OPE, duality, resonances

Sebastian Jäger
US
University of Sussex
$\mathrm{b} \rightarrow \mathrm{sl}^{+} \mathrm{I}^{-}$workshop

Imperial College, 2 April 2014

Outline

- OPE, parton-hadron duality, emergence of resonant structure
- Shifman model for e+ e- -> hadrons
- Application to B->K II, B->K*||
- What about duality violation below the charm threshold ("light resonances")?

B->K*II: q^{2} dependence (qualitative)

 photon pole
 $$
q^{2}=\left.4 m\right|^{2}
$$
 interference of $\mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{10}$ (+BSM)
 "low q"
 large recoil"
 open charm region
 $\mathrm{C}_{9}, \mathrm{C}_{10}$ dominate
 resonant structure
 "high q²
 low recoil"
 $$
q^{2}=\left(m_{B}-m v\right)^{2}
$$

Note - artist's impression only.
LHCb has not yet published sufficiently fine binning to show the resonant features Open charm resonances are however visible in published B->K I I data.

Resonant structure in B->KII

OPE

Many physical processes involving a large mass or energy scale have an operator product expansion

$$
\begin{aligned}
& \mathrm{Obs}=\sum_{i} C_{i}\left(\alpha_{s}\right)\langle f| O_{i}|i\rangle \\
& C_{i}=1+r_{i 1} \alpha_{s}+r_{i 2} \alpha_{s}^{2}+\cdots
\end{aligned}
$$

$$
\langle f| O_{i}|i\rangle=a_{i}\left(\frac{\Lambda}{Q}\right)^{d_{i}}
$$

short-distance physics (often) (approximately) perturbative
long-distance physics
often essentially non-perturbative (as in our examples)

It is generally believed that (in most cases)

- perturbation series for C_{i} factorially divergent -> ambiguous.

The ambiguity behaves like a higher-dim matrix element [via renormalon poles in Borel transform]. (Eg quark pole mass.)

- OPE itself is factorially divergent -> ambiguous [via analyticity properties of amplitude.] Ambiguity behaves like $\exp \left(-C Q^{2} / \Lambda^{2}\right)$

Duality in $\mathrm{e}^{+} \mathrm{e}^{-}-\mathrm{>}$ hadrons

$$
\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right) \propto \operatorname{Im}(-i) \int d^{4} x e^{-i q x}\langle 0| T\left(j_{\mu}(x) j^{\mu}(x)|0\rangle=3 q^{2} \Pi\left(-q^{2}\right)\right.
$$

Diagram calculation \& OPE justified for spacelike $q^{2}<0$
The q2>0 "physical" result is defined through analytic continuation (in practice, dispersion relations)
remainder becomes oscillatory, $\sim \sin (c E) / E^{\wedge}($ power): resonances

Shifman model of duality violation

$$
\begin{aligned}
& \Delta\left(q^{2}\right) \equiv 2 \pi^{2}\left(\Pi\left(q^{2}\right)-\Pi(0)\right) \\
& z=(-r-i \epsilon)^{1-b / \pi} \quad r=\frac{q^{2}}{\lambda^{2}} \\
& b \equiv B / N=\Gamma_{n} / M_{n}
\end{aligned}
$$

Is a model of the current-current correlator with massless quarks
The entire correlator is modelled (not just a remainder term)
One can check how well the OPE approximates it.

