$\mathrm{H}_{\mathrm{b}} \rightarrow \mathrm{X}_{\mathrm{x}} 1^{+} 1^{-} @ \mathrm{q}^{2}>14 \mathrm{GeV}^{2}$

" $b \rightarrow$ s l ${ }^{+}$l- Workshop" Imperial College
2 April 2014

[hep-ph/9308246, hep-ph /9801456, 0707.1694, 0902.4446]

Martin Gorbahn
University of Liverpool

Content

I would like to thank the organisers for inviting me
and for assigning me to talk on inclusive $b \rightarrow \mathrm{sl}^{+} \mathrm{l}^{-}$

- since I worked on the low q^{2} region (and only on the perturbative calculations)

Yet LHCb can only measure the high q^{2} region:

Content

I would like to thank the organisers for inviting me
and for assigning me to talk on inclusive $b \rightarrow \mathrm{sl}^{+} \mathrm{l}^{-}$

- since I worked on the low q^{2} region (and only on the perturbative calculations)

Yet LHCb can only measure the high q^{2} region:
So instead of talking about things I have forgotten

Content

I would like to thank the organisers for inviting me
and for assigning me to talk on inclusive $\mathrm{b} \rightarrow \mathrm{sl}^{+} \mathrm{l}^{-}$

- since I worked on the low q^{2} region (and only on the perturbative calculations)

Yet LHCb can only measure the high q^{2} region:
So instead of talking about things I have forgotten
I will talk about things I never worked on.

$\mathrm{H}_{\mathrm{eff}}$ for $\mathrm{b} \rightarrow \mathrm{sl}^{+} \mathrm{l}^{-}$

$\mathcal{H}_{e f f}=-\frac{G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b}\left[\sum_{i=1}^{8} C_{i}(\mu) Q_{i}+\frac{\alpha}{2 \pi} \tilde{C}_{9}(\mu)(\bar{s} b)_{V-A}(\bar{l})_{V}+\frac{\alpha}{2 \pi} \tilde{C}_{10}(\bar{s} b)_{V-A}(\bar{l})_{A}\right]$

We know the Standard Model $H_{\text {eff }}$ for $\mathrm{b} \rightarrow \mathrm{sl}^{+} \mathrm{l}^{-}$including NNLO QCD + some QED and Electroweak corrections.

The relevant Wilson Coefficients $\mathrm{C}_{7}, \mathrm{C}_{10} \& \mathrm{C}_{9}$ are constrained from $B \rightarrow X_{s} \gamma, B_{s} \rightarrow \mu^{+} \mu^{-} \& B \rightarrow K^{(*)} l^{+} l^{-}$.

What can we learn from $B \rightarrow X_{s} 1^{+} l^{-}$, or $\mathrm{H}_{\mathrm{b}} \rightarrow \mathrm{X}^{+} \mathrm{l}^{-}$?
Inclusive decays are thought to be theoretically clean.

Differential Branching Fraction

For an inclusive quantity we use the optical theorem
$\operatorname{Im} \mathrm{M}(\mathrm{A} \rightarrow \mathrm{A}) \propto \Sigma_{\mathrm{x}} \Gamma(\mathrm{A} \rightarrow \mathrm{X})$
For B Physics: $\operatorname{Im} \mathrm{M}(\mathrm{B} \rightarrow \mathrm{B})$

Differential Branching Fraction

For an inclusive quantity we use the optical theorem
$\operatorname{Im} \mathrm{M}(\mathrm{A} \rightarrow \mathrm{A}) \propto \Sigma_{\mathrm{x}} \Gamma(\mathrm{A} \rightarrow \mathrm{X})$

For B Physics: $\operatorname{Im} \mathrm{M}(\mathrm{B} \rightarrow \mathrm{B})$
\leadsto two operator insertions

Differential Branching Fraction

For an inclusive quantity we use the optical theorem
$\operatorname{Im} \mathrm{M}(\mathrm{A} \rightarrow \mathrm{A}) \propto \Sigma_{\mathrm{x}} \Gamma(\mathrm{A} \rightarrow \mathrm{X})$

For B Physics: $\operatorname{Im} \mathrm{M}(\mathrm{B} \rightarrow \mathrm{B})$
\leadsto two operator insertions
\curvearrowleft Operator Product Expansion

