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perturbative calculations)

Yet LHCb can only measure the high q2 region:

So instead of talking about things I have forgotten

I will talk about things I never worked on.



Heff  for b → s l+ l-

We know the Standard Model Heff for b → s l+ l- including 
NNLO QCD + some QED and Electroweak corrections.

The relevant Wilson Coefficients C7, C10 & C9 are 
constrained from B → Xs γ , Bs → μ+ μ-  & B → K(*) l+ l- .

What can we learn from B → Xs l+ l- , or Hb → X l+ l- ?

Inclusive decays are thought to be theoretically clean.

3

2 Framework and Basic Expressions

The starting point for the analysis of B̄ → Xsl+l− is the effective Hamiltonian,
in the Standard Model given by (neglecting the small contribution ∼ V ∗

usVub)

Heff = −
GF√

2
V ∗

tsVtb

[

8
∑

i=1

Ci(µ)Qi +
α

2π
C̃9(µ)(s̄b)V −A(l̄l)V +

α

2π
C̃10(s̄b)V −A(l̄l)A

]

.

(1)
The Hamiltonian is known at next-to-leading order [7, 8]. A detailed review may
be found in [20], where the Wilson coefficients Ci and the four-quark operators Qi

are defined explicitly (the operators are typically of the form Qi ∼ (s̄b)(c̄c), for i =
1, . . . , 6, whereas Q7 ∼ embs̄σµν(1 + γ5)bFµν and Q8 ∼ gmbs̄σµν(1 + γ5)λabGa

µν).
From (1) the following general expression can be derived for the differential decay
rate

dΓ(B̄ → Xsl+l−)

dx dy ds
=

G2
Fm5

b

192π3
|V ∗

tsVtb|2
α2

4π2

3

4πm2
b

mb

MB
× (2)

×
[

LS
µν

{(

|C̃eff
9 |2 + |C̃10|2

)

W µν
9 + 4m2

b |C7|2 W µν
7 + 4mbRe C7C̃

eff∗
9 W µν

97

}

+LA
µν

{

2Re C̃eff∗
9 C̃10 W µν

9 + 4mbRe C7C̃
∗
10 W µν

97

}]

.

Here mb (MB) is the b-quark (B meson) mass. C̃eff
9 is a (scheme invariant) effec-

tive Wilson coefficient that includes, in addition to C̃9 from (1), the contributions
from the b → sl+l− transition matrix elements of 4-quark operators Q1, . . ., Q6.
Next

LS
µν = p1µp2ν + p2µp1ν − gµνp1 · p2 and LA

µν = −iεµνϱσpϱ
1p

σ
2 (3)

are the symmetric and antisymmetric leptonic tensors, respectively (p1 (p2) is the
momentum of l− (l+) and ε0123 = +1). We also set s = q2/m2

b (q = p1 + p2),
x = 2p · p1/m2

b and y = 2p · p2/m2
b , where p is the b-quark momentum defined

as pµ = mbvµ in terms of the B-meson four-velocity vµ = pµ
B/MB. The hadronic

tensors W µν
i can be written as W µν

i = 2Im T µν
i where

T µν
9 = i

∫

d4x e−iq·x⟨B|T j†µ9 (x)jν
9 (0)|B⟩ , (4)

T µν
97 = i

∫

d4x e−iq·x⟨B|T j†µ9 (x)jλν
7 (0)|B⟩

iqλ

q2
, (5)

T µν
7 = i

∫

d4x e−iq·x⟨B|T j†λµ
7 (x)jϱν

7 (0)|B⟩
qλqϱ

q4
, (6)

jµ
9 = s̄γµ(1 − γ5)b , jµν

7 = s̄σµν(1 + γ5)b . (7)

Here the B meson state |B⟩ is taken in conventional relativistic normalization
⟨B|B⟩ = 2EV (the explicit appearance of the factor 1/MB in (2) is due to this
definition).
Evaluating the hadronic tensors to leading order in the heavy quark expansion,
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Differential Branching Fraction
For an inclusive quantity we 
use the optical theorem

Im M(A → A) ∝ ΣX Γ(A → X)

For B Physics: Im M(B → B)

➮ two operator insertions

➮ Operator Product Expansion

Γ(B → X) = Parton + Λ/mb
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Figure 3: Cuts through the l1 → l1 forward-scattering diagrams that contribute (a) to
the l1 → l2 e+e− decay rate and (b) to the inclusive hadronic decay rate for l1 → l2 + X.
See text for further explanation.

