Discussion:

$$B o K^{(*)} \ell^+ \ell^-$$
 SM predictions

David M. Straub

Junior Research Group "New Physics" Excellence Cluster Universe, Munich

Disclaimer

- These are some plots and comments to aid the discussion, not a seminar
 - References missing
 - Numerics are preliminary
 - All numbers (including mistakes!) obtained by me, comments about other people's work might be inaccurate
 - ► Slides do not make much sense by themselves (please contact me if you have questions, david.straub@tum.de)
- ► Thanks to Aoife Bharucha for providing preliminary LCSR results

Outline

1 High $q^2 = \text{low recoil}$

2 Low q^2 = large recoil

High q^2 : ingredients

- 1. Effective Wilson coefficients
- 2. Form factors
- 3. Violation of quark-hadron duality (resonances ...)

Effective Wilson coefficients

- perturbative uncertainties are small
- $ightharpoonup C_{7,9}^{\text{eff}}$: important to include two-loop virtual corrections! [Asatryan et al., Seidel, Beneke/Feldmann/Seidel, Greub/Pilipp/Schupbach, ...]
 - ▶ Lead to a O(10%) suppression of the BRs
 - ► Attention different sign convention of [Seidel] vs. [Asatryan et al.]!
 - Not included in [Bouchard et al. 1306.0434]!
 - Included in [Bobeth et al., Beaujean et al., Altmannshofer et al., Horgan et al.]
 - Apparently **not** included in today's LHCb paper ...

- ▶ We finally have lattice FFs for $B \to K$, $B \to K^*$ and $B_s \to \phi$
- An independent confirmation by other lattice groups would be useful
- But old-school LCSR extrapolations are clearly deprecated, they depend a lot on the parametrization chosen
- Combining LCSR & lattice can instead be very useful, e.g. to fix/cross-check the normalization

Quark-hadron duality

This will be discussed in the resonances session, but to summarize Beylich/Buchalla/Feldmann [Beylich et al. 1101.5118]:

- ► The precise form of the "oscillation" depends on your model
- ► The *q*²-integrated obs. *do not*, because an OPE exists
- Remaining uncertainty in the integrated rate estimated at $\pm 2\%$: negligible compared to FF uncertainty

Suggested treatment when looking for NP:

▶ Use large bin [15 GeV², q_{max}^2] and use OPE

Quark-hadron duality

This will be discussed in the resonances session, but to summarize Beylich/Buchalla/Feldmann [Beylich et al. 1101.5118]:

- ► The precise form of the "oscillation" depends on your model
- ▶ The q^2 -integrated obs. do not, because an OPE exists
- Remaining uncertainty in the integrated rate estimated at $\pm 2\%$: negligible compared to FF uncertainty

Suggested treatment when looking for NP:

- ► Use large bin [15 GeV², q_{max}^2] and use OPE
- Fitting the q^2 dependence can then serve to test your model of the resonances

Now: numerics

- ▶ Lattice $B \to K$ and $B \to K^*$ FFs including all (known) error correlations
- Including parametric uncertainties (CKM, $m_{b,c}, \ldots$)
- All errors added in quadrature
- Neglecting duality violation following Beylich et al.
- ▶ Using [16–19] bin for $B \to K^* \mu \mu$ because data on [15–19] not yet available
- ▶ [15–19] bin for $B \to K \mu \mu$ available since Moriond
- Will only show LHCb experimental data (sorry)

NB, the following plots are inspired by a similar plot by Mitesh Patel at Moriond and a subsequent one by Wolfgang Altmannshofer

Numerics at high q^2 : lattice FFs

Normalized to SM central value; light boxes: SM ±1σ; dark boxes: parametric uncertainties only; empty boxes: "neglecting" parameter correlations; error bars: LHCb data

High q^2 : summary

- Use lattice FFs
- Don't forget NNLO virtual corrections
- ► Use large bin [15 GeV², q_{max}^2] & OPE
- Combined fit to low & high q^2 form factors can serve as consitency check
- BR uncertainties start to be dominated by CKM
- ▶ BR($B \rightarrow K\mu\mu$)_[15,22] is consistent with the SM!