Differential Branching Fraction

For an inclusive quantity we use the optical theorem
$\operatorname{Im} \mathrm{M}(\mathrm{A} \rightarrow \mathrm{A}) \propto \Sigma_{\mathrm{X}} \Gamma(\mathrm{A} \rightarrow \mathrm{X})$

For B Physics: $\operatorname{Im} \mathrm{M}(\mathrm{B} \rightarrow \mathrm{B})$
\leadsto two operator insertions
\Rightarrow Operator Product Expansion
$\Gamma(B \rightarrow X)=$ Parton $+\Lambda / \mathrm{m}_{\mathrm{b}}$

Quark-hadron duality not expected to hold

Discussed e.g. by BBNS [0902.4446] using a toy model $B \rightarrow X_{s} l^{+} l^{-}$is not inclusive
$\mathcal{H}_{e f f}=\frac{G}{\sqrt{2}}\left[\left(\bar{l}_{2} l_{1}\right)_{V-A}(\bar{c} c)_{V-A}-\left(\bar{l}_{2} l_{1}\right)_{V-A}(\bar{t} t)_{V-A}\right] \xi_{i n}^{c} e_{e}^{c}$

Quark-hadron duality not expected to hold

Discussed e.g. by BBNS [0902.4446] using a toy model
$B \rightarrow X_{s} 1^{+} 1^{-}$is not inclusive

$$
\mathcal{H}_{e f f}=\frac{G}{\sqrt{2}}\left[\left(\bar{l}_{2} l_{1}\right)_{V-A}(\bar{c} c)_{V-A}-\left(\bar{l}_{2} l_{1}\right)_{V-A}(\bar{t} t)_{V-A}\right]
$$

For B $\rightarrow \mathrm{X}_{\mathrm{s}} \mathrm{l}^{+} \mathrm{l}^{-}$

$$
R_{\psi} \equiv \frac{\mathrm{B}\left(B \rightarrow X_{s} \psi \rightarrow X_{s} l^{+} l^{-}\right)}{\mathrm{B}\left(B \rightarrow X_{s} l^{+} l^{-}\right)_{\mathrm{SD}}}=\frac{512 \pi^{5} \kappa^{2} a_{2}^{2}(1-r)^{2}(1+2 r)}{\left.9\left(\left.\langle | C_{9}\right|^{2}\right\rangle+\left|C_{10}\right|^{2}\right)} \times \frac{f_{\psi}^{2}}{m_{b}^{2}} \times \frac{f_{\psi}^{2}}{M_{\psi} \Gamma_{\psi}}
$$

Gives $\mathrm{R}_{\Psi} \approx 93$, also $R_{\rho} \approx[10-50] \times \frac{f_{\rho}^{2}}{m_{b}^{2}} \times \frac{f_{\rho}^{2}}{M_{\rho} \Gamma_{\rho}} \approx[0.007-0.036]$
What about higher Ψ resonances?

$\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \mathrm{l}^{+}$l- Ignoring Charm Resonances $^{\text {Con }}$

$$
\begin{aligned}
& \frac{d \Gamma\left(\bar{B} \rightarrow X_{s} l^{+} l^{-}\right)}{d x d y d s}=\frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{t s}^{*} V_{t b}\right|^{2} \frac{\alpha^{2}}{4 \pi^{2}} \frac{3}{4 \pi m_{b}^{2}} \frac{m_{b}}{M_{B}} \times \\
& \times\left[L_{\mu \nu}^{S}\left\{\left(\left|\tilde{C}_{9}^{\text {eff }}\right|^{2}+\left|\tilde{C}_{10}\right|^{2}\right) W_{9}^{\mu \nu}+4 m_{b}^{2}\left|C_{7}\right|^{2} W_{7}^{\mu \nu}+4 m_{b} \operatorname{Re} C_{7} \tilde{C}_{9}^{e f f *} W_{97}^{\mu \nu}\right\}\right. \\
& \left.\quad+L_{\mu \nu}^{A}\left\{2 \operatorname{Re} \tilde{C}_{9}^{\text {eff**}} \tilde{C}_{10} W_{9}^{\mu \nu}+4 m_{b} \operatorname{Re} C_{7} \tilde{C}_{10}^{* *} W_{97}^{\mu \nu}\right\}\right] .
\end{aligned}
$$

$$
L_{\mu \nu}^{S}=p_{1 \mu} p_{2 \nu}+p_{2 \mu} p_{1 \nu}-g_{\mu \nu} p_{1} \cdot p_{2}
$$

$$
W_{9}^{\mu \nu}=2 \operatorname{Im}\left(i \int d^{4} x e^{-i q \cdot x}\langle B| T j_{9}^{\dagger \mu}(x) j_{9}^{\nu}(0)|B\rangle\right)
$$

