Measurements and questions to theorists

N. Serra

Universität Zürich

Workshop on $b \rightarrow$ sll processes
1-3 April

Imperial College London

The Pdf

$$
\begin{aligned}
\frac{1}{\Gamma} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}= & \frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+ \\
& S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+\sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+ \\
& \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi+S_{6}^{s} \sin ^{2} \theta_{K} \cos \theta_{\ell}+ \\
& \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi+ \\
& \left.\sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

$$
\begin{array}{ll}
P_{1}=A_{T}^{(2)}=\frac{2 S_{3}}{\left(1-F_{L}\right)} & P_{4}^{\prime}=\frac{S_{4}}{\sqrt{\left(1-F_{L}\right) F_{L}}}
\end{array} P_{8}^{\prime}=\frac{S_{8}}{\sqrt{\left(1-F_{L}\right) F_{L}}}
$$

The measurement

We use a folding technique to measure the observables

$$
\phi \rightarrow-\phi \text { for } \phi<0
$$

$$
\begin{aligned}
\frac{1}{\bar{\Gamma}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=\frac{9}{16 \pi} & {\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right.} \\
& -F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+\frac{1}{2}\left(1-F_{L}\right) A_{T}^{(2)} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+ \\
& \left.\frac{3}{4}\left(1-F_{L}\right) A_{T}^{R e} \sin ^{2} \theta_{K} \cos \theta_{\ell}+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

The measurement

We use a folding technique to measure the observables

$$
\begin{aligned}
& \phi \rightarrow-\phi \text { if } \phi<0 \\
& \theta_{\ell} \rightarrow \pi-\theta_{\ell} \text { if } \theta<\pi / 2
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\Gamma} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=\frac{9}{8 \pi} & {\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right.} \\
& -F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+\frac{1}{2}\left(1-F_{L}\right) A_{T}^{(2)} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+ \\
& \left.\sqrt{F_{L}\left(1-F_{L}\right)} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi\right]
\end{aligned}
$$

The measurement

We use a folding technique to measure the observables

$$
\begin{gathered}
\phi \rightarrow-\phi \text { for } \phi<0 \\
\phi \rightarrow \pi-\phi \text { for } \theta_{\ell}>\pi / 2 \\
\theta_{l} \rightarrow \pi-\theta_{\ell} \text { for } \theta_{\ell}>\pi / 2
\end{gathered}
$$

$$
\begin{aligned}
\frac{1}{\Gamma} \frac{\mathrm{~d}^{3} \Gamma}{\mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=\frac{9}{8 \pi} & {\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}-\right.} \\
& F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+\frac{1}{2}\left(1-F_{L}\right) A_{T}^{(2)} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+ \\
& \left.\sqrt{F_{L}\left(1-F_{L}\right)} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi\right]
\end{aligned}
$$

The measurement

We use a folding technique to measure the observables

$$
\begin{gathered}
\phi \rightarrow \pi-\phi \text { for } \phi>\pi / 2 \\
\phi \rightarrow-\pi-\phi \text { for } \phi<-\pi / 2 \\
\theta_{\ell} \rightarrow \pi-\theta_{\ell} \text { for } \theta_{\ell}>\pi / 2
\end{gathered}
$$

$$
\begin{aligned}
\frac{1}{\Gamma} \frac{\mathrm{~d}^{3} \Gamma}{\mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=\frac{9}{8 \pi} & {\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}-\right.} \\
& F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+\frac{1}{2}\left(1-F_{L}\right) A_{T}^{(2)} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+ \\
& \left.\sqrt{F_{L}\left(1-F_{L}\right)} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi\right]
\end{aligned}
$$

The measurement

We use a folding technique to measure the observables

$$
\begin{gathered}
\phi \rightarrow \pi-\phi \text { for } \phi>\pi / 2 \\
\phi \rightarrow-\pi-\phi \text { for } \phi<-\pi / 2 \\
\theta_{\ell} \rightarrow \pi-\theta_{\ell} \text { for } \theta_{\ell}>\pi / 2 \\
\theta_{K} \rightarrow \pi-\theta_{K} \text { for } \theta_{\ell}>\pi / 2
\end{gathered}
$$

$$
\begin{aligned}
\frac{1}{\Gamma} \frac{\mathrm{~d}^{3} \Gamma}{\mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=\frac{9}{8 \pi} & {\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}-\right.} \\
& F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+\frac{1}{2}\left(1-F_{L}\right) A_{T}^{(2)} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+ \\
& \left.\sqrt{F_{L}\left(1-F_{L}\right)} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi\right]
\end{aligned}
$$