to an OPE of (39), which would imply a sum over all cuts, not just a restricted set. In
this way Γ(l1 → l2 e+e−) is seen not to be a truly inclusive quantity, for which global
duality would be expected to hold. Rather, the selection of a final state with an e+e−

pair represents a more “exclusive” choice, even for the integrated l1 → l2 e+e− rate,
which leads to an integral over |Π(q2)|2. The situation encountered here is similar to
that for the radiative decay B → Xsγ. As emphasized in [18], in this case contributions
to the decay rate for which the photon is not part of the local operators in the effective
weak Hamiltonian cannot be obtained from an OPE. They correspond to a subset of
cuts analogous to those in Figure 3.

On the other hand, a very different situation occurs for the inclusive hadronic decay
l1 → l2 X (see the second graph in Figure 3). In that case no restriction is placed
on the cuts, and an OPE can be applied to (39). Similarly to the rate of hadronic τ
decay [17], the decay rate is given by a weighted integral over the imaginary parts of the
vector-current (Π) and axial-vector current correlators (ΠT,L

A ),

Γ(l1 → l2 X) =
G2m5

1

16π2

∫ 1

0
ds (1 − s)2

[

(1 + 2s)
(

Im Π(q2) + Im ΠT
A(q2)

)

+ Im ΠL
A(q2)

]

,

(40)
and global duality works in the same way as for the charm contribution to the e+e− →
hadrons cross section.

Finally, we briefly return to the low-q2 region in l1 → l2 e+e− decays mentioned after
(22). Here a quark-level calculation is justified if q2 is sufficiently below the ψ resonance.
We estimate q2

max, the maximum value of q2, up to which a quark-level calculation of
Π(q2) can be trusted. For q2 close to zero the quark picture is reliable, and the ψ-
resonance contribution is only a small part in a hadronic representation of Π. As q2

gets close to M2
ψ, the resonance contribution dominates the correlator while the partonic

result for Π is too small. Therefore, as an estimate for q2
max we use the point in q2 where

the one-loop partonic result equals the ψ-resonance contribution to Π(q2)−Π(0). Using
[Π(q2) − Π(0)]ψ = (f 2

ψ/M2
ψ) q2/(M2

ψ − q2) and the partonic expression in (34) close to
threshold q2 = 4m2

c ≈ M2
ψ, we obtain q2

max = M2
ψ − 3π2f 2

ψ/2 ≈ 7 GeV2. Here we have
considered the limit f 2

ψ/M2
ψ ≪ 1 in order to obtain a simple analytic expression. We then

have Π(q2
max)−Π(0) = 0.04 for the one-loop result, 0.05 for the ψ-resonance contribution,

11

Quark-hadron duality not expected to hold

Discussed e.g. by BBNS [0902.4446] using a toy model

B → Xs l+ l- is not inclusive
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This expression requires only that the charm-quark mass is large compared to the strong-
interaction scale. In the Coulombic limit, one may further use the result (16) for fψ.
Note that the second term in (17) constitutes a sizable fraction of about 20% of the total
rate, despite the electromagnetic origin of this contribution.

4 A toy model

Before we return to a discussion of B → Xs l+l− decays, we shall consider a toy model
in which the hadronic part of the amplitude is exactly the current correlator discussed
above, such that the role of resonances and quark-hadron duality is exhibited in a par-
ticularly transparent way. To this end, let us hypothetically assume the existence of two
“leptons”, l1 with a large mass m1 and l2 with mass m2 = 0, and the effective weak
Hamiltonian

Heff =
G√
2

[

(l̄2l1)V −A (c̄c)V −A − (l̄2l1)V −A (t̄t)V −A

]

. (19)

Since we are interested in the QCD dynamics of the decay, the flavour aspects of the
model are unimportant for our discussion. All particles are assumed to have standard
strong and electromagnetic interactions. Then Heff gives rise to a loop-induced process
l1 → l2 e+e− via charm- and top-quark penguin diagrams with a GIM-like cancellation
between them. The corresponding decay amplitude reads

A(l1 → l2 e+e−) = −
G√
2

ece
2 Π(q2) l̄2γ

µ(1 − γ5)l1 ēγµe . (20)

Here Π ≡ Πc − Πt is given as the difference between the charm and top contributions.
We take mt > m1, and thus Im Π comes only from the charm sector. The correlator
Π(q2) fulfills the dispersion relation (8), where Π(0) is fixed by our model and can be
computed in perturbation theory. To leading order one finds