$\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \mathrm{l}^{+}$l- Ignoring Charm Resonances 2

$$
\begin{aligned}
& \frac{d \Gamma\left(\bar{B} \rightarrow X_{s} l^{+} l^{-}\right)}{d x d y d s}=\frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{t s}^{*} V_{t b}\right|^{2} \frac{\alpha^{2}}{4 \pi^{2}} \frac{3}{4 \pi m_{b}^{2}} \frac{m_{b}}{M_{B}} \times \\
& \times\left[\left.\left|E_{\mu \nu}^{S}\left\{\left(\left|\tilde{C}_{9}^{e f f}\right|^{2}+\left|\tilde{C}_{10}\right|^{2}\right) W_{9}^{\mu \nu}\right)+4 m_{b}^{2}\right| C_{7}\right|^{2} W_{7}^{\mu \nu}+4 m_{b} \operatorname{Re} C_{7} \tilde{C}_{9}^{e f f *} W_{97}^{\mu \nu}\right\} \\
& \left.\quad+L_{\mu \nu}^{A}\left\{2 \operatorname{Re} \tilde{C}_{9}^{e f f *} \tilde{C}_{10} W_{9}^{\mu \nu}+4 m_{b} \operatorname{Re} C_{7} \tilde{C}_{10}^{*} W_{97}^{\mu \nu}\right\}\right] .
\end{aligned}
$$

$$
\begin{aligned}
& L_{\mu \nu}^{S}=p_{1 \mu} p_{2 \nu}+p_{2 \mu} p_{1 \nu}-g_{\mu \nu} p_{1} \cdot p_{2} \\
& W_{9}^{\mu \nu}
\end{aligned}=2 \operatorname{Im}\left(i \int d^{4} x e^{-i q \cdot x}\langle B| T j_{9}^{\dagger \mu}(x) j_{9}^{\nu}(0)|B\rangle\right), ~ l
$$

OPE up to $O\left(\Lambda^{2} / m_{b}{ }^{2}\right)$

Neglecting C_{7} we only need the OPE for W_{9}

$$
\begin{aligned}
& \frac{3}{4 \pi m_{b} M_{B}} \int d x d y L_{\mu \nu}^{S} W_{9}^{\mu \nu}=\left(1+\frac{\lambda_{1}}{2 m_{b}^{2}}\right)(1-s)^{2}(1+2 s) \\
& \text { [Ali et. al. `97] - see } \\
& \text { also [hep-ph/9801456] } \\
& +\frac{3 \lambda_{2}}{2 m_{b}^{2}}\left(1-15 s^{2}+10 s^{3}\right), \\
& \lambda_{1}=\frac{\langle B| \bar{h}(i D)^{2} h|B\rangle}{2 M_{B}}, \\
& \lambda_{2}=\frac{1}{6} \frac{\langle B| \bar{h} g \sigma \cdot G h|B\rangle}{2 M_{B}}=\frac{M_{B^{*}}^{2}-M_{B}^{2}}{4}
\end{aligned}
$$

OPE up to $\mathrm{O}\left(\Lambda^{2} / \mathrm{m}_{\mathrm{b}}{ }^{2}\right)$

Neglecting C_{7} we only need the OPE for W_{9}

$$
\begin{aligned}
& \frac{3}{4 \pi m_{b} M_{B}} \int d x d y L_{\mu \nu}^{S} W_{9}^{\mu \nu}=\left(1+\frac{\lambda_{1}}{2 m_{b}^{2}}\right)(1-s)^{2}(1+2 s) \\
& \text { [Ali et. al. `97] - see } \\
& \text { also [hep-ph/9801456] } \\
& +\frac{3 \lambda_{2}}{2 m_{b}^{2}}\left(1-15 s^{2}+10 s^{3}\right), \\
& \lambda_{1}=\frac{\langle B| \bar{h}(i D)^{2} h|B\rangle}{2 M_{B}}, \\
& \lambda_{2}=\frac{1}{6} \frac{\langle B| \bar{h} g \sigma \cdot G h|B\rangle}{2 M_{B}}=\frac{M_{B^{*}}^{2}-M_{B}^{2}}{4}
\end{aligned}
$$

