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Outline

• OPE, parton-hadron duality, emergence of resonant 
structure

• Shifman model for e+ e- -> hadrons

• Application to B->K l l, B->K*ll

• What about duality violation below the charm threshold 
(“light resonances”)?



B->K*ll: q2 dependence (qualitative)
photon pole
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Note - artist’s impression only.
LHCb has not yet published sufficiently fine binning to show the resonant features
Open charm resonances are however visible in published B->K l l data.



Resonant structure in B->Kll

of the resonances that are subsequently anal-
ysed, resolution e↵ects are neglected. While
the  (2S) state is narrow, the large branching
fraction means that its non-Gaussian tail is
significant and hard to model. The  (2S) con-
tamination is reduced to a negligible level by
requiring m

µ

+
µ

� > 3770MeV/c2. This dimuon
mass range is defined as the low recoil region
used in this analysis.
In order to estimate the amount of back-

ground present in the m
µ

+
µ

� spectrum, an un-
binned extended maximum likelihood fit is per-
formed to the K+µ+µ� mass distribution with-
out the B+ mass constraint. The signal shape
is taken from a mass fit to the B+!  (2S)K+

mode in data with the shape parameterised
as the sum of two Crystal Ball functions [17],
with common tail parameters, but di↵erent
widths. The Gaussian width of the two compo-
nents is increased by 5% for the fit to the low
recoil region as determined from simulation.
The low recoil region contains 1830 candidates
in the signal mass window, with a signal to
background ratio of 7.8.
The dimuon mass distribution in the low

recoil region is shown in Fig. 1. Two peaks
are visible, one at the low edge corresponding
to the expected decay  (3770)! µ+µ� and
a wide peak at a higher mass. In all fits, a
vector resonance component corresponding to
this decay is included. Several fits are made to
the distribution. The first introduces a vector
resonance with unknown parameters. Subse-
quent fits look at the compatibility of the data
with the hypothesis that the peaking structure
is due to known resonances.
The non-resonant part of the mass fits con-

tains a vector and axial vector component. Of
these, only the vector component will inter-
fere with the resonance. The probability den-
sity function (PDF) of the signal component
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Figure 1: Dimuon mass distribution of data with
fit results overlaid for the fit that includes con-
tributions from the non-resonant vector and ax-
ial vector components, and the  (3770),  (4040),
and  (4160) resonances. Interference terms are
included and the relative strong phases are left
free in the fit.

is given as

Psig / P (m
µ

+
µ

�) |A|2 f 2(m2
µ

+
µ

�) , (1)

|A|2 = |AV
nr +

X

k

ei�kAk

r |2 + |AAV
nr |2 , (2)

where AV
nr and AAV

nr are the vector and axial
vector amplitudes of the non-resonant decay.
The shape of the non-resonant signal in m

µ

+
µ

�

is driven by phase space, P (m
µ

+
µ

�), and the
form factor, f(m2

µ

+
µ

�). The parametrisation of
Ref. [18] is used to describe the dimuon mass
dependence of the form factor. This form fac-
tor parametrisation is consistent with recent
lattice calculations [19]. In the SM at low re-
coil, the ratio of the vector and axial vector
contributions to the non-resonant component is
expected to have negligible dependence on the
dimuon mass. The vector component accounts
for (45± 6)% of the di↵erential branching frac-
tion in the SM (see, for example, Ref. [20]).
This estimate of the vector component is as-
sumed in the fit.
The total vector amplitude is formed by sum-
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OPE
Many physical processes involving a large mass or energy 
scale have an operator product expansion

It is generally believed that (in most cases)
- perturbation series for Ci factorially divergent -> ambiguous. 
The ambiguity behaves like a higher-dim matrix element [via 
renormalon poles in Borel transform]. (Eg quark pole mass.)

