Comments on $B \rightarrow K^{(*)}$ form factors calculated from LCSRs

Alexander Khodjamirian

ûUNIVERSITÄT
SIEGEN
Theoretische Physik 1

DFG
RESEARCH UNIT

Contribution to $b \rightarrow$ sle workshop at Imperial College, London, April 1-3, 2014

Questions to be discussed

- basic assumptions and input in the LCSR calculation
- use of other QCD sum rules
- the error budget; any tacit assumptions ?
- optimizing observables
- tasks for the future
mainly for $B \rightarrow K$ form factors

LCSR for $B \rightarrow K$ form factors: scheme of derivation

\Leftarrow the correlation function calculated in terms of Operator Product Expansion

$$
\text { at }(p+q)^{2}, q^{2} \ll m_{b}^{2}
$$

$\left.\begin{array}{l}\text { hadronic } \\ \text { dispersion }\end{array}\right\}$

Basic assumptions: OPE

- the correlation function at fixed $q^{2} \ll m_{b}^{2}$
$\left[F\left(q^{2},(p+q)^{2}\right)\right]_{\text {OPE }}=$

$$
\left.=\sum_{t=2,3,4, \ldots} \int_{0}^{1} \mathcal{D} u \underset{\substack{1 \\ T^{(t)} \\\left(\alpha_{s} \\, m_{b}\right.}}{ }, m_{s} ; q^{2},(p+q)^{2}, u, \mu\right) \varphi_{K}^{(t)}(u, \mu)
$$

\{diagrams with b-propagator\} $\otimes\{$ kaon Distribution Amplitudes $\}$

- kaon DA's, polynomial expansion:
- input for OPE

$$
\varphi_{K}^{(t)}(u, \mu)=f_{K}^{(t)}\left\{C_{0}(u)+\sum_{n=1} a_{n}^{(t)}(\mu) C_{n}(u)\right\}
$$

- truncation level: $O\left(\alpha_{s}\right), \quad t \leq 4, \quad n \leq 4$
- parameters $m_{b}, m_{s}, \alpha_{s}, f_{K}^{(t)}, a_{n}^{(t)}\left(\mu_{0}\right)$
- variable scales: $\mu,(p+q)^{2} \rightarrow M^{2} \sim m_{b} \chi, \quad m_{b} \gg \chi \gg \wedge_{Q C D}$

Basic assumptions: hadronic dispersion relation

- hadronic dispersion relation (analyticity \oplus unitarity in QFT)

$\left[F\left(q^{2},(p+q)^{2}\right)\right]_{\text {OPE }}=\frac{m_{B}^{2} f_{B} f_{B K}^{+}\left(q^{2}\right)}{m_{B}^{2}-(p+q)^{2}}+\int_{\left(m_{B^{*}}+m_{\pi}\right)^{2}}^{\infty} d s \frac{\rho_{h}(s)}{s-(p+q)^{2}}$
- quark-hadron "semilocal" duality

- f_{B} (2pt SR)
- variable scale: $(p+q)^{2} \rightarrow M^{2} \sim m_{b} \chi \rightarrow$ optimal interval of M^{2}
- S_{0} (determined by calculating m_{B}^{2})

Use of 2-point QCD sum rules

- vacuum-to-vacuum correlation function $\langle 0| \bar{b} \gamma_{5} u(x), \bar{u} \gamma_{5} b(0)|0\rangle$:

$$
\begin{array}{r}
=\overbrace{\frac{\langle 0| \bar{b} \gamma_{5} u|B\rangle\langle B| \bar{u} \gamma_{5} b|0\rangle}{m_{B}^{2}-q^{2}}}^{f_{B}^{2}} \\
\quad+\underbrace{\sum_{B_{h}} \frac{\langle 0| \bar{b} \gamma_{5} u\left|B_{h}\right\rangle\left\langle B_{h}\right| \bar{u} \gamma_{5} b|0\rangle}{m_{B_{h}}^{2}-q^{2}}}_{\text {quark-hadron duality }}
\end{array}
$$

- input: $m_{b}, \alpha_{s},\langle\bar{q} q\rangle, \ldots$
- other important 2pt sum rules providing the input:
- $\langle 0| \bar{b} \gamma_{\mu}, b(x) \bar{b} \gamma_{\mu} b(0)|0\rangle$ saturated by Υ states
\Rightarrow non-lattice determination of m_{b} (in $\overline{M S}$ scheme)
- various 2 pt sum rules with kaon currents: $\Rightarrow m_{s}, f_{k}^{(t)}, a_{n}^{(t)}$

Summary on assumptions, input and error budget

- total uncertainty estimate:

$$
\Delta f_{B K}\left(q^{2}\right)=\sqrt{\sum_{i} \Delta_{i}^{2}+\Delta_{\text {trunc }}^{2}+\Delta_{\mu}^{2}+\Delta_{M}^{2}}
$$

correlations so far neglected!

