0434] !
- Included in [Bobeth et al., Beaujean et al., Altmannshofer et al., Horgan et al.]
- Apparently not included in today's LHCb paper ...

Form factors

- We finally have lattice FFs for $B \rightarrow K, B \rightarrow K^{*}$ and $B_{s} \rightarrow \phi$
- An independent confirmation by other lattice groups would be useful
- But old-school LCSR extrapolations are clearly deprecated, they depend a lot on the parametrization chosen
- Combining LCSR \& lattice can instead be very useful, e.g. to fix/cross-check the normalization

Quark-hadron duality

This will be discussed in the resonances session, but to summarize Beylich/Buchalla/Feldmann [Beylich et al. 1101.5118]:

- The precise form of the "oscillation" depends on your model
- The q^{2}-integrated obs. do not, because an OPE exists
- Remaining uncertainty in the integrated rate estimated at $\pm 2 \%$: negligible compared to FF uncertainty

Suggested treatment when looking for NP:

- Use large bin $\left[15 \mathrm{GeV}^{2}, q_{\text {max }}^{2}\right]$ and use OPE

Quark-hadron duality

This will be discussed in the resonances session, but to summarize Beylich/Buchalla/Feldmann [Beylich et al. 1101.5118]:

- The precise form of the "oscillation" depends on your model
- The q^{2}-integrated obs. do not, because an OPE exists
- Remaining uncertainty in the integrated rate estimated at $\pm 2 \%$: negligible compared to FF uncertainty

Suggested treatment when looking for NP:

- Use large bin $\left[15 \mathrm{GeV}^{2}, q_{\text {max }}^{2}\right]$ and use OPE
- Fitting the q^{2} dependence can then serve to test your model of the resonances

Now: numerics

- Lattice $B \rightarrow K$ and $B \rightarrow K^{*}$ FFs including all (known) error correlations
- Including parametric uncertainties (CKM, $m_{b, c}, \ldots$)
- All errors added in quadrature
- Neglecting duality violation following Beylich et al.
- Using [16-19] bin for $B \rightarrow K^{*} \mu \mu$ because data on [15-19] not yet available
- [15-19] bin for $B \rightarrow K \mu \mu$ available since Moriond
- Will only show LHCb experimental data (sorry)

NB, the following plots are inspired by a similar plot by Mitesh Patel at Moriond and a subsequent one by Wolfgang Altmannshofer

Numerics at high q^{2} : lattice FFs

- Normalized to SM central value; light boxes: $\mathrm{SM} \pm 1 \sigma$; dark boxes: parametric uncertainties only; empty boxes: "neglecting" parameter correlations; error bars: LHCb data

High q^{2} : summary

- Use lattice FFs
- Don't forget NNLO virtual corrections
- Use large bin $\left[15 \mathrm{GeV}^{2}, q_{\text {max }}^{2}\right]$ \& OPE
- Combined fit to low \& high q^{2} form factors can serve as consitency check
- BR uncertainties start to be dominated by CKM
- $\mathrm{BR}(B \rightarrow K \mu \mu)_{[15,22]}$ is consistent with the SM!

Outline

(1) High $q^{2}=$ low recoil

(2) Low $q^{2}=$ large recoil

Low q^{2} : ingredients

1. Effective Wilson coefficients (see high q^{2})
2. Form factors
3. QCDF corrections in the $m_{b} \rightarrow \infty$ limit
4. Non-factorizable power corrections

Form factors

Soft vs. full

- 7 full FFs reduce to 2 soft $\operatorname{FFs} \xi_{\perp, \|}$ in the heavy quark, large energy limit
- Difference between soft FFs \& full FFs = factorizable power corrections

Form factors

Soft vs. full

- 7 full FFs reduce to 2 soft $F F s \xi_{\perp, \|}$ in the heavy quark, large energy limit
- Difference between soft FFs \& full FFs = factorizable power corrections

LCSR form factors: $\mathbf{2}$ approaches

- Ball-Zwicky: requires K^{*} meson LCDA
- Khodjamirian-Mannel-Pivovarov-Wang: requires B meson LCDA

Form factors

Soft vs. full

- 7 full FFs reduce to 2 soft $F F s \xi_{\perp, \|}$ in the heavy quark, large energy limit
- Difference between soft FFs \& full FFs = factorizable power corrections

LCSR form factors: $\mathbf{2}$ approaches

- Ball-Zwicky: requires K^{*} meson LCDA
- Khodjamirian-Mannel-Pivovarov-Wang: requires B meson LCDA

Parametrization \& correlations

- Fitting the 7 form factors to (2 or 3-parameter) parametrizations, fit parameters typically highly correlated
- Including these correlations is crucial in observables involving ratios of FFs

QCD factorization

- Factorizable corrections: expressing the 7 full FFs in terms of the soft FFs. Not to be included when using full FFs
- Non-factorizable corrections: weak annihilation, spectator scattering, and form factor correction. NLO:

(a)

(b)

(c)

(d)

(e)
- QCDF breaks down at $q^{2} \sim 6 \mathrm{GeV}^{2}$ and cannot be trusted beyond (to be discussed)

Power corrections

- "factorizable PC": difference between soft \& full FFs
- Non-factorizable PC: some partial results using LCSR [Lyon \& Zwicky,

Khodjamirian et al.]

Estimating unknown power corrections

Possibilities:

1. Multiplying each spin amplitude by a fudge factor $f=\left(1 \pm \delta_{\text {pc }}\right)$, e.g.
$\delta_{\mathrm{pc}}=0.1$

- Problematic for observables that cross $0\left(A_{F B}, S_{4}, S_{5}\right)$ - emphasized by Sebastian Jäger at LHCb Implications Workshop 2013

2. Additive correction to spin amplitudes

- In the following: multiply $C_{9}^{S M}$ by $f=\left(1 \pm \delta_{\mathrm{pc}}\right)$, with δ_{pc} different for each spin amplitude
- Other approaches? Multiply C_{7} ? Helicity hierarchies of power corrections? (Camalich \& Jäger)

Now: numerics

- Unknown non-factorizable corrections accounted for by $C_{9}^{\text {SM }}\left(1 \pm \delta_{\text {pc }}\right)$ with $\delta_{\mathrm{pc}}=20 \%$ different for each spin amplitude
- All errors added in quadrature
- Only LHCb data shown

Ball-Zwicky full FFs w/ correlations

- Dark: $\delta_{\mathrm{pc}}=0$, light: $\delta_{\mathrm{pc}}=0.2$. Following plots normalized to these central values

Combined fit to Ball-Zwicky \& lattice FFs

KMPW soft FFs (DMV-like)

- Perfectly consistent; $P_{4,5}^{\prime}$ sensitive to PCs (fact. \& non-fact.)

KMPW soft FFs (DMV-like)

- Perfectly consistent; $P_{4,5}^{\prime}$ sensitive to PCs (fact. \& non-fact.)
- Comparing to numerics of DMV

KMPW full FFs, no correlations

- Huge (unphysical) uncertainties if fit correlations/FF constraints not taken into account

Camalich/Jäger soft FFs with and without $a+b q^{2}$

- Low BR due to normalization of $\xi_{\perp}(0)$ from $B \rightarrow K^{*} \gamma \exp$.

Low q^{2} : summary

- Main issues: form factors \& estimate of unknown PCs
- Factorizable PCs taken into account when full FFs are used
- Correlation between FF fit parameters are crucial when using full FFs