- OPE itself is factorially divergent -> ambiguous [via analyt-
icity properties of amplitude.] Ambiguity behaves like 

           Origin of resonant behaviour

Abstract

Notes and references accompanying my talk at Imperial on 02 April
2014. Topic: ”Broad resonances” ie resonances in the open-charm
region in B ! K⇤`+`�. Plus some words on ”light-quark” resonances
at low-q2.

1 OPE

Many QCD processes have an operator product expansion

Obs =
X

i

Ci(↵s)hf |Oi|ii (1)

where
Ci = 1 + ri1↵s + ri2↵

2
s + · · · (2)

and
hf |Oi|ii = ai(⇤/Q)di (3)
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short-distance physics
(often) (approximately) 

perturbative

long-distance physics
often essentially non-perturbative 

(as in our examples)
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‘t Hooft 1977
[Gross, Neveu, Lautrup, Mueller,...]
Shifman et al 1994 - 2000



Duality in e+e- -> hadrons

Diagram calculation & OPE justified for spacelike q2<0

The q2>0 “physical” result is defined through analytic continuation 
(in practice, dispersion relations)

remainder becomes oscillatory, ~ sin(c E)/E^(power): resonances
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1.1 e+e� ! hadrons
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[Fig Peskin & Schroeder]
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Shifman model of duality violation

Is a model of the current-current correlator with massless quarks

The entire correlator is modelled (not just a remainder term)

One can check how well the OPE approximates it.

Chibisov, Dikeman, Shifman, Uraltsev 1996
Blok, Shifman, Zhang 1997
Beylich, Buchalla, Feldmann 2011

where the subtraction constant Π(0) is fixed within the model and can be computed in
perturbation theory. To leading order it reads

Π(0) ≡ Πc(0)− Πt(0) =
N

12π2
ln

m2
t

m2
c

(57)

The form of (55) for the amplitude holds to lowest order in G and e2, but to all orders in
the strong coupling. The decay l1 → l2e+e− in this model shares important similarities
with B → Ke+e−, but the hadronic dynamics is simplified to the physics of quark-current
correlators. The role of resonances and quark-hadron duality can thus be illustrated in
a transparent way.

From (55) we obtain the differential decay rate (with s = q2/m2
1)

dΓ(l1 → l2 e+e−)

ds
=

G2α2m5
1

108π5
(1− s)2 (1 + 2s)

∣

∣C +∆(q2)
∣

∣

2
(58)

where we defined
C ≡ 2π2Π(0) (59)

and
∆(q2) ≡ 2π2

(

Π(q2)− Π(0)
)

(60)

To lowest order we have
C = ln

mt

mc
(61)

and the partonic expression for ∆(q2) in one-loop approximation is

∆q(q
2) =

5

6
+

x

2
−

1

4
(2 + x)

√

|1− x|







2 arctan 1√
x−1

; x > 1

ln 1+
√
1−x

1−
√
1−x
− iπ ; x < 1

(62)

where x = 4m2
c/q

2. For typical values of the parameters (e.g. mc = 1.4GeV, m1 =
mb = 4.8GeV, mt = 167GeV) we have C = 4.78, whereas Re∆q(q2) first rises from 0
at q2 = 0 to 4/3 at q2 = 4m2

c and then drops again monotonically to the small negative
value −0.07 at q2 = m2

b . The coefficient C represents the short-distance contribution
of the amplitude. It is real and larger (parametrically as well as numerically) than the
quark-level charm contribution |∆q|.

The decay rate (58) is proportional to

|C +∆|2 = C2 + 2C Re∆+ |∆|2 (63)

As long as |∆| is small compared to C, there is a clear hierarchy among the three terms
on the r.h.s. of (63): The first, short-distance term C2 dominates and the next term
gives the correction to first-order in ∆, whereas the final term enters at second order.