Π(0) ≡ Πc(0) − Πt(0) =
N

12π2
ln

m2
t

m2
c

. (21)

The form of (20) for the amplitude holds to lowest order in G and e2, but to all orders
in the strong coupling. In fact, since the quark loops have no QCD interactions with the
other, purely leptonic parts of the amplitude, the quantity Π in (20) can be considered
as the exact hadronic correlator in QCD. From (20) we obtain the differential decay rate
(with s = q2/m2

1)

dΓ(l1 → l2 e+e−)

ds
=

G2α2m5
1

27π
(1 − s)2 (1 + 2s) |Π(q2)|2. (22)

We shall now investigate to what extent the hadronic function Π(q2) in (22) may
be approximated by a quark-level calculation. This is clearly the case for values of q2

at which local duality is a reasonable approximation, that is if q2 ≫ 4m2
c is well above
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and 0.06 for the full hadronic expression in the KS representation. Since Π(q2)−Π(0) is
subdominant in comparison to Π(0), given in (21), the quark-level estimate of Π(q2

max)
is still rather accurate. A similar discussion applies to B → Xs l+l−.

5 Charm resonances in B → Xs l+l− decays

We now return to the discussion of B → Xs l+l−, following the analysis of the toy
model considered in the previous section. The branching fraction for the decay chain
B → Xsψ → Xs l+l− is obtained by multiplying (3) with

B(ψ → l+l−) =
Γ(ψ → l+l−)

Γψ
, Γ(ψ → l+l−) =

16πα2f 2
ψ

27Mψ

, (41)

where the total rate Γψ is given in (17). Replacing a2 → κa2 ≈ 0.26 in (3) and using
(1), we then have for the ratio of the resonant and the partonic rate

Rψ ≡
B(B → Xsψ → Xs l+l−)

B(B → Xs l+l−)SD
=

512π5κ2 a2
2 (1 − r)2 (1 + 2r)

9(⟨|C9|2⟩ + |C10|2)
×

f 2
ψ

m2
b

×
f 2
ψ

MψΓψ
. (42)

The first factor is about 23 numerically. The first two factors give approximately 0.16.
The large enhancement from f 2

ψ/(MψΓψ) = 560 overcomes the suppression ∼ 0.16, and
we recover Rψ ≈ 90. This explains the size of Rψ already quoted in (5).

It is interesting to consider the heavy-quark limit mb, mc ≫ ΛQCD with mc/mb fixed,
where the ψ resonance is asymptotically a Coulombic bound state. If we still assume
α≪ αs, then (16) and (18) imply

Rψ =
512π5κ2 a2

2 (1 − r)2 (1 + 2r)

9(⟨|C9|2⟩ + |C10|2)
×

54

5π(π2 − 9)

(

αs(mcv)

αs(Mψ)

)3

×
m2

c

m2
b

. (43)

We see that formally Rψ = O(1) in the heavy-quark limit. However, the expression (43)
contains a large enhancement from numerical factors and from the running of αs between
the momentum scale of the charmonium bound state, entering fψ, and the scale Mψ,
which is relevant for Γψ. Using αs(mcv)/αs(Mψ) ≈ 2, the asymptotic formula (43) gives
Rψ ≈ 60 and thus reproduces the bulk of the resonance enhancement. In the heavy-
quark limit a resummation of Coulomb ladders would automatically account for the large
ψ-resonance contribution in the total rate of B → Xs l+l−. Upon Dyson resummation
of finite-width effects into the resonance propagator, expression (43) is obtained.

The large charm-loop effect may be contrasted with the case of a light resonance ρ,
where Γρ, Mρ, fρ ∼ ΛQCD, and therefore the ratio Rρ, defined in analogy to (42), is
strongly suppressed. Estimating the first factor to be about 10–50 and using f 2

ρ/(MρΓρ)
= 0.38, one finds

Rρ ≈ [10–50] ×
f 2
ρ

m2
b

×
f 2
ρ

MρΓρ
≈ [0.007–0.036] . (44)
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2 Framework and Basic Expressions

The starting point for the analysis of B̄ → Xsl+l− is the effective Hamiltonian,
in the Standard Model given by (neglecting the small contribution ∼ V ∗

usVub)

Heff = −
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2
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tsVtb
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8
∑
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Ci(µ)Qi +
α

