Comments on $B \to K^{(*)}$ form factors calculated from LCSRs

Alexander Khodjamirian

Contribution to $b \rightarrow s\ell\ell$ workshop at Imperial College, London, April 1-3, 2014

Questions to be discussed

basic assumptions and input in the LCSR calculation

use of other QCD sum rules

• the error budget; any tacit assumptions?

optimizing observables

tasks for the future

mainly for $B \rightarrow K$ form factors

LCSR for $B \rightarrow K$ form factors: scheme of derivation

$\Leftarrow \text{ the correlation function}$

calculated in terms of Operator Product Expansion at $(p+q)^2$, $q^2 \ll m_b^2$

hadronic dispersion relation

$$F(q^2, (p+q)^2) = \underbrace{B}_{b} \underbrace{b}_{2} \underbrace{b}_{2}$$

$$f_B f_{BK}^+(q^2)$$
 $\sum_{B_h} \rightarrow duality (s_0^B)$

Basic assumptions: OPE

• the correlation function at fixed $q^2 \ll m_b^2$

$$[F(q^{2},(p+q)^{2})]_{OPE} = \begin{bmatrix} \begin{pmatrix} \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} & \chi_{(p)} \\ \chi_{(p)} & \chi$$

 $\{diagrams \ with \ b\text{-propagator}\} \otimes \{kaon \ Distribution \ Amplitudes\}$

• kaon DA's, polynomial expansion:

$$\varphi_K^{(t)}(u,\mu) = f_K^{(t)} \{ C_0(u) + \sum_{n=1} a_n^{(t)}(\mu) C_n(u) \}$$

- input for OPE
 - truncation level: $O(\alpha_s)$, $t \le 4$, $n \le 4$
 - parameters $m_b, m_s, \alpha_s, f_K^{(t)}, a_n^{(t)}(\mu_0)$
 - variable scales: μ , $(p+q)^2 \rightarrow M^2 \sim m_b \chi$, $m_b \gg \chi \gg \Lambda_{OCD}$

Basic assumptions: hadronic dispersion relation

• hadronic dispersion relation (analyticity \oplus unitarity in QFT)

$$[F(q^2,(p+q)^2)]_{OPE} = \frac{m_B^2 f_B f_{BK}^+(q^2)}{m_B^2 - (p+q)^2} + \int\limits_{(m_{B^*} + m_{\pi})^2}^{\infty} ds \, \frac{\rho_h(s)}{s - (p+q)^2}$$

quark-hadron "semilocal" duality

$$\int_{(m_{B^*}+m_K)^2}^{\infty} ds \, \frac{\rho_h(s)}{s-(p+q)^2} = \int_{s_0}^{\infty} ds \, \frac{[\mathsf{Im} F(q^2,s)]_{OPE}]}{s-(p+q)^2}$$

- input:
 - f_B (2pt SR)
 - variable scale: $(p+q)^2 \rightarrow M^2 \sim m_b \chi \rightarrow \text{optimal interval of } M^2$
 - S_0 (determined by calculating m_B^2)

Use of 2-point QCD sum rules

• vacuum-to-vacuum correlation function $\langle 0|\bar{b}\gamma_5 u(x), \bar{u}\gamma_5 b(0)|0\rangle$:

$$= \overbrace{\frac{\langle 0|\bar{b}\gamma_5u|B\rangle\langle B|\bar{u}\gamma_5b|0\rangle}{m_B^2-q^2}}^{f_B^2} \\ + \underbrace{\sum_{B_h} \frac{\langle 0|\bar{b}\gamma_5u|B_h\rangle\langle B_h|\bar{u}\gamma_5b|0\rangle}{m_{B_h}^2-q^2}}_{\text{quark-hadron duality}}$$

- input: m_b , α_s , $\langle \bar{q}q \rangle$, ...
- other important 2pt sum rules providing the input:
 - $\langle 0|\bar{b}\gamma_{\mu},b(x)\bar{b}\gamma_{\mu}b(0)|0\rangle$ saturated by Υ states
 - \Rightarrow non-lattice determination of m_b (in \overline{MS} scheme)
 - various 2pt sum rules with kaon currents: $\Rightarrow m_s, f_k^{(t)}, a_n^{(t)}$

Summary on assumptions, input and error budget

total uncertainty estimate:

$$\Delta f_{BK}(q^2) = \sqrt{\sum_i \Delta_i^2 + \Delta_{trunc}^2 + \Delta_\mu^2 + \Delta_M^2}$$

correlations so far neglected!