These features are qualitatively similar in the case of B → Kl+l−.
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6.2 Shifman model for charm correlator

In order to investigate the systematics of duality violation in l1 → l2e+e−, we find it
convenient to consider first a simple model for the quark-current correlator, which has
been proposed in [31,32,33]. In this model the correlator is represented as an infinite
sum over resonances, which include finite width effects. In its original form it applies to
massless quarks and we will correspondingly neglect the charm-quark mass in the present
section. A detailed discussion of the model and its use in illustrating duality violation
in the R ratio and similar quantities has been given in [31,32,33]. The model has also
been used to study duality violation in τ decays in [34].

In Shifman’s model the correlator ∆ in (60) reads

∆(q2) = −
N

6

1

1− b/π
[ψ(z + 1) + γ] (64)

where ψ(z) = d lnΓ(z)/dz is the digamma function and

z = (−r − iε)1−b/π with r =
q2

λ2
(65)

N = 3 is the number of colours, λ is a scale corresponding to the string tension in QCD
and b ≡ B/N = Γn/Mn is a (small) parameter related to the width-to-mass ratio of the
resonances.

The model expression for ∆ in (64) has the correct analytic behaviour (a cut for posi-
tive q2 but no other singularities on the physical sheet) and it reproduces the asymptotic
result of QCD in the limit of large q2,

∆(q2)→ −
N

6
ln
−q2 − iε

λ2
(66)

Using the identity

ψ(z + 1) + γ ≡ [ψ(−z) + γ − iπ]1 + [−π cot πz + iπ]2 (67)

the function in (64) can be decomposed into two parts, ∆ = ∆1 +∆2, corresponding to
the two brackets in (67). ∆2 is an oscillating function of q2, exponentially suppressed
for large q2. It represents the duality violating component of ∆. The function ∆1 is a
monotonous function, which gives the OPE approximation to ∆. The real part of these
two functions is shown in Fig. 4. A plot of the imaginary part of ∆ can be found in
[32,33].

The duality violating part of Re∆ can be approximated as

Re∆2(q
2) = −

N

6

1

1− b/π
Re [−π cotπz + iπ] ≈ −

Nπ

3
exp(−2πbr) sin(2πr) (68)

if 2πbr % 1 and b ln r/π & 1.
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and b ≡ B/N = Γn/Mn is a (small) parameter related to the width-to-mass ratio of the
resonances.

The model expression for ∆ in (64) has the correct analytic behaviour (a cut for posi-
tive q2 but no other singularities on the physical sheet) and it reproduces the asymptotic
result of QCD in the limit of large q2,

∆(q2)→ −
N

6
ln
−q2 − iε

λ2
(66)

Using the identity

ψ(z + 1) + γ ≡ [ψ(−z) + γ − iπ]1 + [−π cot πz + iπ]2 (67)

the function in (64) can be decomposed into two parts, ∆ = ∆1 +∆2, corresponding to
the two brackets in (67). ∆2 is an oscillating function of q2, exponentially suppressed
for large q2. It represents the duality violating component of ∆. The function ∆1 is a
monotonous function, which gives the OPE approximation to ∆. The real part of these
two functions is shown in Fig. 4. A plot of the imaginary part of ∆ can be found in
[32,33].

The duality violating part of Re∆ can be approximated as

Re∆2(q
2) = −

N

6

1

1− b/π
Re [−π cotπz + iπ] ≈ −

Nπ

3
exp(−2πbr) sin(2πr) (68)

if 2πbr % 1 and b ln r/π & 1.
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Figure 4: Shifman model for charm loop: Re∆(q2) as a function of q2/λ2 for b ≡ B/N =
1/6. The true function (oscillating curve) is compared with the OPE approximation.

In the decay rate integrated over the high-q2 part of the spectrum, the duality vio-
lating contribution enters proportional to

∫ 1

s0

ds (1 + 2s)(1− s)2Re∆2 ≈ −
Nπ

3

∫ 1

s0

ds (1 + 2s)(1− s)2 exp(−2πbus) sin(2πus)

= −
N

6
(1 + 2s0)(1− s0)

2 1

u
exp(−2πbs0u) cos(2πs0u) +O

(

b

u
,
1

u2

)

(69)

where
s = q2/m2

1 u = m2
1/λ

2 r = us (70)

In (69) we have used the approximation from (68). Typical values of the parameters are

b =
1

6
u = 10 (71)

The value of u = 10 corresponds for instance to λ2 = 2.3GeV2 and m2
1 = 23GeV2. The

quantity in (69) is shown in Fig. 5 as a function of s0.
We comment on several important aspects of these results.