2π
C̃9(µ)(s̄b)V −A(l̄l)V +

α

2π
C̃10(s̄b)V −A(l̄l)A

]
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(1)
The Hamiltonian is known at next-to-leading order [7, 8]. A detailed review may
be found in [20], where the Wilson coefficients Ci and the four-quark operators Qi

are defined explicitly (the operators are typically of the form Qi ∼ (s̄b)(c̄c), for i =
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|V ∗
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mb
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Here mb (MB) is the b-quark (B meson) mass. C̃eff
9 is a (scheme invariant) effec-

tive Wilson coefficient that includes, in addition to C̃9 from (1), the contributions
from the b → sl+l− transition matrix elements of 4-quark operators Q1, . . ., Q6.
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Interestingly enough, both ALR(s) and AFB(s) are sensitive to the relative signs
between C7, C̃eff

9 and C̃10. These asymmetries therefore offer useful additional
information on the underlying short distance physics.

3 O(Λ2
QCD/m2

b) Power Corrections to R, ALR and

AFB

The hadronic tensors W µν
i in (2) can be systematically expanded in inverse powers

of the heavy quark mass using the operator product expansion (HQE) approach
supplemented by heavy quark effective theory (HQET). The general procedure
is described in great detail in [23] for the case of B̄ → Xu,clν decay. The first
corrections to the parton result (O(1)) appear at O(Λ2

QCD/m2
b). To this order we

obtain the following expressions for the hadronic tensors (after contracting with
LS

µν)

3

4πmbMB

∫

dxdy LS
µνW

µν
9 =

(

1 +
λ1

2m2
b

)

(1 − s)2(1 + 2s)

+
3λ2

2m2
b

(1 − 15s2 + 10s3) , (14)

1

4πMB

∫

dxdy LS
µνW

µν
97 =

(

1 +
λ1

2m2
b

)

(1 − s)2

−
λ2

2m2
b

(5 + 6s − 7s2) , (15)

3mb

4πMB

∫

dxdy LS
µνW

µν
7 =

(

1 +
λ1

2m2
b

)

(1 − s)2
(

1 +
2

s

)

−
3λ2

2m2
b

6 + 3s − 5s3

s
. (16)

Here

λ1 =
⟨B|h̄(iD)2h|B⟩

2MB
, λ2 =

1

6

⟨B|h̄gσ · Gh|B⟩
2MB

=
M2

B∗ − M2
B

4
, (17)

with h the b-quark field in HQET.
The results in (14)–(16) agree with [14] but differ from the findings of [5]. The

contribution involving W µν
9 is the same that appears in the case of semileptonic

B̄ → Xulν decay. Integration of (14) over s yields (1/2)[1 + (λ1 − 9λ2)/(2m2
b)],

reproducing the well known correction factor derived in [23, 24]. Inserting (14)–
(16) into (2) we obtain for the 1/m2

b corrections to R(s) in (9)

δ1/m2
b
R(s) =

3λ2

2m2
b

(

α2

4π2

∣

∣

∣

∣

Vts

Vcb

∣

∣

∣

∣

2 1

f(z)κ(z)

[
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− (6 + 3s − 5s3)
4|C7|2

s
− (5 + 6s − 7s2)4C7ReC̃eff

9

]

+
g(z)

f(z)
R(s)

)

. (18)
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For s→1 we have [Ali et. al. `97]: 
        (1 - s)2 (1 + 2 s) → 0  and  (1 - 15 s2 + 10 s3) → -4

[Ali et. al. `97] – see 
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Breakdown of the OPE for high q2 region 

[Ali et. al. `97] – see 
also [hep-ph/9801456]
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9

Figure 1: The dilepton invariant mass spectrum (dB(B̄ → Xsl+l−)/dsm)/
B(B̄ → Xceν) ≡ R̃(sm) as a function of sm = q2/M2

B. For sm < 0.65 the
NLO partonic calculation, including 1/m2

b effects, is used. There the lower, mid-
dle and upper curves correspond to mb/GeV = 4.7, 4.8 and 4.9, respectively.
For sm > 0.73 we show the HHChPT prediction for R̃(sm), which is dominated
by B̄ → K̄l+l−. Lower, middle and upper curve are obtained for g = 0.4, 0.5
and 0.6. Linear interpolations between the two regions (0.65 < sm < 0.73) are
indicated by dotted lines to guide the eye. The dashed curve illustrates a smooth
interpolation using central parameter values. The thresholds for the various ex-
clusive modes occur at sm = 0.821 (K), 0.774 (Kπ), 0.728 (Kππ), 0.691 ± 0.008
(K∗, ± half width).

