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[ would like to thank the organisers for inviting me

and for assigning me to talk on inclusive b = s1* I

— since I worked on the low g?region (and only on the
perturbative calculations)

Yet LHCDb can only measure the high g2 region:
So instead of talking about things I have forgotten

[ will talk about things I never worked on.
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Hege forb — s 1t 1-

G 8 a ~ _ a ~ _
Herp = —TQV;z:vtb z; Ci(1)Qi + 5—-Colu) (30)v—-a(ll)v + 5—-Cro(3b)v—a(ll)

We know the Standard Model Heft for b — s 1* I including
NNLO QCD + some QED and Electroweak corrections.

The relevant Wilson Coefficients C7, C19 & Co are
constrained from B — X; v, Bs— ut u- & B— K™ 1 1-.

What can we learn from B — X 17 1, or Hp — X 1+ 1-?
Inclusive decays are thought to be theoretically clean.
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Differential Branching Fraction

For an inclusive quantity we
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Differential Branching Fraction

For an inclusive quantity we
use the optical theorem

o\ I\
D N B
Q Q

Im M(A — A) «x ZxT'(A — X) ’
For B Physics: Im M(B — B) ” ’l Kriiger
> two operator insertions B | —Segal
> Operator Product Expansion | \m'";// g i

- Parton 7 Tlee

['(B — X) = Parton + A/mp | _ . | i



Quark-hadron duality not expected to hold

Discussed e.g. by BBNS [0902.4446] using a toy model

B — X 17 I-is not inclusive Iy :

Hops = = [(Bl)va (@0)v—a — (Bl)v—a () 4]

V2




Quark-hadron duality not expected to hold

Discussed e.g. by BBNS [0902.4446] using a toy model

B — X 1* I-is not inclusive o ly
G C
Hers = 75 (I )y —a (@)v—a— (lh)y—a (t)v_4|

ForB — Xs I I
_ B(B— X — X, Ut7)  512n°k*a3(1—r)2(142r)  fg fi

"= TBB S X e (o) + 1CnP) i M,y
2 2

' ~ R, ~ |10-50 A P~ 10.007-0.036

Gives Ry=93,also R, ~ | | % m2 X ML, [ ]

What about higher W resonances?

5



B — X I I' Ignoring Charm Resonances

B(p) C__ X

I-(p1) I+ (p2)
dl'(B — XJTl7) GZm} ... o> 3  my
— 3 H/ts‘/tb‘ 9 2 X
dr dy ds 1927 472 dmmy Mp

x | Ly, L (IC57 17 + |Cool*) WEY + 4mi|C7|* WE + 4myRe C7C77 WY |
+Li, {2Re C5/7*Chy W™ + 4myRe C7C, Wi

Liu — P1uP2av + P2uP1v — YuvP1 * P2
W = 2Im (z / d*ze™ " (B|T jiH (x)5Y (O)\B>>
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B — X I I' Ignoring Charm Resonances

B(p) X

I-(p1) I+ (p2)
dl'(B — XJTl7) GZm} ... o> 3  my
— 3 H/tsv;fb‘ 9 2 X
dr dy ds 1927 472 dmmy Mp

X [@5,, {15717 + | Caol) Wgﬂ+ 4mi | Cr|* WE + 4myRe C;C5"7* Wi |
+Li, {2Re C5/7*Chy W™ + 4myRe C7C, Wi

S
L,uu — P1uP2av _|_p2,uplu — GuvP1 " P2

wgf= o (i [ deeie @i o8 )
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OPE up to O(A?/ mp?)

Neglecting C; we only need the OPE for Wy

A
dedy L, W = |14 1 —5)%(1 42
47TmbMB/ ray LW ( 2mb>( S) (1+25)
|Ali et. al. "97] — see -3z
also [hep-ph /9801456] me 7 (1= 155% +1057) .
\ (B|h(iD)?h|B) N (Blhgo - Gh|B)  M3. — M?
1 = : 2 = — =

oM 5 6 IMp N 4
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OPE up to O(A?/ mp?)

Neglecting C; we only need the OPE for Wy

A\
dedy L, W = |14 1—8)%(1+2
47TmbMB/ ray Ly W ( 2mb>( S) ( + S)
|Ali et. al. "97] — see -3z
also [hep-ph /9801456] me 7 (1= 155% +1057) .
v (B|h(iD)?h|B) o 1(B|hgo - Gh|B)  Mp. — M3
b OMp ’ 7 6 OMp B 4

For s—1 we have [Ali et. al. "97]:
(1-5)2(1+2s)—0 and (1-15s2+10s3) — -4

Breakdown of the OPE for high g? region
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Breakdown of OPE

Breakdown expected — for high g? there is no hard scale
and the Xs meson has very low momentum

The s momentum is k = A, k? = A2 k and the strange
propagator is 1/ A2

Only finite number of final states at high q? endpoint
Buchalla Isidori: HHChPT forB—=KI*1-,B—=K 1t I