• The duality violating component of Re∆ in (68) exhibits the characteristic oscillat-
ing behaviour in r = q2/λ2 with an exponential suppression governed by br. The
analogous expression for the duality violating term in Im∆, which has a cosine
instead of the sine, has been given in [32,33].

• Eq. (69) displays the duality violating contribution from Re∆ to the partially in-
tegrated decay rate. The integration over s extends from a suitably chosen lower
limit s0 up to the end of the spectrum. The parameter s0 should be large enough
such that the OPE still remains reasonable at the corresponding value of q2. Using
the approximation in (68) and expanding in the small quantities b and 1/u, we find
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“true” (model) correlator (blue) oscillates 
around its OPE (red)

resonance amplitude dies off at large q2
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and b ≡ B/N = Γn/Mn is a (small) parameter related to the width-to-mass ratio of the
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The model expression for ∆ in (64) has the correct analytic behaviour (a cut for posi-
tive q2 but no other singularities on the physical sheet) and it reproduces the asymptotic
result of QCD in the limit of large q2,
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Using the identity

ψ(z + 1) + γ ≡ [ψ(−z) + γ − iπ]1 + [−π cot πz + iπ]2 (67)

the function in (64) can be decomposed into two parts, ∆ = ∆1 +∆2, corresponding to
the two brackets in (67). ∆2 is an oscillating function of q2, exponentially suppressed
for large q2. It represents the duality violating component of ∆. The function ∆1 is a
monotonous function, which gives the OPE approximation to ∆. The real part of these
two functions is shown in Fig. 4. A plot of the imaginary part of ∆ can be found in
[32,33].

The duality violating part of Re∆ can be approximated as

Re∆2(q
2) = −

N

6

1

1− b/π
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Nπ

3
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Duality violation: charm

Adapt Shifman model to include open-charm resonances 
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Figure 6: Simple fit to BES data for R vs. q2/GeV2. Right: Detailed View.

model. The spectra of cc̄ mesons can be accounted for by linear relations for the squared
masses, M2

n = nλ2 + M2
0 , n = 1, 2, 3, . . ., similarly to the case of the light mesons [38].

The trajectory of the n3S1 charmonia, the JPC = 1−− states ψ(3097), ψ(3686), ψ(4040),
ψ(4415), . . ., for instance, follows this pattern. Starting form the third resonance (n = 3),
these states can decay into open charm and have widths of the order of ΛQCD. The
first two are extremely narrow and may be described separately, but their properties
are unimportant for duality violation, which is related to the infinite tower of high-n
resonances. We therefore choose an ansatz where the sum over resonances begins at
n = 3 rather than n = 1. A finite width is included in analogy to (65) and the variable
q2 is shifted by a constant into q2 − 4m2

c . This leads to the following expression for the
imaginary part of the correlator or, equivalently, the R ratio

R = Rlight −
4

3

1

(1− b/π) π
Imψ(3 + z) , z =

(

−
q2 − 4m2

c + iε

λ2

)1−b/π

, (78)