this context we recall that mb here refers to the pole quark mass. In fact, since
the NLO QCD calculation for b → sl+l− is available, the distinction of the pole
mass from other mass definitions is already meaningful at first nontrivial (i.e.
one-loop) order. The value of mb is to be determined from some other observable
and can then be used as input for B̄ → Xsl+l−. In principle the error on mb

can be further reduced in the future. We remark that the dependence of R̃(sm)
on the renormalization scale µ (mb/2 < µ < mb) is less than ±5% in the region
0.5 < sm < 0.7.

The 1/m2
b corrections to B̄ → Xsl+l−, which are included in Fig. 1, are

negative for sm > 0.5, increase with sm and reach about −20% of the leading
result for sm = 0.65. As discussed above, nonperturbative effects that are beyond
the control of the HQE become important for still larger values of sm.

Very close to the endpoint at sm = 0.821 HHChPT offers a complementary

12

[Buchalla,
Isidori `98]
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II. THE q2 SPECTRA TO ORDER 1/m3

b

The nonperturbative corrections to the q2 spec-
trum are calculable in an operator product expan-
sion (OPE) [13]. The first corrections appear at
O(Λ2

QCD/m2
b) [14, 15]. They are parameterized by

two nonperturbative matrix elements, λ1 and λ2. At

O(Λ3
QCD/m3

b) there are two new local matrix elements,
ρ1 and ρ2, four time-ordered products, T1−4 [16, 17], and
process dependent matrix elements of four-quark opera-
tors, fi [18, 19, 20].

The q2 spectrum up to O(Λ3
QCD/m3

b) for B → Xuℓν̄ is
given by [13, 16]

dΓu

dq2
=

G2
F |Vub|2

192 π3
m3

b

[

(1 − s)2(1 + 2s) (2 + λ̂1) + 3(1 − 15s2 + 10s3) (λ̂2 − ρ̂2) +
37 + 24s + 33s2 + 10s3

3
ρ̂1

−
16

(1 − s)+
ρ̂1 − 8 δ(1 − s) (ρ̂1 + f̂u)

]

, (5)

where s = q2/m2
b, and 1/(1− x)+ = limϵ→0[θ(1 − x − ϵ)/(1 − x) + δ(1 − x − ϵ) ln ϵ]. For B → Xsℓ+ℓ− [9, 14, 15, 21],

dΓs

dq2
=

Γ0

2
m3

b

{

(C2
9 + C2

10)

[

(1 − s)2(1 + 2s) (2 + λ̂1) + 3(1 − 15s2 + 10s3) (λ̂2 − ρ̂2) +
37 + 24s + 33s2 + 10s3

3
ρ̂1

]

+ 4 C7 C9

[

3(1 − s)2 (2 + λ̂1) − 3(5 + 6s − 7s2) (λ̂2 − ρ̂2) + (13 + 14s− 3s2)ρ̂1

]

+
4 C2

7

s

[

(1 − s)2(2 + s) (2 + λ̂1) − 3(6 + 3s − 5s3)(λ̂2 − ρ̂2) +
−22 + 33s + 24s2 + 5s3

3
ρ̂1

]

−
[

(C9 + 2C7)
2 + C2

10

]

[

16

(1 − s)+
ρ̂1 + 8 δ(1 − s) (ρ̂1 + f̂s)

]}

, (6)

where

Γ0 =
G2

F

48π3

α2
em

16π2
|VtbV

∗
ts|

2 . (7)

The nonperturbative parameters in Eqs. (5) and (6) are

λ̂1 =
λ1

m2
b

+
T1 + 3T2

m3
b

, λ̂2 =
λ2

m2
b

+
T3 + 3T4

3m3
b

,

ρ̂1,2 =
ρ1,2

m3
b

, f̂u,s =
fu,s

m3
b

. (8)

For our purposes, the Ti can be absorbed into λ1,2. In the
total rate and the q2 spectrum, λ1 enters proportional to
the b quark decay rate, and the ρ2 contribution is pro-
portional to λ2. Hence, the important nonperturbative
parameters for the q2 spectrum are λ2, ρ1, and fu,s.

