Measurement of inclusive decay rates and lepton angle θ

Inclusive b-hadron decays $H_b \to X \mu^+ \mu^-$ with $H_b \in \{B^{\pm}, B^0, B_s, \Lambda_b, \ldots\}$.

Fractions: $B^{\pm} \sim 30\%,~B^0 \sim 30\%,~B_s \sim 10\%,~\Lambda_b \sim 20\%,~{
m rest-small}.$

Theory:
$$\Gamma(H_b \to X \mu^+ \mu^-) = \Gamma(b \to X^p \mu^+ \mu^-) + \Delta \Gamma^{\text{nonpert}}$$
.

Good news: $\Delta \Gamma^{\text{nonpert}}$ scales like $\mathcal{O}\left(\frac{\Lambda^2}{m_h^2}\right)$ when:

- Long-distance contributions from the four-quark operators are neglected [arXiv:0902.4446].
- One integrates over the lepton pair energy and angle for fixed q^2 . Integrating over the angle seems unavoidable when the H_b rest frame remains unknown.

Problems:

- Charm loops from four-quark operators at large q^2 ? At small q^2 with extra gluons?
- ullet Need for cuts on lepton energy for small q^2 ? TH: Analogy to $B \to X_s \gamma$, EXP: Frame?
- Backgrounds for large q^2 (e.g., semileptonic $b \to c$ followed by semileptonic $c \to s, d$)?
- Extra backgrounds for small q^2 (e.g., $J/\psi \to \mu^+\mu^- X$ with BR at the $\sim 10^{-4}$ level)?
- EXP: Normalization?