The individual resonances are located at q2 = nλ2 + 4m2
c (n = 3, 4, 5, . . .) in the limit

b→ 0. We observe that a rough description of the BES data [35] can already be obtained
with this formula, where we find Rlight = 2.31 from the measured R-ratio below charm
threshold, mc = 1.33 GeV, b # 0.082 and λ2 # 3.08 GeV2. This yields the result
shown in Fig. 6, corresponding to a χ2/d.o.f. # 2.5. We remark that our values for the
fit parameters mc and λ2 are in agreement with the results of [38]. There is a second
trajectory of 1−− charmonia, the n3D1 states. Of these the first two resonances ψ(3770)
and ψ(4160) are known. The first one is barely above threshold and still rather narrow. It
may be considered separately, similar to ψ(3097) and ψ(3686). Note also that ψ(3770) is
still below our default choice for the lower limit of the high-q2 region, q2 ≥ 15GeV2. The
remaining resonances n3D1 are rather close to the resonances (n + 1)3S1 for n ≥ 2. For
an approximate treatment it appears justified to subsume such a pair of close resonances
under a single peak and keep the ansatz given in (78). The accuracy of this description
can be gauged by inspecting Fig. 6. In any case, the normalization of the second term
of R in (78) is fixed in the large-q2 limit by the free-quark result.
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masses, M2

n = nλ2 + M2
0 , n = 1, 2, 3, . . ., similarly to the case of the light mesons [38].

The trajectory of the n3S1 charmonia, the JPC = 1−− states ψ(3097), ψ(3686), ψ(4040),
ψ(4415), . . ., for instance, follows this pattern. Starting form the third resonance (n = 3),
these states can decay into open charm and have widths of the order of ΛQCD. The
first two are extremely narrow and may be described separately, but their properties
are unimportant for duality violation, which is related to the infinite tower of high-n
resonances. We therefore choose an ansatz where the sum over resonances begins at
n = 3 rather than n = 1. A finite width is included in analogy to (65) and the variable
q2 is shifted by a constant into q2 − 4m2

c . This leads to the following expression for the
imaginary part of the correlator or, equivalently, the R ratio

R = Rlight −
4

3

1

(1− b/π) π
Imψ(3 + z) , z =

(

−
q2 − 4m2

c + iε

λ2

)1−b/π

, (78)

The individual resonances are located at q2 = nλ2 + 4m2
c (n = 3, 4, 5, . . .) in the limit

b→ 0. We observe that a rough description of the BES data [35] can already be obtained
with this formula, where we find Rlight = 2.31 from the measured R-ratio below charm
threshold, mc = 1.33 GeV, b # 0.082 and λ2 # 3.08 GeV2. This yields the result
shown in Fig. 6, corresponding to a χ2/d.o.f. # 2.5. We remark that our values for the
fit parameters mc and λ2 are in agreement with the results of [38]. There is a second
trajectory of 1−− charmonia, the n3D1 states. Of these the first two resonances ψ(3770)
and ψ(4160) are known. The first one is barely above threshold and still rather narrow. It
may be considered separately, similar to ψ(3097) and ψ(3686). Note also that ψ(3770) is
still below our default choice for the lower limit of the high-q2 region, q2 ≥ 15GeV2. The
remaining resonances n3D1 are rather close to the resonances (n + 1)3S1 for n ≥ 2. For
an approximate treatment it appears justified to subsume such a pair of close resonances
under a single peak and keep the ansatz given in (78). The accuracy of this description
can be gauged by inspecting Fig. 6. In any case, the normalization of the second term
of R in (78) is fixed in the large-q2 limit by the free-quark result.
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model. The spectra of cc̄ mesons can be accounted for by linear relations for the squared
masses, M2

n = nλ2 + M2
0 , n = 1, 2, 3, . . ., similarly to the case of the light mesons [38].