The value of λ2 is known fairly precisely, λ2 = (m2
B∗ −

m2
B)/4 ≃ 0.12 GeV2. To estimate ρ1, the equations

of motion can be used to relate the relevant operator
to a four-quark operator. Using the vacuum saturation
model, ρ1 = (2παs/9)f2

BmB ≃ (0.4 GeV)3 [17, 22]. The
fits to the B → Xcℓν̄ shape variables are sensitive to ρ1

and prefer a larger central value [23, 24] with significant
uncertainties. We shall use ρ1 = (0.1 ± 0.1)GeV3.

The four-quark operator contributions, fu and fs

(sometimes called weak annihilation, though the light
quark flavor need not match the flavor of the specta-
tor quark), depend on the final state and on the flavor

of the decaying B meson. They contribute near maximal
q2, and their contribution has only been derived for the
total rate [18, 19, 20, 25] and the lepton energy spec-
trum [18, 26]. However, the four-quark operators have
to be consistently included in the OPE for the fully dif-
ferential spectrum. This affects the matching for ρ1 in a
nontrivial way at s = 1, replacing the singular ρ1/(1− s)
terms present in the earlier literature by the plus distri-
butions in the last lines of Eqs. (5) and (6). Apart from
this unambiguous regularization of the singular integrals
at s = 1, our result in Eq. (6) agrees with Ref. [9].

The values of fu and fs are poorly known. They are
important, since they are enhanced by a loop factor,
16π2. In the notation of Ref. [20], fu = 2π2f2

BmB(B1 −
B2), where B1,2 are phenomenological “bag parameters”.
In the vacuum saturation model, B1 = B2 = 1 in charged
B decay and B1 = B2 = 0 in neutral B decay. This gives
a significant suppression with large uncertainty, since
the accuracy of the model is poorly known. Because of
this sensitivity to cancellations between nonperturbative
quantities with comparable magnitudes, the estimates of
fu are uncertain. On general grounds one expects in
charged B decay f±

u to be greater in magnitude than f0
u

in neutral B decay, since in the former case the spectator
flavor matches the flavor of the light quark in the four-
quark operator. The assumption |B1 −B2| = 0.1 [20] for
charged B decay leads to |f±

u | = 0.4 GeV3. This would
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Precise predictions for B → Xsℓ+ℓ− in the large q2 region

Zoltan Ligeti and Frank J. Tackmann
Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720

The inclusive B → Xsℓ+ℓ− decay rate in the large q2 region (q2 > m2
ψ′) receives significant

nonperturbative corrections. The resulting uncertainties can be drastically reduced by normalizing
the rate to the B → Xuℓν̄ rate with the same q2 cut, which allows for much improved tests of
short distance physics. We calculate this ratio, including the order 1/m3

b nonperturbative correc-
tions and the analytically known NNLO perturbative corrections. Since in the large q2 region an
inclusive measurement may be feasible via a sum over exclusive states, our results could be useful
for measurements at LHCb and possibly for studies of B → Xdℓ+ℓ−.

I. INTRODUCTION

The b → s ℓ+ℓ− process plays an important role in
making overconstraining measurements of CKM matrix
elements and searching for physics beyond the Stan-
dard Model (SM). This decay has been observed both
in inclusive B → Xsℓ+ℓ− [1, 2] and exclusive B →
K(∗)ℓ+ℓ− [3, 4] transitions. The inclusive B → Xsℓ+ℓ−

decay rate can be calculated in a systematic expansion if
one ignores the J/ψ and ψ′ resonances. It has thus been
advocated to compare calculations and measurements of
the (differential) rate for q2 < m2

J/ψ and q2 > m2
ψ′ , which

we shall refer to as the small q2 and large q2 regions,
respectively. Here q2 = (pℓ+ + pℓ−)2 is the dilepton in-
variant mass, and in practice the q2 regions are chosen
as q2 <

∼ 6 GeV2 and q2 >
∼ 14 GeV2.

The measurements in the two regions are complemen-
tary, as they have different sensitivities to short distance
physics, the main theoretical uncertainties have different
origins, and the experimental challenges are also distinct.
The most important operators for B → Xsℓ+ℓ− are

O7 =
e

16π2
mb(µ) (s̄LσµνbR)Fµν ,

O9 =
αem

4π
(s̄LγµbL) (ℓ̄ γµℓ) ,

O10 =
αem

4π
(s̄LγµbL) (ℓ̄ γµγ5ℓ) . (1)

The operator O7 is important in B → Xsℓ+ℓ− at small
q2 due to the 1/q2 pole from the photon propagator (and
it dominates the B → Xsγ rate). At large q2, however,
the O7 contribution is small. Compared to small q2, the
rate in the large q2 region has a smaller renormalization
scale dependence and mc dependence [5]. Although the
rate is smaller at large q2, the experimental efficiency is
better [1, 2]. Moreover, requiring large q2 constrains the
Xs to have small invariant mass, mXs

, which suppresses
the background from B → Xcℓ−ν̄ → Xsℓ+ℓ−νν̄. To
suppress this background at small q2, an upper cut on
mXs

is required, complicating the theoretical description
due to the dependence of the measured rate on the shape
function [6], which is absent at large q2 [7, 8].