Current accuracy of $B \rightarrow K^{(*)}$ form factors

- $0<q^{2} \leq 12-14 \mathrm{GeV}^{2}$ estimated uncertainties for $B \rightarrow \pi, K$ form factors amount to $\pm(12-15) \%$
- "systematic error" of quark-hadron duality approximation (suppressed with Borel transformation, controlled by the m_{B} calculation)
- optimizing/reducing uncertainties:
ratios of form factors, slopes, asymmetries, bins of BRs in q^{2}
- LCSR's for $B \rightarrow K^{*}$ form factors, accuracy of the correlation function at the same level as for $B \rightarrow K$
[P. Ball, V.Braun (1998), P.Ball, R. Zwicky (2004,...)]
ask Roman about detailed uncertainties
- $\Gamma_{V}=0$ approximation (sort of "quenched")
\Rightarrow additional uncertainty

Use of other LCSRs and other observables

- LCSRs with B meson DAs -an alternative method valid for all $B \rightarrow P, V$ form factors
still large errors related to the B-meson DA, absence of NLO $O\left(\alpha_{s}\right)$-corrections

(a)

(b)

(c)
- cross check of $f_{K}^{(t)}, a_{n}^{(t)}$ from LCSRs for $D \rightarrow K$ form factors vs experiment
- LCSRs for the kaon electromagnetic form factor at large spacelike $q^{2}=-Q^{2}$:

anticipating important constraints on kaon twist-2 DAs (ongoing kaon electroproduction measurement at Jefferson Lab)

Tasks for the future

- improving LCSRs with B meson DAs
- $B \rightarrow \pi \pi\left(\rho, f_{0}\right), B \rightarrow K \pi\left(K^{*}, \kappa\left(0^{+}\right)\right)$
form factors from LCSRs with 2-meson DAs
- OPE for $B \rightarrow \pi, K$: twist-2 complete NNLO; twist 3 NLO for nonasymptotic DAs; twist 5 LO; e.m. corrections to LCSRs

$d \mathrm{BR}\left(B \rightarrow K \mu^{+} \mu^{-}\right) / d q^{2}$ and bins

from [arXiv:1211.0234 [hep-ph]]
solid (dotted) lines - central input, default (alternative) parametrization for the dispersion integrals.
long-dashed line -the width calculated without nonlocal hadronic effects.

The green (yellow) shaded area indicates the uncertainties including (excluding) the one from the $B \rightarrow K$ FF normalization.

- our predicted $d B R$ is somewhat lalrger than the in the LHCb paper 1403.8044 [hep-ex],
- tension due to the form factor $B \rightarrow K$?

LCSR agrees with the most recent HPQCD $B \rightarrow K$ FF

- isospin asymmetry is now in a better agreement with our expectations for SM questions/comments please!

Backup Slides

Building up the OPE for $B \rightarrow \pi, K$ LCSRs

$$
\begin{aligned}
F\left(q^{2},(p+q)^{2}\right) & =\left(T_{0}^{(2)}+\left(\alpha_{s} / \pi\right) T_{1}^{(2)}\right) \otimes \varphi_{K}^{(2)} \\
+\frac{\mu_{K}}{m_{b}}\left(T_{0}^{(3)}+\left(\alpha_{s} / \pi\right) T_{1}^{(3)}\right) & \otimes \varphi_{K}^{(3)}+\frac{\delta_{K}^{2}}{m_{b} \chi} T^{(4)} \otimes \varphi_{K}^{(4)}+\ldots \\
\mu_{K} & =m_{K}^{2} /\left(m_{s}+m_{u}\right), \quad m_{b} \gg \chi \gg \Lambda_{Q C D}
\end{aligned}
$$

- LO twist 2,3,4 $q \bar{q}$ and $q \bar{q} G$ terms
[V.Belyaev, A.K., R.Rückl (1993); V.Braun, V.Belyaev, A.K., R.Rückl (1996)]
- NLO $O\left(\alpha_{s}\right)$ twist 2, (collinear factorization)
[A.K., R.Rückl, S.Weinzierl, O. Yakovlev (1997); E.Bagan, P.Ball, V.Braun (1997);]
- NLO $O\left(\alpha_{s}\right)$ twist 3 (coll.factorization for asympt. DA)
[P. Ball, R. Zwicky (2001); G.Duplancic,A.K.,B.Melic, Th.Mannel,N.Offen (2007)]
- part of NNLO O($\alpha_{s}^{2} \beta_{0}$) twist 2 [A. Bharucha (2012)]