The trajectory of the n3S1 charmonia, the JPC = 1−− states ψ(3097), ψ(3686), ψ(4040),
ψ(4415), . . ., for instance, follows this pattern. Starting form the third resonance (n = 3),
these states can decay into open charm and have widths of the order of ΛQCD. The
first two are extremely narrow and may be described separately, but their properties
are unimportant for duality violation, which is related to the infinite tower of high-n
resonances. We therefore choose an ansatz where the sum over resonances begins at
n = 3 rather than n = 1. A finite width is included in analogy to (65) and the variable
q2 is shifted by a constant into q2 − 4m2

c . This leads to the following expression for the
imaginary part of the correlator or, equivalently, the R ratio

R = Rlight −
4

3

1

(1− b/π) π
Imψ(3 + z) , z =

(

−
q2 − 4m2

c + iε

λ2

)1−b/π

, (78)

The individual resonances are located at q2 = nλ2 + 4m2
c (n = 3, 4, 5, . . .) in the limit

b→ 0. We observe that a rough description of the BES data [35] can already be obtained
with this formula, where we find Rlight = 2.31 from the measured R-ratio below charm
threshold, mc = 1.33 GeV, b # 0.082 and λ2 # 3.08 GeV2. This yields the result
shown in Fig. 6, corresponding to a χ2/d.o.f. # 2.5. We remark that our values for the
fit parameters mc and λ2 are in agreement with the results of [38]. There is a second
trajectory of 1−− charmonia, the n3D1 states. Of these the first two resonances ψ(3770)
and ψ(4160) are known. The first one is barely above threshold and still rather narrow. It
may be considered separately, similar to ψ(3097) and ψ(3686). Note also that ψ(3770) is
still below our default choice for the lower limit of the high-q2 region, q2 ≥ 15GeV2. The
remaining resonances n3D1 are rather close to the resonances (n + 1)3S1 for n ≥ 2. For
an approximate treatment it appears justified to subsume such a pair of close resonances
under a single peak and keep the ansatz given in (78). The accuracy of this description
can be gauged by inspecting Fig. 6. In any case, the normalization of the second term
of R in (78) is fixed in the large-q2 limit by the free-quark result.
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Application to B->K(K*)ll 
In naive factorisation, the charm loop contribution is proportional 
to the same hadronic 2-point correlator as the R-ratio 

a2 = 0.3 fudge factor to model
violation of naive factorisation
(q2-independent)

Model not used by Beylich et al
to “improve” prediction, but rather to estimate duality violation

To estimate it, they separate out an oscillating part from the 
model, bin this from q20 ~ 15 GeV^2 to q2max 

Two contributions: linear (interference), oscillations largely cancel
                              quadratic (additive), no cancellation

Estimate 1.5% + 0.75% uncertainty on B->Kll rate from DV

-> Can LHCb fit their data to this 3-parameter model (inc a2) ?

Grinstein, Pirjol 2004
Beylich, Buchalla, Feldmann 2011

above and allowed for intermediate states X without cc̄ pairs, the cuts would extend
down to lower values of |q0| on the real axis.

The OPE of the matrix element in (79) can be justified for q0 on the imaginary axis,
sufficiently far from the origin, that is at q0 = iq0E , for q0E ! ΛQCD. The OPE defined
in this way in the Euclidean can then be analytically continued, term by term, from
imaginary q0 onto the positive real axis, corresponding to the Minkowskian domain.
Terms that are exponentially suppressed in ΛQCD/q0E for large positive q0E become
oscillating functions of q0 in the Minkowskian case, that is for large positive q0 [39].
These oscillating terms are invisible at any finite order in the OPE and represent the
duality violating contribution.

7.2 Quantitative estimate of duality violation

For a quantitative estimate of duality violation we have to resort to a model of the
hadronic correlator in (79). To this end we write the Hamiltonian in (80) as

Hc = a2 (s̄b)V−A(c̄c)V−A (81)

and assume a factorization of the currents, that is we neglect interactions between c̄c and
the B̄ → K̄ system. The coefficient a2 is then treated as a phenomenological parameter.
With these simplifications the correlator in (79) reduces to

〈Kµ
H〉 =

16π2

3
a2 〈(s̄b)V−A〉µΠc(q

2) (82)

where we omitted the longitudinal component ∼ qµ. Πc is the current correlator defined
in (54). The charm loop in (82) contributes to the coefficient a9 in the amplitude of
B̄ → K̄l+l− a term