Despite these advantages, the large q2 region has been
considered less favored. The 1/m3

b corrections are not
much smaller than the 1/m2

b ones [9], so it is often stated

that the B → Xsℓ+ℓ− rate in the large q2 region has a
large hadronic uncertainty [7, 9, 10]. The reason is that
the operator product expansion becomes an expansion in
ΛQCD/(mb −

√

q2) [11] instead of ΛQCD/mb.
Our main point is that this uncertainty can be dras-

tically reduced by comparing measurements and calcula-
tions of the ratio

∫ m2
B

q2
0

dΓ(B → Xsℓ+ℓ−)

dq2

∫ m2
B

q2
0

dΓ(B → Xuℓν̄)

dq2

=
|VtbV ∗

ts|
2

|Vub|2
α2

em

8π2
R(q2

0) , (2)

with the same lower cut q2 > q2
0 in the b → s and b → u

decays.1 The nonperturbative corrections related to the
dominant O9 and O10 contributions are the same as for
the semileptonic rate. Thus, as explained below, nonper-
turbative effects in the ratio in Eq. (2) are suppressed
near maximal q2 by

1 −
(C9 + 2C7)2 + C2

10

C2
9 + C2

10

≃ 0.12 , (3)

which is nearly an order of magnitude. The scheme we
use for the Wilson coefficients C7,9,10 [12] will be defined
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sβ0 [8] and full α2

s [28] corrections are known). Con-
sequently, we use mb ≡ m1S

b everywhere, except for the
MS b-quark mass, mb(µ), in Eq. (9), which is renormal-
ized together with C7(µ).

The inclusive decay rate is expressed in terms of the
effective Wilson coefficients [12]

C incl
7 (q2) = C7 + F7(q

2) + G7(q
2) ,

C incl
9 (q2) = C9 + F9(q

2) + G9(q
2) , (10)

which are defined such that all terms on the right-hand
side are separately µ independent to the order we are
working at. We view the coefficients C7,9,10 as the param-
eters sensitive to physics beyond the SM, which should
be extracted from experimental data and compared with
their SM predictions. Even if they receive significant new
physics contributions, the functions F7,9(q2) and G7,9(q2)
are likely to be dominated by the SM.

The F7,9(q2) terms in Eq. (10) contain contributions
from the remaining O1−6,8 operators in the effective
Hamiltonian, for which we employ a partial NNLO treat-
ment. We use the Wilson coefficients at O(αs) [29, 30,
31, 32, 33], but only keep the O(α0

s) contributions to
F9(q2) [21, 34]. (Note that F7(q2) vanishes at order α0

s.)
We cannot include the O(αs) corrections to F7,9(q2), be-
cause the dominant O1,2 contributions are only known
analytically in the small q2 region [35]. They have been
evaluated numerically for large q2, and lead to a reduced
scale dependence and central value [5].

The G7,9(q2) terms in Eq. (10) contain the calcu-
lable Λ2

QCD/m2
c nonperturbative corrections associated

with intermediate cc̄ loops [36, 37]. They can be in-
cluded this way for any differential rate [12], provided
O(αs/m2

c , 1/m4
c) cross terms are neglected. They affect

R(q2
0) slightly below the 1% level in the large q2

0 region.
Thus, the q2 spectra, including up to NNLO perturba-

tive and 1/m3
b nonperturbative corrections, are

dΓu

dq2
=

G2
F |Vub|2

96 π3
m3

b(1 − s)2
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1 + 2s − Ω99(s)
]

+
dΓ1/m

u

dq2
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dq2
= Γ0m

3
b (1 − s)2
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|C incl
9 |2 + C2

10

)[

1 + 2s − Ω99(s)
]

+ 4 Re (C incl∗
7 C incl

9 )
[

3 − Ω79(s)
]

(11)

+
4|C incl

7 |2

s

[

2 + s − Ω77(s)
]

+ Γbrems

}

+
dΓ1/m

s

dq2
.

