Broad resonances in dilepton spectra

Convener: Danny van Dyk (Siegen U.)

Contributors: Thomas Blake (Warwick U.), Sebastian Jäger (Sussex U.) and Stefan Meinel (MIT)

April 2nd, 2014

Experimental Situation

- in 2012 LHCb announced observation of a resonance beyond $\psi(3770)$ in dilepton spectrum of $B^+ \to K^+ \mu^+ \mu^-$
- to paraphrase Douglas Adams:

"this made a lot of people very irritated and has been widely regarded as a bad move"

experiment performed **model-dependent** decomposition

- same resonances as in $e^+e^- \to hadrons$ expected in $B \to K^{(*)}\ell^+\ell^-$

Known Charmonia with $J^P = 1^-$

Known Charmonia with $J^P = 1^-$

Open Questions

- where are the other resonances beside ψ (4160)?
- to what extent is quark-hadron duality violated?
 - what is the value of $H_T^{(1)}$?
 - what is the value of S_7 ?
- can we learn more about the q^2 spectrum when combining exclusive $b \to s \ell^+ \ell^-$ data?

Low Recoil - OPE and Resonances

Sebastian Jäger's slides

Low Recoil - Resonances and Experimental Interpretation

Tom Blake's slides

An experimentalists confusion

- We are all used to seeing predictions for observables that are continuous in q^2 even at high q^2 . Are these continuous curves misleading (at best)?
- OPE predictions are only expected to be reliable after integration and the integration range in q² must also play an important role. Can we make a bad choice of q² range?

An experimentalists perspective

- We know that experimentally we can see these resonances and are sensitive to their interference with the non-resonant contribution.
- Forgetting OPE for a minute, is this something worth measuring and would the theory community have a use for it?
- What model should we use? We currently use a sum of Breit-Wigner's

$$rac{\mathrm{d}\Gamma}{\mathrm{d}q^2} \propto |\emph{A}_{\mathrm{NR}}^{\mathrm{V}} + \sum_{\emph{k}} \emph{e}^{\emph{i}\delta_{\emph{k}}} \emph{A}_{\mathrm{R}}^{\emph{k}}|^2 + \emph{A}_{\mathrm{NR}}^{\mathrm{AV}}|^2$$

• Is there a more appropriate model to use? e.g. hadronic model from Beylich, Buchalla and Feldmann, arXiv:1101.5118.

An experimentalists perspective

- We also see evidence for light resonances at large-recoil.
 - \hookrightarrow clear evidence for the $B \to K^{*0} \phi$.

(Unfortunately we can't show you anything here)

NB We already have information on helicity structure of the $B \to K^{*0} \phi$ decay (from $\phi \to K^+ K^-$).

Low Recoil - Resonance Model

Stefan Meinel's slides

Low Recoil

Summary(ish) slides

Low Recoil OPE

Quark-Hadron Duality

from M. Shifman, hep-ph/0009131

"[QCD] is a very strange theory [...] in terms of quarks and gluons [which are] never detected experimentally. What is actually produced and detected [...] are hadrons [...]. The quark-hadron duality allows one, under certain circumstances to bridge the gap between the theoretical predictions and experimentally observable quantities."

emphasis added

Low Recoil OPE

OPE vs Reality

- OPE predictions only expected to be reliable after integration
 - start sufficiently beyond onset of open-charm threshold (that is, avoid inclusion of $\psi(3770)$)
 - ▶ ideally, start integration ~ 15GeV²
- from quark-hadron duality: expect $\int X^{\sf OPE}(q^2) \simeq \int X^{\sf exp}(q^2)$
- however, $X^{\mathsf{OPE}}(q^2)$ will differ substantially from $X^{\mathsf{exp}}(q^2)$
- duality violation only(?) from hadronic models ← fit to data?

Large Recoil - ρ , ϕ

Sebastian's slides