For $s \rightarrow 1$ we have [Ali et. al. `97]:

$$
(1-s)^{2}(1+2 s) \rightarrow 0 \text { and }\left(1-15 s^{2}+10 s^{3}\right) \rightarrow-4
$$

OPE up to $\mathrm{O}\left(\Lambda^{2} / \mathrm{m}_{\mathrm{b}}^{2}\right)$

Neglecting C_{7} we only need the OPE for W_{9}

$$
\begin{array}{cc}
\frac{3}{4 \pi m_{b} M_{B}} \int d x d y L_{\mu \nu}^{S} W_{9}^{\mu \nu} & =\left(1+\frac{\lambda_{1}}{2 m_{b}^{2}}\right)(1-s)^{2}(1+2 s) \\
\text { [Ali et. al. `97] - see } \\
\text { also [hep-ph/9801456] } & +\frac{3 \lambda_{2}}{2 m_{b}^{2}}\left(1-15 s^{2}+10 s^{3}\right), \\
\lambda_{1}=\frac{\langle B| \bar{h}(i D)^{2} h|B\rangle}{2 M_{B}}, \quad \lambda_{2}= & \frac{1}{6} \frac{\langle B| \bar{h} g \sigma \cdot G h|B\rangle}{2 M_{B}}=\frac{M_{B^{*}}^{2}-M_{B}^{2}}{4}
\end{array}
$$

For $s \rightarrow 1$ we have [Ali et. al. `97]:

$$
(1-s)^{2}(1+2 s) \rightarrow 0 \text { and }\left(1-15 s^{2}+10 s^{3}\right) \rightarrow-4
$$

Breakdown of the OPE for high q^{2} region

Breakdown of OPE

Breakdown of OPE

Breakdown expected - for high q^{2} there is no hard scale and the X_{s} meson has very low momentum

Breakdown of OPE

Breakdown expected - for high q^{2} there is no hard scale and the X_{s} meson has very low momentum

The s momentum is $\mathrm{k} \approx \Lambda, \mathrm{k}^{2} \approx \Lambda^{2} \mathrm{k}$ and the strange propagator is $1 / \Lambda^{2}$.

Breakdown of OPE

Breakdown expected - for high q^{2} there is no hard scale and the X_{s} meson has very low momentum

The s momentum is $\mathrm{k} \approx \Lambda, \mathrm{k}^{2} \approx \Lambda^{2} \mathrm{k}$ and the strange propagator is $1 / \Lambda^{2}$.

Only finite number of final states at high q^{2} endpoint Buchalla Isidori: HHChPT for $\mathrm{B} \rightarrow \mathrm{K} \mathrm{l}^{+} \mathrm{l}^{-}, \mathrm{B} \rightarrow \mathrm{K} \pi \mathrm{l}^{+} \mathrm{l}^{-}$

Breakdown of OPE

Breakdown expected - for high q^{2} there is no hard scale and the X_{s} meson has very low momentum

The s momentum is $\mathrm{k} \approx \Lambda, \mathrm{k}^{2} \approx \Lambda^{2} \mathrm{k}$ and the strange propagator is $1 / \Lambda^{2}$.