The power suppressed corrections, dΓ1/m
u,s /dq2, are given

by the terms in Eqs. (5) and (6) proportional to λ1,2,
ρ1,2, and fu,s, appropriately replacing C7,9 by C incl

7,9 as in
Eq. (11). The functions Ωij(s),

Ω99(s) =
αsCF

2π

[

ω99
L (s) + 2sω99

T (s)
]

,

Ω77(s) =
αsCF

2π

[

sω77
L (s) + 2ω77

T (s)
]

,

Ω79(s) =
αsCF

2π

[

ω79
L (s) + 2ω79

T (s)
]

, (12)

parameter central value uncertainty

µ [GeV] 4.7 +4.7
−2.35

mb [GeV] 4.7 ±0.04

mc [GeV] 1.41 ±0.05

λ2 [GeV2] 0.12 ±0.02

ρ1 [GeV3] 0.1 ±0.1

f±
u [GeV3] 0 ±0.4

f0
u − fs [GeV3] 0 ±0.04

f0
u + fs [GeV3] 0 ±0.2

TABLE I: Central values and ranges of input parameters. The
parameters λ1, ρ2, Ti are irrelevant for this work and are set
to their central values, λ1 = −0.27 GeV2 and ρ2 = Ti = 0.

contain the O(αs) corrections to the matrix elements of
the OiOj contribution [21, 34, 35, 38, 39] converted to the
1S scheme, with ωij

L,T (s) given in Ref. [12]. We neglect

finite bremsstrahlung corrections, Γbrems, associated with
O1−6,8, because they are negligible at large q2 [40, 41].

The perturbative uncertainty due to the choice of
renormalization scale for αem, which appears in the pref-
actor of R(q2

0) in Eq. (2), can be eliminated by includ-
ing the relevant higher order electroweak corrections to
the B → Xsℓ+ℓ− rate, which have been studied in
Refs. [32, 42] in the small q2 region.

We present our result for the SM prediction for two
different values of q2

0 , as it is an open question what its
most suitable choice is. Using the input values in Table I,
with all other inputs as in Ref. [12], we obtain

R(14 GeV2) = C2
9 + C2

10 + 4.79 C2
7 + 4.31 C7 C9

+ 1.06 C9 + 2.24 C7 + 0.95 ,

R(15 GeV2) = C2
9 + C2

10 + 4.27 C2
7 + 4.10 C7 C9

+ 0.97 C9 + 1.91 C7 + 0.93 . (13)

Using the central values of the Ci in Eq. (4) and evalu-
ating the uncertainties by varying the parameters within
their ranges given in Table I, we find

R(14 GeV2) = 35.55
(

1 ± 0.046[fu,s] ± 0.012[λ2,ρ1]

± 0.054[µ] ± 0.030[Ci]

)

,

R(15 GeV2) = 35.42
(

1 ± 0.065[fu,s] ± 0.016[λ2,ρ1]

± 0.051[µ] ± 0.030[Ci]

)

. (14)

Eqs. (13) and (14) can be directly compared with experi-
mental measurements to constrain the Wilson coefficients
(mainly C2

9 + C2
10) and test the standard model.

The first two uncertainties in Eqs. (14) are due to
nonperturbative corrections. They are shown in Fig. 2,
where we plot R(q2

0)/R(14 GeV2) as a function of q2
0 .

The most important uncertainty is due to the four-quark
operators (weak annihilation), in particular, the differ-
ence fu − fs, which does not cancel in the ratio R(q2

0).
The green (wide light) region in Fig. 2 corresponds to
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With small theory uncertainties:



Questions

But only if we normalise to the corresponding b → u 
semileptonic decay with the same q2  cut.

Would the required normalisation channels be present?

Nearly equal mixture of Λb, Bs, B+ & B0 in the initial state.

Also: The breakdown of the OPE is different in 
B → Xu l+ υ and  B → Xu l+ l- , also ms  ≠ mu 
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Low q2 and Conclusions
The OPE works much better at low q2, but 
experimentally not accessible at LHCb?

Cuts introduce sensitivity to shape function – similar to 
B → Xs γ.

Yet, the cuts could be removed – at least to some extent 
– at a Super Flavour Factory. What about the 
b → c (→ s l+ υ) l- ῡ 

My personal view: If we want to learn something about 
short distance physics the better region is low q2 .
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