Outline

2 Low q^2 = large recoil

Low q^2 : ingredients

- 1. Effective Wilson coefficients (see high q^2)
- 2. Form factors
- **3.** QCDF corrections in the $m_b \to \infty$ limit
- 4. Non-factorizable power corrections

Soft vs. full

- lacktriangleq 7 full FFs reduce to 2 soft FFs $\xi_{\perp,\parallel}$ in the heavy quark, large energy limit
- ▶ Difference between soft FFs & full FFs = factorizable power corrections

Soft vs. full

- ▶ 7 full FFs reduce to 2 soft FFs $\xi_{\perp,\parallel}$ in the heavy quark, large energy limit
- Difference between soft FFs & full FFs = factorizable power corrections

LCSR form factors: 2 approaches

- ▶ Ball-Zwicky: requires K* meson LCDA
- Khodjamirian-Mannel-Pivovarov-Wang: requires B meson LCDA

Soft vs. full

- lacktriangleq 7 full FFs reduce to 2 soft FFs $\xi_{\perp,\parallel}$ in the heavy quark, large energy limit
- Difference between soft FFs & full FFs = factorizable power corrections

LCSR form factors: 2 approaches

- ▶ Ball-Zwicky: requires K* meson LCDA
- Khodjamirian-Mannel-Pivovarov-Wang: requires B meson LCDA

Parametrization & correlations

- Fitting the 7 form factors to (2 or 3-parameter) parametrizations, fit parameters typically highly correlated
- Including these correlations is crucial in observables involving ratios of FFs

QCD factorization

- ► Factorizable corrections: expressing the 7 full FFs in terms of the soft FFs. Not to be included when using full FFs
- Non-factorizable corrections: weak annihilation, spectator scattering, and form factor correction. NLO:

ightharpoonup QCDF breaks down at $q^2 \sim 6 \text{ GeV}^2$ and cannot be trusted beyond (to be discussed)

Power corrections

- "factorizable PC": difference between soft & full FFs
- Non-factorizable PC: some partial results using LCSR [Lyon & Zwicky, Khodjamirian et al.]

Estimating unknown power corrections

Possibilities:

- 1. Multiplying each spin amplitude by a fudge factor $f = (1 \pm \delta_{pc})$, e.g. $\delta_{\rm nc} = 0.1$
 - ▶ Problematic for observables that cross 0 (A_{FB} , S_4 , S_5) emphasized by Sebastian Jäger at LHCb Implications Workshop 2013
- 2. Additive correction to spin amplitudes
 - ▶ In the following: multiply $C_{\rm o}^{\rm SM}$ by $f=(1\pm\delta_{\rm nc})$, with $\delta_{\rm nc}$ different for each spin amplitude
 - \triangleright Other approaches? Multiply C_7 ? Helicity hierarchies of power corrections? (Camalich & Jäger)

Now: numerics

- ▶ Unknown non-factorizable corrections accounted for by $C_{q}^{SM}(1 \pm \delta_{pc})$ with $\delta_{\rm pc} = 20\%$ different for each spin amplitude
- ► All errors added in quadrature
- Only LHCb data shown

Ball-Zwicky full FFs w/ correlations

▶ Dark: $\delta_{pc} = 0$, light: $\delta_{pc} = 0.2$. Following plots normalized to these central values

Combined fit to Ball-Zwicky & lattice FFs

KMPW soft FFs (DMV-like)

▶ Perfectly consistent; $P'_{4.5}$ sensitive to PCs (fact. & non-fact.)

KMPW soft FFs (DMV-like)

- ► Perfectly consistent; $P'_{4,5}$ sensitive to PCs (fact. & non-fact.)
- Comparing to numerics of DMV

KMPW full FFs, no correlations

 Huge (unphysical) uncertainties if fit correlations/FF constraints not taken into account

Camalich/Jäger soft FFs with and without $a + bq^2$

▶ Low BR due to normalization of $\xi_{\perp}(0)$ from $B \to K^* \gamma$ exp.

Low q^2 : summary

- Main issues: form factors & estimate of unknown PCs
- Factorizable PCs taken into account when full FFs are used
- Correlation between FF fit parameters are crucial when using full FFs