Current accuracy of $B \to K^{(*)}$ form factors

- $0 < q^2 \le 12 14$ GeV² estimated uncertainties for $B \to \pi, K$ form factors amount to $\pm (12 15)\%$
- "systematic error" of quark-hadron duality approximation (suppressed with Borel transformation, controlled by the m_B calculation)
- optimizing/reducing uncertainties:
 ratios of form factors, slopes, asymmetries, bins of BRs in q²
- LCSR's for $B \to K^*$ form factors, accuracy of the correlation function at the same level as for $B \to K$ [P. Ball, V.Braun (1998), P.Ball, R. Zwicky (2004....)]

ask Roman about detailed uncertainties

Γ_V = 0 approximation (sort of "quenched")
 ⇒ additional uncertainty

Use of other LCSRs and other observables

• LCSRs with B meson DAs -an alternative method valid for all $B \rightarrow P$, V form factors

still large errors related to the B-meson DA, absence of NLO $O(\alpha_s)$ -corrections

- cross check of $f_K^{(t)}$, $a_n^{(t)}$ from LCSRs for $D \to K$ form factors vs experiment
- LCSRs for the kaon electromagnetic form factor at large spacelike $q^2 = -Q^2$:

anticipating important constraints on kaon twist-2 DAs (ongoing kaon electroproduction measurement at Jefferson Lab)

Tasks for the future

- improving LCSRs with B meson DAs
- $B \to \pi\pi(\rho, f_0), B \to K\pi(K^*, \kappa(0^+))$ form factors from LCSRs with 2-meson DAs
- OPE for B → π, K:
 twist-2 complete NNLO;
 twist 3 NLO for nonasymptotic DAs;
 twist 5 LO;
 e.m. corrections to LCSRs

$dBR(B \rightarrow K\mu^+\mu^-)/dq^2$ and bins

from [arXiv:1211.0234 [hep-ph]]

solid (dotted) lines - central input, default (alternative) parametrization for the dispersion integrals.

long-dashed line -the width calculated without nonlocal hadronic effects.

The green (yellow) shaded area indicates the uncertainties including (excluding) the one from the $B \to K$ FF normalization.

- our predicted *dBR* is somewhat lalrger than the in the LHCb paper 1403.8044 [hep-ex],
- tension due to the form factor $B \to K$?

LCSR agrees with the most recent HPQCD $B \to K$ FF

isospin asymmetry is now in a better agreement with our expectations for SM

questions/comments please!

Backup Slides

Building up the OPE for $B \rightarrow \pi, K$ LCSRs

$$\begin{split} F(q^2,(p+q)^2) &= \left(T_0^{(2)} + (\alpha_s/\pi)T_1^{(2)}\right) \otimes \varphi_K^{(2)} \\ &+ \frac{\mu_K}{m_b} \left(T_0^{(3)} + (\alpha_s/\pi)T_1^{(3)}\right) \otimes \varphi_K^{(3)} + \frac{\delta_K^2}{m_b \chi} T^{(4)} \otimes \varphi_K^{(4)} + ... \\ &\mu_K = m_K^2/(m_s + m_u), \quad m_b \gg \chi \gg \Lambda_{QCD} \end{split}$$

- LO twist 2,3,4 qq and qqG terms [V.Belyaev, A.K., R.Rückl (1993); V.Braun, V.Belyaev, A.K., R.Rückl (1996)]
- NLO $O(\alpha_s)$ twist 2, (collinear factorization) [A.K., R.Rückl, S.Weinzierl, O. Yakovlev (1997); E.Bagan, P.Ball, V.Braun (1997);]
- -NLO $O(\alpha_s)$ twist 3 (coll.factorization for asympt. DA) [P. Ball, R. Zwicky (2001); G.Duplancic, A.K., B.Melic, Th.Mannel, N.Offen (2007)]
- part of NNLO $O(\alpha_s^2 \beta_0)$ twist 2 [A. Bharucha (2012)]