∆a9 = a2d, d ≡
16π2

3

(

Πc(q
2)−Πc(0)

)

(83)

In the model of section 6.3 we have

d = −
4

3

1

1− b/π
[ψ(z + 3)− ψ(z0 + 3)] (84)

where

z = (−r − iε)1−b/π, r =
q2 − 4m2

c

λ2
≡ u(s− sc), u = m2

B/λ
2 (85)

and z0 = z(q2 = 0). For the parameters we use the following values

λ2 = 3.08GeV2, mc = 1.33GeV, b = 0.082 (86)

We will not employ the model (83) to describe the entire charm-loop contribution, but
only to estimate its duality violating component. The remainder is more reliably obtained
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KINEMATICS & (q̄q)-RESONANCE BKGR

KINEMATICS – B(pB)⇤ P(pP) + ⌅̄(p⇤̄) + ⌅(p⇤)

1) q2 = m2
⇤̄⇤

= (p⇤̄ + p⇤ )2 = (pB � pP)2 4m2
⇤ � q2 � (MB �MP)2

2) cos �⇤ with �⇤⇥(⌅pB ,⌅p⇤̄) in ⇤̄⇤-c.m. system �1 � cos �⇤ � 1

general problem in b ⇤ {d , s}+ ⌅̄⌅ due to Op’s: [s̄�q][q̄�⇥b] and [s̄�b][q̄�⇥q]

LONG DISTANCE - (q̄q)-RESONANCE BACKGROUND

A[B ⇤ P + ⌅̄⌅] = A[B ⇤ P + ⌅̄⌅]SD�FCNC

+A[B ⇤ P + (q̄q)⇤ P + ⌅̄⌅]LD

b s

qq

l

l

for B ⇤ K + ⌅̄⌅ (q2
max ⇥ 22.9 GeV2):

q = u, d , s light resonances below q2 � 1 GeV2

suppr. by small QCD-peng. Wilson coeff. or CKM �̂u

q = c start @ q2 � (MJ/�)2 ⇥ 9.6 GeV2, (M��)2 ⇥ 13.6 GeV2

⌅ usually A[B ⇤ P + ⌅̄⌅]SD�FCNC = “non-resonant part”
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Remarks
1) The Shifman (et al) ansatz for the correlator satisfies various 
constraints from QCD:

- reproduces hadronic tau decays & R data (with charm fix)

- has resonances behaving as expected based on large-N/QCD-
string arguments (masses, widths)

- has the correct OPE, in particular the hadronic states it implicitly 
sums over are such that the correct leading-log running of the EM 
coupling is reproduced

2) It is a simple model and not rigorous

3) There is no rigorous theory of duality violation.

Given 2) and 3), 1) is pretty good



Remarks
4) The duality violating piece is another C9-like contribution with 
all consequences, eg able to shift the zero crossings in FB 
asymmetries (ie I don’t see that this cancels out).

5) LHCb might be able to do their own estimate of duality violation 
(or give input to it, by fitting back to the Shifman model as 
extended by Beylich et al, or other theoretical models).

In my opinion, please do not cut out prominent features; the rest 
of the signal will then undershoot the OPE result. If the precise 
value of q20 has a strong impact on results, this suggests a more 
sizable uncertainty on the OPE prediction.

One could perhaps increase q20 to move deeper into the duality 
regime, where DV is less pronounced, but then an updated 
theoretical calculation should estimate the error.



Light-quark resonances
Some resonant behaviour should be seen in the low-q2 region.

Differently to high-q2, there is no OPE and the picture is less clear.

Still expect duality violation relative to the QCDF result.

Under the naive-factorisation assumption, one does have 
expressions in terms of local form factors and one could use the 
Shifman model to estimate the errors - will be tiny after binning.

I would not cut out resonances but smear (integrate) over them.