Only finite number of final states at high q^{2} endpoint Buchalla Isidori: HHChPT for $\mathrm{B} \rightarrow \mathrm{K} \mathrm{l}^{+} \mathrm{l}^{-}, \mathrm{B} \rightarrow \mathrm{K} \pi \mathrm{l}^{+} \mathrm{l}^{-}$

Interpolation to medium q^{2} region

Figure 1: The dilepton invariant mass spectrum $\left(d B\left(\bar{B} \rightarrow X_{s} l^{+} l^{-}\right) / d s_{m}\right) /$ $B\left(\bar{B} \rightarrow X_{c} e \nu\right) \equiv \tilde{R}\left(s_{m}\right)$ as a function of $s_{m}=q^{2} / M_{B}^{2}$. For $s_{m}<0.65$ the NLO partonic calculation, including $1 / m_{b}^{2}$ effects, is used. There the lower, mid-

Unknown Unknowns

Λ / m_{b} expansion of $B \rightarrow X_{u} l v$ equals the one of W_{9} (Up to $\Lambda^{3} / \mathrm{m}_{\mathrm{b}}{ }^{3}$ and for $\mathrm{m}_{\mathrm{s}}=\mathrm{m}_{\mathrm{u}}$)

Unknown Unknowns

Λ / m_{b} expansion of $B \rightarrow X_{u} l v$ equals the one of W_{9} (Up to $\Lambda^{3} / \mathrm{m}_{\mathrm{b}}{ }^{3}$ and for $\mathrm{m}_{\mathrm{s}}=\mathrm{m}_{\mathrm{u}}$)

$$
\begin{align*}
\frac{\mathrm{d} \Gamma_{u}}{\mathrm{~d} q^{2}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{192 \pi^{3}} m_{b}^{3} & {\left[(1-s)^{2}(1+2 s)\left(2+\hat{\lambda}_{1}\right)+3\left(1-15 s^{2}+10 s^{3}\right)\left(\hat{\lambda}_{2}-\hat{\rho}_{2}\right)+\frac{37+24 s+33 s^{2}+10 s^{3}}{3} \hat{\rho}_{1}\right.} \\
& \left.-\frac{16}{(1-s)_{+}} \hat{\rho}_{1}-8 \delta(1-s)\left(\hat{\rho}_{1}+\hat{f}_{u}\right)\right]
\end{align*}
$$

where $s=q^{2} / m_{b}^{2}$, and $1 /(1-x)_{+}=\lim _{\epsilon \rightarrow 0}[\theta(1-x-\epsilon) /(1-x)+\delta(1-x-\epsilon) \ln \epsilon]$. For $B \rightarrow X_{s} \ell^{+} \ell^{-}[9,14,15,21]$

$$
\begin{align*}
\frac{\mathrm{d} \Gamma_{s}}{\mathrm{~d} q^{2}}=\frac{\Gamma_{0}}{2} m_{b}^{3} & \left\{\left(\mathcal{C}_{9}^{2}+\mathcal{C}_{10}^{2}\right)\left[(1-s)^{2}(1+2 s)\left(2+\hat{\lambda}_{1}\right)+3\left(1-15 s^{2}+10 s^{3}\right)\left(\hat{\lambda}_{2}-\hat{\rho}_{2}\right)+\frac{37+24 s+33 s^{2}+10 s^{3}}{3} \hat{\rho}_{1}\right]\right. \\
& +4 \mathcal{C}_{7} \mathcal{C}_{9}\left[3(1-s)^{2}\left(2+\hat{\lambda}_{1}\right)-3\left(5+6 s-7 s^{2}\right)\left(\hat{\lambda}_{2}-\hat{\rho}_{2}\right)+\left(13+14 s-3 s^{2}\right) \hat{\rho}_{1}\right] \\
& +\frac{4 \mathcal{C}_{7}^{2}}{s}\left[(1-s)^{2}(2+s)\left(2+\hat{\lambda}_{1}\right)-3\left(6+3 s-5 s^{3}\right)\left(\hat{\lambda}_{2}-\hat{\rho}_{2}\right)+\frac{-22+33 s+24 s^{2}+5 s^{3}}{3} \hat{\rho}_{1}\right] \\
& \left.-\left[\left(\mathcal{C}_{9}+2 \mathcal{C}_{7}\right)^{2}+\mathcal{C}_{10}^{2}\right]\left[\frac{16}{(1-s)_{+}} \hat{\rho}_{1}+8 \delta(1-s)\left(\hat{\rho}_{1}+\hat{f}_{s}\right)\right]\right\}
\end{align*}
$$