Interpolation to medium g? region
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Figure 1: ~ The dilepton invariant mass spectrum (dB(B — X, t17)/ds,,)/
B(B — X.ev) = R(s,,) as a function of s,, = ¢*°/M%. For s,, < 0.65 the

NLO partonic calculation, including 1/m; effects, is used. There the lower, mid-
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A/ mp expansion of B — X1 v equals the one of Wy
(Up to A3/ my?and for ms= my)

37 + 245 + 3352 + 1053

d& _ G%?lvub|2
3 Pl

d¢2 19273

my [(1 —$)2(1425) (2+ A1) 4+ 3(1 — 1552 4+ 10s>) (Aa — p2) +

S0 G+ )] ’

where s = ¢*/m?, and 1/(1 — z); =lim.o[0(1—2z—€)/(1—2) + (1 —x —€)In¢]. For B — X 10~ [9, 14, 15, 21]

dr, T,
d¢z2 2

. < 37 + 245 + 3352 4+ 1053
mg{(cg+c%0)[(1—s)2(1+28)(2+xl)+3(1—1532+1033)(A2—p2)+ 0T 997 ’ ,01]

3

+ 4Cr Cy [3(1 —$)2(24 A1) —3(5+ 65 — 7s%) (\g — p2) + (13 + 145 — 332)ﬁ1]

42 . . —922 + 335 + 2452 + 557
+T7[<1—s>2<2+s><2+m—3<6+38—553><A2—ﬁ2>+ R ﬁl]
2 2 16 A A ;
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Unknown Unknowns

A/ mp expansion of B — X1 v equals the one of Wy
(Up to A3/ my?and for ms= my)

AT,  GZ|Vi|? { , A , o« 374245+ 33s2+10s3 )
12~ 1920 ml| (1 —s)“(1+2s) (24 A1) + 3(1 — 155 4+ 10s7) (Aa — p2) + 7 p1
16 . - A
- p1—80(L—s)(p1+ fu)| (5
(1—s)+
\ J

where s = ¢*/m?, and 1/(1 — z); =lim.o[0(1—2z—€)/(1—2) + (1 —x —€)In¢]. For B — X 10~ [9, 14, 15, 21]

dr, T,
d¢z2 2

- A 37+ 24 3352 4+ 10s°
mg{(c§+c%0ﬂ(1—s)2(1+zs) (24 A1) +3(1 — 1552 4 105%) (Mg — fo) 4 =28 9357 & 105 ,31]

3

+ 4Cr Cy [3(1 — )2 (24 A1) = 305465 — 75%) (Mg — pa) + (13 + 14s — 332);31]

42 . . —922 + 335 + 2452 + 557
+77[<1—8>2<2+s><2+m—3<6+38—5s3><xg—ﬁ2>+ e ﬁl]
2 2 16 A A ;
— (Co 4 2C7)* 4 Ci | 1—s), p1+8d(1—s)(p1+ fs)||r - (6




Normalisation

A/ mp expansion of B — X1 v equals the one of Wy
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Normalisation

A/ mp expansion of B — X1 v equals the one of Wy
(Up to A3/ mp3 and for ms= my)

Non-perturbative uncertainties will cancel in the ratio
Tackmann et. al. see [0707.1694]

/mQB dT(B — X, 0+67)




Numbers

Normalising to B — Xy 1 v with with the same g? cut Ligeti
and Tackmann find [0707.1694

R(14GeV?) = C3 + C7y +4.79C3 + 4.31C7 Cy
+1.06Cy 4 2.24C7 + 0.95,

R(15GeV?) = Cz + Ciy +4.27C% 4+ 4.10C7 Cy
+0.97C9+ 1.91C7 + 0.93..




Numbers

Normalising to B — Xy 1 v with with the same g? cut Ligeti
and Tackmann find [0707.1694

R(14GeV?) = C3 + C7y +4.79C3 + 4.31C7 Cy
+1.06Cy 4 2.24C7 + 0.95,

R(15GeV?) = Cz + Ciy +4.27C% 4+ 4.10C7 Cy
+0.97C9+ 1.91C7 + 0.93..

With small theory uncertainties:
R(14 GeV?) = 35.55 (1 & 0.046(;, .} £ 0.012(y, ),

+ 0.054(,) +0.030¢,) ,

R(15GeV?) = 35.42 (1 £ 0.065(;, .1 £ 0.0165,_,,]
+ 0.051y,; = 0.030¢,) -




Questions

But only if we normalise to the corresponding b — u
semileptonic decay with the same g? cut.

Would the required normalisation channels be present?
Nearly equal mixture of Ay, Bs, B* & BYin the initial state.

Also: The breakdown of the OPE is different in
B— Xylfvand B — X 1t 1-, also ms = my



Low g?and Conclusions

The OPE works much better at low g?, but
experimentally not accessible at LHCb?

Cuts introduce sensitivity to shape function — similar to
B— Xsv.

Yet, the cuts could be removed — at least to some extent
— at a Super Flavour Factory. What about the
b—=c(—=sltv)lv

My personal view: If we want to learn something about
short distance physics the better region is low g2.