$B_{(s)}$ and $D_{(s)}$ decay constants

[P.Gelhausen, AK, A.A.Pivovarov, D.Rosenthal, 1305.5432 hep/ph]

Decay constant	Lattice QCD [ref.]	this work
f _B [MeV]	196.9 ± 9.1 [1] 186 ± 4 [2]	207 ⁺¹⁷
f _{Bs} [MeV]	242.0 ± 10.0 [1] 224 ± 5 [2]	242 ⁺¹⁷ ₋₁₂
f_{B_S}/f_B	1.229± 0.026 [1] 1.205± 0.007 [2]	1.17 ^{+0.04} _{-0.03}
f _D [MeV]	218.9 ± 11.3 [1] 213 ± 4 [2]	201+12
$f_{D_s}[MeV]$	$260.1 \pm 10.8 [1]$ $248.0 \pm 2.5 [2]$	238 ⁺¹³ ₋₂₃
f_{D_S}/f_D	1.188± 0.025 [1] 1.164± 0.018 [2]	1.15 ^{+0.04} _{-0.05}

[1]-Fermilab/MILC, [2]-HPQCD

$B \rightarrow \pi$ form factor: LCSR vs lattice QCD

[A.K, Th.Mannel, N.Offen, Y-M. Wang (2011)]

$$a^2 < 12 \text{ GeV}^2 \text{ -LCSR}$$

$$q^2 < 12 \text{ GeV}^2 \text{ -LCSR}, \qquad q^2 > 12 \text{ GeV}^2 \text{ - [HPQCD, FNAL/MILC]}$$

$B \rightarrow K$ form factor: LCSR vs lattice QCD

dashed: LCSR, central input

[A.K, Th.Mannel, A.Pivovarov, Y-M. Wang (2010)]

• solid: unitarity bounds for the z-transformed form factor,

[L.Lellouch (1996); Th.Mannel, B.Postler (1998)]

(PRELIMINARY), S.Imsong, AK, Th.Mannel, work in progress

input for the bounds : $f_{BK}^+(q^2=6.0 \text{ GeV}^2)$

 $\oplus \ \text{slope} \oplus \text{curvature}$

$B \to K, K^{(*)}$ form factors from LCSR's

[A.K, Th.Mannel, A.Pivovarov, Y-M. Wang (2010)]

form factor	$F_{BK^{(*)}}^{i}(0)$	b_1^i	$B_s(J^P)$	input
	2,,,,,			at $q^2 < 12 \text{GeV}^2$
f_{BK}^+	$0.34^{+0.05}_{-0.02}$	$-2.1^{+0.9}_{-1.6}$	B _s *(1 ⁻)	
f ⁰ _{BK}	$0.34^{+0.05}_{-0.02}$	$-4.3^{+0.8}_{-0.9}$	no pole	LCSR
f_{BK}^{T}	$0.39^{+0.05}_{-0.03}$	$-2.2^{+1.0}_{-2.00}$	B _s *(1 ⁻)	with K DA's
V ^{BK*}	$0.36^{+0.23}_{-0.12}$	$-4.8^{+0.8}_{-0.4}$	B _s *(1-)	
A ₁ ^{BK*}	$0.25^{+0.16}_{-0.10}$	$0.34^{+0.86}_{-0.80}$	B _s (1 ⁺)	
$A_2^{BK^*}$	$0.23^{+0.19}_{-0.10}$	$-0.85^{+2.88}_{-1.35}$	B _s (1 ⁺)	LCSR
$A_0^{BK^*}$	$0.29^{+0.10}_{-0.07}$	$-18.2^{+1.3}_{-3.0}$	$B_s(0^-)$	with B DA's
<i>T</i> ₁ <i>BK</i> *	$0.31^{+0.18}_{-0.10}$	$-4.6^{+0.81}_{-0.41}$	B _s *(1-)	
$T_2^{BK^*}$	$0.31^{+0.18}_{-0.10}$	$-3.2^{+2.1}_{-2.2}$	B _s (1 ⁺)	
$T_3^{BK^*}$	$0.22^{+0.17}_{-0.10}$	$-10.3_{-3.1}^{+2.5}$	B _s (1 ⁺)	

correlations between normalization & slope out of the scope