Unknown Unknowns

Λ / m_{b} expansion of $B \rightarrow X_{u} l v$ equals the one of W_{9} (Up to $\Lambda^{3} / \mathrm{m}_{\mathrm{b}}{ }^{3}$ and for $\mathrm{m}_{\mathrm{s}}=\mathrm{m}_{\mathrm{u}}$)

$$
\begin{align*}
\frac{\mathrm{d} \Gamma_{u}}{\mathrm{~d} q^{2}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{192 \pi^{3}} m_{b}^{3}\left[\begin{array}{l}
{[1-s)^{2}(1+2 s)\left(2+\hat{\lambda}_{1}\right)+3\left(1-15 s^{2}+10 s^{3}\right)\left(\hat{\lambda}_{2}-\hat{\rho}_{2}\right)+\frac{37+24 s+33 s^{2}+10 s^{3}}{3} \hat{\rho}_{1}} \\
\\
\left.-\frac{16}{(1-s)_{+}} \hat{\rho}_{1}-8 \delta(1-s)\left(\hat{\rho}_{1}+\hat{f}_{u}\right)\right]
\end{array}\right.
\end{align*}
$$

where $s=q^{2} / m_{b}^{2}$, and $1 /(1-x)_{+}=\lim _{\epsilon \rightarrow 0}[\theta(1-x-\epsilon) /(1-x)+\delta(1-x-\epsilon) \ln \epsilon]$. For $B \rightarrow X_{s} \ell^{+} \ell^{-}[9,14,15,21]$

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma_{s}}{\mathrm{~d} q^{2}}=\frac{\Gamma_{0}}{2} m_{b}^{3} & \left\{\left(\mathcal{C}_{9}^{2}+\mathcal{C}_{10}^{2}\right)\left[(1-s)^{2}(1+2 s)\left(2+\hat{\lambda}_{1}\right)+3\left(1-15 s^{2}+10 s^{3}\right)\left(\hat{\lambda}_{2}-\hat{\rho}_{2}\right)+\frac{37+24 s+33 s^{2}+10 s^{3}}{3} \hat{\rho}_{1}\right]\right) \\
& +4 \mathcal{C}_{7} \mathcal{C}_{9}\left[3(1-s)^{2}\left(2+\hat{\lambda}_{1}\right)-3\left(5+6 s-7 s^{2}\right)\left(\hat{\lambda}_{2}-\hat{\rho}_{2}\right)+\left(13+14 s-3 s^{2}\right) \hat{\rho}_{1}\right] \\
& +\frac{4 \mathcal{C}_{7}^{2}}{s}\left[(1-s)^{2}(2+s)\left(2+\hat{\lambda}_{1}\right)-3\left(6+3 s-5 s^{3}\right)\left(\hat{\lambda}_{2}-\hat{\rho}_{2}\right)+\frac{-22+33 s+24 s^{2}+5 s^{3}}{3} \hat{\rho}_{1}\right] \\
& \left.\left.-\left[\left(\mathcal{C}_{9}+2 \mathcal{C}_{7}\right)^{2}+\mathcal{C}_{10}^{2}\right]\left[\frac{16}{(1-s)_{+}} \hat{\rho}_{1}+8 \delta(1-s)\left(\hat{\rho}_{1}+\hat{f}_{s}\right)\right]\right)\right\}
\end{aligned}
$$

Normalisation

Λ / m_{b} expansion of $B \rightarrow X_{u} l v$ equals the one of W_{9} (Up to $\Lambda^{3} / \mathrm{m}_{\mathrm{b}}{ }^{3}$ and for $\mathrm{m}_{\mathrm{s}}=\mathrm{m}_{\mathrm{u}}$)

Normalisation

Λ / m_{b} expansion of $B \rightarrow X_{u} l v$ equals the one of W_{9} (Up to $\Lambda^{3} / \mathrm{m}_{\mathrm{b}}{ }^{3}$ and for $\mathrm{m}_{\mathrm{s}}=\mathrm{m}_{\mathrm{u}}$)

Non-perturbative uncertainties will cancel in the ratio Tackmann et. al. see [0707.1694]

$$
\frac{\int_{q_{0}^{2}}^{m_{B}^{2}} \frac{\mathrm{~d} \Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{\mathrm{d} q^{2}}}{\int_{q_{0}^{2}}^{m_{B}^{2}} \frac{\mathrm{~d} \Gamma\left(B \rightarrow X_{u} \ell \bar{\nu}\right)}{\mathrm{d} q^{2}}}=\frac{\left|V_{t b} V_{t s}^{*}\right|^{2}}{\left|V_{u b}\right|^{2}} \frac{\alpha_{\mathrm{em}}^{2}}{8 \pi^{2}} \mathcal{R}\left(q_{0}^{2}\right)
$$