Measurements

Measurements

Also first measurement of the zero-crossing of $A_{F B}$ $90^{2}=4.9 \pm 0.9 \mathrm{GeV}^{2}$

Measurements

Errors

Errors are evaluated with the Feldman-Cousins construction

$$
R=\frac{P(x \mid \mu)}{P(x \mid \hat{\mu})}
$$

This is done for each observables independently, the other are considered nuisance parameters

Some comments about the errors

3.7sigmas from Quim predictions:

- generate the SM
- compute what is the probability to have such a bad agreement as the one we see

We get 2.8 sigmas considering 24 independent measurements... very conservative estimate

Correlations

LHCb did not give correlation matrix, so it is impossible to get the correlation associated to systematics and fit model and background... but the correlation due to the method can be extracted with a toy

Correlation due to physics you already take this into account!

Correlations

This can be used to compute a correlation coefficient

S-wave

Pollution from non-resonant $K \pi$ in an S-wave state or from $K^{*}(1430)$ would change the angular distribution

$$
\frac{\mathrm{d}^{3} \Gamma}{\mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=\frac{9}{32 \pi}\left[\left(1-F_{S}\right) P D F_{K^{* 0}}+P D F_{S}\right]
$$

The terms $A_{s}{ }^{(i)}$ are interference terms between the S-wave and P-wave

$$
F_{S}=\frac{\left|A_{0}^{0}\right|^{2}}{\left|A_{0}^{0}\right|^{2}+\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}
$$

$$
\begin{aligned}
P D F_{S}= & \frac{2}{3} F_{S} \sin ^{2} \theta_{\ell}+\frac{4}{3} A_{S} \sin ^{2} \theta_{\ell} \cos \theta_{K}+ \\
& A_{S}^{(4)} \sin \theta_{K} \sin 2 \theta_{\ell} \cos \phi+ \\
& A_{S}^{(5)} \sin \theta_{K} \sin \theta_{\ell} \cos \phi+ \\
& A_{S}^{(7)} \sin \theta_{K} \sin \theta_{\ell} \sin \phi+ \\
& A_{S}^{(8)} \sin \theta_{K} \sin 2 \theta_{\ell} \sin \phi .
\end{aligned}
$$

$$
\begin{aligned}
& F_{S}=\frac{A_{0, S} A_{0, S}^{*}}{\Gamma_{\text {tot }}}=\frac{\Gamma_{S}}{\Gamma_{K} \cdot+\Gamma_{S}} \\
& A_{S}=\sqrt{3} \frac{\operatorname{Re}\left(A_{0}^{* L, R} A_{0}^{0(L, R)}\right)}{\Gamma_{\text {tot }}} \\
& A_{s}^{(i)}=\sqrt{\frac{2}{3}} \frac{R e\left(A_{i}^{L L} A_{0}^{0(L)}+A_{\|}^{R} A_{0}^{o(R)}\right)}{\Gamma_{\text {tot }}} \\
& A_{s}^{(5)}=\frac{2 \sqrt{2}}{\sqrt{3}} \frac{\operatorname{Re}\left(A_{\perp}^{L} A_{0}^{0(L)}-A_{\perp}^{* R} A_{0}^{0(R)}\right)}{\Gamma_{\text {tot }}} \\
& A_{s}^{(\tau)}=\frac{2 \sqrt{2}}{\sqrt{3}} \frac{R e\left(A_{\|}^{L L} A_{0}^{0(L)}-A_{\|}^{R R} A_{0}^{0(R)}\right)}{\Gamma_{\text {tot }}} \\
& A_{s}^{(8)}=\sqrt{\frac{2}{3}} \frac{R e\left(A_{\perp}^{* L} A_{0}^{0(L)}+A_{\perp}^{* R} A_{0}^{0(R)}\right)}{\Gamma_{\text {tot }}}
\end{aligned}
$$