$B_{(s)}$ and $D_{(s)}$ decay constants

[P.Gelhausen, AK, A.A.Pivovarov, D.Rosenthal, 1305.5432 hep/ph]

Decay constant	Lattice QCD [ref.]	this work
$f_{B}[\mathrm{MeV}]$	$196.9 \pm 9.1[1]$ $186 \pm 4[2]$	207_{-9}^{+17}
$f_{B_{s}}[\mathrm{MeV}]$	$242.0 \pm 10.0[1]$ $224 \pm 5[2]$	242_{-12}^{+17}
$f_{B_{s}} / f_{B}$	$1.229 \pm 0.026[1]$	$1.17_{-0.03}^{+0.04}$
$f_{D}[\mathrm{MeV}]$	$218.9 \pm 11.3[1]$ $213 \pm 4[2]$	201_{-13}^{+12}
$f_{D_{s}}[\mathrm{MeV}]$	$260.1 \pm 10.8[1]$ $248.0 \pm 2.5[2]$	238_{-23}^{+13}
$f_{D_{s}} / f_{D}$	$1.188 \pm 0.025[1]$	$1.15_{-0.05}^{+0.04}$

[1]-Fermilab/MILC, [2]-HPQCD

$B \rightarrow \pi$ form factor: LCSR vs lattice QCD

[A.K, Th.Mannel, N.Offen, Y-M. Wang (2011)]

$q^{2} \leq 12 \mathrm{GeV}^{2}-\mathrm{LCSR}, \quad q^{2}>12 \mathrm{GeV}^{2}-$ [HPQCD, FNAL/MILC]

$B \rightarrow K$ form factor: LCSR vs lattice QCD

- dashed: LCSR, central input [A.K, Th.Mannel, A.Pivovarov, Y-M. Wang (2010)]
- solid: unitarity bounds for the z-transformed form factor, [L.Lellouch (1996); Th.Mannel,B.Postler(1998)] (PRELIMINARY), S.Imsong, AK, Th.Mannel, work in progress
input for the bounds :
$f_{B K}^{+}\left(q^{2}=6.0 \mathrm{GeV}^{2}\right)$
\oplus slope \oplus curvature

Comments on $B \rightarrow K^{(*)}$ form factors calculated from LCSRs

$B \rightarrow K, K^{(*)}$ form factors from LCSR's

[A.K, Th.Mannel, A.Pivovarov, Y-M. Wang (2010)]

form factor	$F_{B K(*)}^{i}(0)$	b_{1}^{i}	$B_{s}\left(J^{P}\right)$	input at $q^{2}<12 \mathrm{GeV}^{2}$
$f_{B K}^{+}$	$0.34_{-0.02}^{+0.05}$	$-2.1_{-1.6}^{+0.9}$	$B_{s}^{*}\left(1^{-}\right)$	
$f_{B K}^{0}$	$0.34_{-0.02}^{+0.05}$	$-4.3_{-0.9}^{+0.8}$	no pole	LCSR
$f_{B K}^{T}$	$0.39_{-0.03}^{+0.05}$	$-2.2_{-2.00}^{+1.0}$	$B_{s}^{*}\left(1^{-}\right)$	with K DA's
$V^{B K^{*}}$	$0.36_{-0.12}^{+0.23}$	$-4.8_{-0.4}^{+0.8}$	$B_{s}^{*}\left(1^{-}\right)$	
$A_{1}^{B K^{*}}$	$0.25_{-0.160}^{+0.16}$	$0.34_{-0.80}^{+0.86}$	$B_{s}\left(1^{+}\right)$	
$A_{2}^{B K^{*}}$	$0.23_{-0.190}^{+0.19}$	$-0.85_{-1.35}^{+2.88}$	$B_{s}\left(1^{+}\right)$	LCSR
$A_{0}^{B K^{*}}$	$0.29_{-0.10}^{+0.07}$	$-18.2_{-3.0}^{+1.3}$	$B_{s}\left(0^{-}\right)$	with B DA's
$T_{1}^{B K^{*}}$	$0.31_{-0.10}^{+0.18}$	$-4.6_{-0.41}^{+0.81}$	$B_{s}^{*}\left(1^{-}\right)$	
$T_{2}^{B K^{*}}$	$0.31_{-0.10}^{+0.18}$	$-3.2_{-2.2}^{+2.1}$	$B_{s}\left(1^{+}\right)$	
$T_{3}^{B K^{*}}$	$0.22_{-0.10}^{+0.17}$	$-10.3_{-3.1}^{+2.2}$	$B_{s}\left(1^{+}\right)$	

correlations between normalization \& slope out of the scope