Numbers

Normalising to $B \rightarrow X_{u} l^{+} v$ with with the same q^{2} cut Ligeti and Tackmann find [0707.1694]

$$
\begin{aligned}
\mathcal{R}\left(14 \mathrm{GeV}^{2}\right)= & \mathcal{C}_{9}^{2}+\mathcal{C}_{10}^{2}+4.79 \mathcal{C}_{7}^{2}+4.31 \mathcal{C}_{7} \mathcal{C}_{9} \\
& +1.06 \mathcal{C}_{9}+2.24 \mathcal{C}_{7}+0.95 \\
\mathcal{R}\left(15 \mathrm{GeV}^{2}\right)= & \mathcal{C}_{9}^{2}+\mathcal{C}_{10}^{2}+4.27 \mathcal{C}_{7}^{2}+4.10 \mathcal{C}_{7} \mathcal{C}_{9} \\
& +0.97 \mathcal{C}_{9}+1.91 \mathcal{C}_{7}+0.93
\end{aligned}
$$

Numbers

Normalising to $B \rightarrow X_{u} l^{+} v$ with with the same q^{2} cut Ligeti and Tackmann find [0707.1694]

$$
\begin{aligned}
\mathcal{R}\left(14 \mathrm{GeV}^{2}\right)= & \mathcal{C}_{9}^{2}+\mathcal{C}_{10}^{2}+4.79 \mathcal{C}_{7}^{2}+4.31 \mathcal{C}_{7} \mathcal{C}_{9} \\
& +1.06 \mathcal{C}_{9}+2.24 \mathcal{C}_{7}+0.95 \\
\mathcal{R}\left(15 \mathrm{GeV}^{2}\right)= & \mathcal{C}_{9}^{2}+\mathcal{C}_{10}^{2}+4.27 \mathcal{C}_{7}^{2}+4.10 \mathcal{C}_{7} \mathcal{C}_{9} \\
& +0.97 \mathcal{C}_{9}+1.91 \mathcal{C}_{7}+0.93
\end{aligned}
$$

With small theory uncertainties:

$$
\begin{aligned}
\mathcal{R}\left(14 \mathrm{GeV}^{2}\right)=35.55(1 & \pm 0.046_{\left[f_{u, s}\right]} \pm 0.012_{\left[\lambda_{2}, \rho_{1}\right]} \\
& \pm 0.054_{[\mu]} \pm 0.030_{\left[\mathcal{C}_{i}\right]}, \\
\mathcal{R}\left(15 \mathrm{GeV}^{2}\right)=35.42(1 & \pm 0.065_{\left[f_{u, s}\right]} \pm 0.016_{\left[\lambda_{2}, \rho_{1}\right]} \\
& \left. \pm 0.051_{[\mu]} \pm 0.030_{\left[\mathcal{C}_{i}\right]}\right) .
\end{aligned}
$$

Questions

But only if we normalise to the corresponding $b \rightarrow u$ semileptonic decay with the same q^{2} cut.

Would the required normalisation channels be present?
Nearly equal mixture of $\Lambda_{\mathrm{b}}, \mathrm{B}_{\mathrm{s}}, \mathrm{B}^{+} \& \mathrm{~B}^{0}$ in the initial state.
Also: The breakdown of the OPE is different in
$B \rightarrow X_{u} l^{+} v$ and $B \rightarrow X_{u} l^{+} l^{-}$, also $m_{s} \neq m_{u}$

Low q^{2} and Conclusions

The OPE works much better at low q^{2}, but experimentally not accessible at LHCb?

Cuts introduce sensitivity to shape function - similar to $B \rightarrow X_{s} \gamma$.

Yet, the cuts could be removed - at least to some extent - at a Super Flavour Factory. What about the $\mathrm{b} \rightarrow \mathrm{c}\left(\rightarrow \mathrm{sl}^{+} v\right) \mathrm{l}^{-} \bar{v}$

My personal view: If we want to learn something about short distance physics the better region is low q^{2}.