Another simple way to model the (presumably) most conspicous 
resonances is to compare vector-meson-dominance to the 
corresponding subset of QCDF contributions for a DV estimate
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Figure 7. Di↵erential branching fraction, FL and the “clean” observables P (0)
i around the low-q2

end-point. We show in black the experimental results for the two first observables in the bins
[0.05, 2]GeV2 and [2, 4.3]GeV2 [8–10]. The color code is as in figure 6.

independent observables, in the (pseudo)scalar-less case, we add the decay rate �0 and F
L

,

�0 =
1

2

d�+ d�̄

dq2
=

1

4
((3⌃

1c

� ⌃
2c

) + 2 (3⌃
1s

� ⌃
2s

)) (4.3)

F
T

=
3⌃

1s

� ⌃
2s

2�0 , F
L

=
3⌃

1c

� ⌃
2c

4�0 , (4.4)

satisfying F
T

= 1 � F
L

. Another option would involve, e.g., the forward-backward asym-

metry (2.39) although notice that it can be obtained straightforwardly combining P
2

, F
L

and the decay rate.

In figure 7 we plot the di↵erential branching fraction, F
L

and the clean observables

P (0)
1�6

, and we follow the same color and line code as the one used in figure 6. Also, we

show in black boxes the experimental results for the two first observables in the bins [0.05,

2] GeV2 and [2, 4.3] GeV2 that have been measured by the LHCb collaboration [8–10].

These measurements agree very well with the SM predictions. By comparing the first

row with the second and third rows of the panel in figure 7, we ratify the advantage of

using a set of observables with reduced theoretical uncertainties [32, 57, 66]. While for the

di↵erential branching fraction and F
L

the limited knowledge of the hadronic parameters

(specially the soft form factors) is the dominant source of uncertainty, for the P (0)
i

the

power corrections become much more important. In the latter case, the enforcement of

the form factor relations (3.1) is essential to constrain the size of the factorizable power
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[0.05, 2]GeV2 and [2, 4.3]GeV2 [8–10]. The color code is as in figure 6.
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and the decay rate.

In figure 7 we plot the di↵erential branching fraction, F
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and the clean observables
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2] GeV2 and [2, 4.3] GeV2 that have been measured by the LHCb collaboration [8–10].

These measurements agree very well with the SM predictions. By comparing the first
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using a set of observables with reduced theoretical uncertainties [32, 57, 66]. While for the
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the limited knowledge of the hadronic parameters
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the

power corrections become much more important. In the latter case, the enforcement of

the form factor relations (3.1) is essential to constrain the size of the factorizable power
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Figure 7. Di↵erential branching fraction, FL and the “clean” observables P (0)
i around the low-q2

end-point. We show in black the experimental results for the two first observables in the bins
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DV etc references

Abstract

Notes and references accompanying my talk at Imperial on 02 April
2014. Topic: ”Broad resonances” ie resonances in the open-charm
region in B ! K⇤`+`�. Plus some words on ”light-quark” resonances
at low-q2.

1 OPE

Many QCD processes with a large mass or energy scale have an oper-
ator product expansion

Obs =
X

i

C
i

(↵
s

)hf |O
i

|ii (1)

where
C
i

= 1 + r
i1↵s

+ r
i2↵

2
s

+ · · · (2)

and

hf |O
i

|ii = a
i

✓
⇤

Q

◆
di

(3)

Both the perturbative expansions for C
i

and the OPE itself are
believed to be factorially divergent. This means defining them through
their Borel sum is ambiguities. For C

i

the ambiguity behaves like a
matrix element that is power-suppressed relative to that of O

i

. For
the OPE the ambiguity behaves like exp(�C Q2/⇤2).

1.1 e+e� ! hadrons

�(e+e� ! hadrons) / Im (�i)
Z

d4xe�iqxh0|T (j
µ

(x)jµ(x)|0i = 3q2⇧(�q2)

(4)

⇥ h0|1|0i (5)

⇥ h0|q̄q|0i (6)

⇥ h0|G
µ⌫

Gµ⌫ |0i (7)
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