Extraction of S-wave

Phase change in the Breit-Wigner used to measure F_{s} (assuming the S-wave is constant)

$$
\begin{aligned}
\frac{1}{\Gamma} \frac{d \Gamma}{d \cos \theta_{K}}= & \frac{F_{S}}{2}+A_{S} \cos \theta_{K} \\
& \frac{3}{2}\left(1-F_{S}\right) F_{L} \cos ^{2} \theta_{K}+\frac{3}{4}\left[\left(1-F_{S}\right)\left(1-F_{L}\right)\right]\left[1-\cos ^{2} \theta_{K}\right]
\end{aligned}
$$

$\left\langle F_{\mathrm{S}}\right\rangle=\frac{\left[\left(A_{+}+A_{-}\right)^{2} / 4+\left(A_{+}-A_{-}\right)^{2} /(4 \times 1.23)\right] \times 3.24 /\left(3 F_{\mathrm{L}}\right)}{1-\left[\left(A_{+}+A_{-}\right)^{2} / 4+\left(A_{+}-A_{-}\right)^{2} /(4 \times 1.23)\right] \times 3.24 /\left(3 F_{\mathrm{L}}\right)}$
We got $F_{s}<0.07$ at 68% C.L.
(Method cross checked with $B^{0} \rightarrow J / \Psi K^{*}$)

S-wave ignored in the fit and added as a systematic

Theory uncertainty from our point of view

$$
\begin{aligned}
& A_{\perp}^{L, R}=\mathcal{N}_{\perp}\left[\mathcal{C}_{9 \mp 10}^{+} V\left(q^{2}\right)+\mathcal{C}_{7}^{+} T_{1}\left(q^{2}\right)\right]+\mathcal{O}\left(\alpha_{s}, \Lambda / m_{b} \cdots\right) \\
& A_{\|}^{L, R}=\mathcal{N}_{\|}\left[\mathcal{C}_{9 \mp 10}^{-} A_{1}\left(q^{2}\right)+\mathcal{C}_{7}^{-} T_{2}\left(q^{2}\right)\right]+\mathcal{O}\left(\alpha_{s}, \Lambda / m_{b} \cdots\right) \\
& A_{0}^{L, R}=\mathcal{N}_{0}\left[\mathcal{C}_{9 \mp 10}^{-} A_{12}\left(q^{2}\right)+\mathcal{C}_{7}^{-} T_{23}\left(q^{2}\right)\right]+\mathcal{O}\left(\alpha_{s}, \Lambda / m_{b} \cdots\right)
\end{aligned}
$$

naive
factorizations?

$$
\begin{aligned}
& A_{\perp}^{L, R}=X_{\perp}^{L, R} V\left(q^{2}\right)+\mathcal{O}\left(\alpha_{s}, \Lambda / m_{b} \cdots\right) \\
& A_{\|}^{L, R}=X_{\|}^{L, R} A_{1}\left(q^{2}\right)+\mathcal{O}\left(\alpha_{s}, \Lambda / m_{b} \cdots\right) \\
& A_{0}^{L, R}=X_{0}^{L, R} A_{12}\left(q^{2}\right)+\mathcal{O}\left(\alpha_{s}, \Lambda / m_{b} \cdots\right)
\end{aligned}
$$

Form factors ralations

Theory uncertainty from our point of view

$$
\begin{aligned}
& A_{1}\left(q^{2}\right)=\frac{2 E}{m_{B}+m_{K^{*}}} \xi_{\perp}\left(q^{2}\right)+\Delta A_{1}+\mathcal{O}\left(\Lambda / m_{b}\right) \\
& A_{2}\left(q^{2}\right)=\frac{m_{B}}{m_{B}-m_{K^{*}}}\left[\xi_{\perp}\left(q^{2}\right)-\xi_{\|}\left(q^{2}\right)\right]+\frac{m_{B}}{2 E} \frac{m_{B}+m_{K^{*}}}{m_{B}-m_{K^{*}}} \Delta A_{1}+\mathcal{O}\left(\Lambda / m_{b}\right) \\
& A_{0}\left(q^{2}\right)=\frac{E}{m_{K^{*}}} \frac{\xi_{\|}\left(q^{2}\right)}{\Delta_{\|}\left(q^{2}\right)}+\mathcal{O}\left(\Lambda / m_{b}\right)
\end{aligned}
$$

How the uncertainty on this is computed?

Question about the

resonances

For us the resonances $\mathrm{J} / \mathrm{psi}$ and $\mathrm{psi}(2 \mathrm{~S})$ are very important for calibration and test of the analysis

We could measure the observables in the resonances in small invariant mass bins (left and right of the resonances)

Can you learn anything from there?