"true" (model) correlator (blue) oscillates around its OPE (red)
resonance amplitude dies off at large q^{2}

Duality violation: charm

Adapt Shifman model to include open-charm resonances

$$
R=R_{\mathrm{light}}-\frac{4}{3} \frac{1}{(1-b / \pi) \pi} \operatorname{Im} \psi(3+z), \quad z=\left(-\frac{q^{2}-4 m_{c}^{2}+i \epsilon}{\lambda^{2}}\right)^{1-b / \pi}
$$

$$
\text { Resonances at } q^{2}=n \lambda^{2}+4 m_{c}^{2}(n=3,4,5, \ldots)
$$

fit to BES-II data

Application to B->K(K*)II

In naive factorisation, the charm loop contribution is proportional to the same hadronic 2-point correlator as the R -ratio

$$
H^{c}=a_{2}(\bar{s} b)_{V-A_{1}^{\prime}}^{\prime}(\bar{c} c)_{V-A}
$$

$\mathrm{a}_{2}=0.3$ fudge factor to model violation of naive factorisation (q^{2}-independent)

Model not used by Beylich et al
 to "improve" prediction, but rather to estimate duality violation

To estimate it, they separate out an oscillating part from the model, bin this from $\mathrm{q}^{2}{ }_{0} \sim 15 \mathrm{GeV}^{\wedge} 2$ to q^{2} max

Two contributions: linear (interference), oscillations largely cancel quadratic (additive), no cancellation

Estimate $1.5 \%+0.75 \%$ uncertainty on B->KII rate from DV
-> Can LHCb fit their data to this 3-parameter model (inc a a_{2})?

Den?

1) The Shifman (et al) ansatz for the correlator satisfies various constraints from QCD:

- reproduces hadronic tau decays \& R data (with charm fix)
- has resonances behaving as expected based on large-N/QCDstring arguments (masses, widths)
- has the correct OPE, in particular the hadronic states it implicitly sums over are such that the correct leading-log running of the EM coupling is reproduced

2) It is a simple model and not rigorous
3) There is no rigorous theory of duality violation.

Given 2) and 3), 1) is pretty good

Remarks

4) The duality violating piece is another C9-like contribution with all consequences, eg able to shift the zero crossings in FB asymmetries (ie I don't see that this cancels out).
5) LHCb might be able to do their own estimate of duality violation (or give input to it, by fitting back to the Shifman model as extended by Beylich et al, or other theoretical models).

In my opinion, please do not cut out prominent features; the rest of the signal will then undershoot the OPE result. If the precise value of $q^{2} 0$ has a strong impact on results, this suggests a more sizable uncertainty on the OPE prediction.

One could perhaps increase $q^{2} 0$ to move deeper into the duality regime, where DV is less pronounced, but then an updated theoretical calculation should estimate the error.

Light-quark resonances

Some resonant behaviour should be seen in the low- q^{2} region.
Differently to high- q^{2}, there is no OPE and the picture is less clear.
Still expect duality violation relative to the QCDF result.
Under the naive-factorisation assumption, one does have expressions in terms of local form factors and one could use the Shifman model to estimate the errors - will be tiny after binning.

I would not cut out resonances but smear (integrate) over them.
Another simple way to model the (presumably) most conspicous resonances is to compare vector-meson-dominance to the corresponding subset of QCDF contributions for a DV estimate

DV etc references

[1] RAaij et al. [LHCb Collaboration], Phys. Rev. Lett. 111 (2013) 112003 [arXiv:1307.7595 [hep-ex]].
[2] M. A. Shifman, In *Minneapolis 1994, Continuous advances in QCD* 249-286 [hep-ph/9405246].
[3] B. Chibisov, R. D. Dikeman, M. A. Shifman and N. Uraltsev, Int. J. Mod. Phys. A 12 (1997) 2075 [hep-ph/9605465].
[4] B. Blok, M. A. Shifman and D. -X. Zhang, Phys. Rev. D 57 (1998) 2691 [Erratum-ibid. D 59 (1999) 019901] [hep-ph/9709333].
[5] M. A. Shifman, In *Shifman, M. (ed.): At the frontier of particle physics, vol. 3^{*} 1447-1494 [hep-ph/0009131].
[6] M. Beneke, Phys. Rept. 317 (1999) 1 [hep-ph/9807443].
[7] A. Khodjamirian, T. .Mannel and Y. M. Wang, JHEP 1302 (2013) 010 [arXiv:1211.0234 [hep-ph]].

