Remarks on next theoretical activities
 a general and a few topical ones

Gudrun Hiller, Dortmund

Our program: Test the SM, explore its borders and the physics beyond!

- $\Lambda_{N P} \gtrsim m_{W}$: Effective $|\Delta B|=|\Delta S|=1$ Hamiltonian $\mathcal{H}_{\mathrm{eff}}=\sum C_{i} O_{i}=\sum C_{i} O_{i}^{S M}+\sum C_{i} O_{i}^{N P}$
O_{i} : SM operators, chirality-flipped ones, tensors, including CPX $b \rightarrow s$, possibly vs $b \rightarrow d$ processes (CKM-link in MFV-models), e.g.

$$
R_{\mu \mu}=\frac{\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)} \sim \frac{m_{B_{s}} f_{B_{s}}^{2} \tau_{B_{s}}}{m_{B_{d}} f_{B_{d}}^{2} \tau_{B_{d}}} r_{\mathrm{ps}} \times\left\{\begin{array}{cl}
\frac{\left|V_{t s}\right|^{2}}{\left|V_{t s}\right|^{2}} & \text { for }\left(\mathrm{MFV},\left(\delta_{i 3}^{d}\right)_{L}\right) \\
\frac{\left|m_{s} V_{d d}\right|^{2}}{\left|m_{d} V_{t s}\right|^{2}} & \text { for }\left(\left(\delta_{i 3}^{d}\right)_{R}\right) \\
\frac{m_{s}}{m_{d}} & \text { for }\left(\left\langle\delta_{i 3}^{d}\right\rangle\right)
\end{array}\right.
$$

lepton-flavor non-universality; $b \rightarrow$ see vs $b \rightarrow s \mu \mu$ vs $b \rightarrow s \tau \tau$, e.g. $B \rightarrow$ Kll 0709.4174 [hep-ph]:
$\frac{1}{\bar{\Gamma}} \frac{d \Gamma}{d \cos \Theta_{l}}=\frac{3}{4}\left(1-F_{H}^{l}\right)\left(1-\cos ^{2} \Theta_{l}\right)+F_{H}^{l} / 2+A_{F B}^{l} \cos \Theta_{l}$ in general: lepton flavor dependence in $d \Gamma^{l} / d q^{2}, F_{H}^{l}$ and $A_{F B}^{l}$. study ratios, e.g. $R_{K}=\mathcal{B}(B \rightarrow K \mu \mu) / \mathcal{B}(B \rightarrow K e e)$ nep.pho310219 In SM: $R_{K}-1, F_{H}^{l}$ and $A_{F B}^{l}$ are suppressed by lepton mass.
hep-ph/0310219
Probe of Higgs-exchanges, lepto-quarks, R-parity violation etc.
Model-independently w. scalar/tensor couplings (for low q^{2}):

$$
\left|A_{F B}^{e}\right|<13 \%, \quad\left|A_{F B}^{\mu}\right|<15 \%, \quad R_{K}-1=\mathcal{O}(1), \quad F_{H}^{e, \mu}<O(0.5)
$$

inclusive decays: $B \rightarrow X_{s} l l$ observed when $l=e$ and $l=\mu$ are averaged, for $\left.q^{2}>0.04 \mathrm{GeV}^{2}\right) \operatorname{Br}\left(B \rightarrow X_{s} l^{+} l^{-}\right)=3.66_{-0.77}^{+0.76} \cdot 10^{-6}$ Belle, Talk LP'09 by T.lijima:
$\operatorname{Br}\left(B \rightarrow X_{s} e^{+} e^{-}\right)=4.56 \pm 1.15_{-0.40}^{+0.33} \cdot 10^{-6}$
$\operatorname{Br}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)=1.91 \pm 1.02_{-0.18}^{+0.16} \cdot 10^{-6}$.
Full fit: $O_{7,9,10}+O_{S, P}+$ tensors $+V+A$ times 2 dof (CP) times 3 lepton flavors times 2 (s vs d): $12 \times 2 \times 3 \times 2=144$ Wilson coefficient dofs (still neglecting NP in QCD penguins ...)
There is no such thing as a truly model-independent analysis possible.
..even if the hadronic understanding of the decay observables would be perfect.

Presently, we have already a precision program ongoing. tool for
flavor observables: EOS project http://project.het.physik.tu-dortmund.de/eos/
Dedicated observables are sensitive to subsets of the operators. In BSM models, also often only a limited, much smaller number of Wilson coefficients needs to be considered (MFV SUSY, 2HDM,..)

- $m_{N P}<m_{B}$: dark matter, axion-like particles, missing energy-signatures, NMSSM light pseudo-scalars, ...

If there is a signal, there are 2 avenues: fit model-independently, fit your model and check direct searches, EDMs, kaon, charm, top physics etc.

Theory tasks:

precision (QCD) ${ }^{\text {a }}$
 interpretations,fits, correlations
 model-building

${ }^{a}$ not required for null tests

1. Low recoil Region - power corrections

In SM+SM' basis (V,A operators and flipped ones only) the effective Wilson coefficients $C_{ \pm}^{\text {eff }}\left(q^{2}\right) \equiv C^{\mathrm{eff}}\left(q^{2}\right) \pm C^{\mathrm{efff}^{\prime}}\left(q^{2}\right)$ are independent of the polarization Bobeth,GH,van Dyk'12 (and as they should in agreement with endpoint relations GH,Zwicky14)

$$
\begin{array}{ll}
B \rightarrow V \ell \ell: & H_{0, \|}=C_{-}^{\mathrm{eff}}\left(q^{2}\right) f_{0, \|}\left(q^{2}\right), \quad H_{\perp}=C_{+}^{\mathrm{eff}}\left(q^{2}\right) f_{\perp}\left(q^{2}\right) \\
B \rightarrow \text { P८८: } & H=C_{+}^{\mathrm{eff}}\left(q^{2}\right) f\left(q^{2}\right)
\end{array}
$$

$f_{i}, i=0, \perp, \|(f)$: usual $B \rightarrow V(B \rightarrow P)$ form factors
Parameterize corrections to the lowest order OPE results as
$f_{\lambda}\left(q^{2}\right) \rightarrow f_{\lambda}\left(q^{2}\right)\left(1+\epsilon_{\lambda}\left(q^{2}\right)\right), \quad \epsilon_{\lambda}\left(q^{2}\right)=\mathcal{O}\left(\alpha_{s} / m_{b},\left[\mathcal{C}_{7} / \mathcal{C}_{9}\right] / m_{b}\right)_{\lambda=0, \pm 1}$
The endpoint relations imply degeneracy at endpoint
$\epsilon_{\lambda}\left(q_{\text {max }}^{2}\right) \equiv \epsilon, \quad \lambda=0, \pm 1, \|, \perp$ with the endpoint relations already enforced by $f_{\|}\left(q_{\text {max }}^{2}\right)=\sqrt{2} f_{0}\left(q_{\text {max }}^{2}\right), f_{\perp}\left(q_{\text {max }}^{2}\right)=0$.

1. Low recoil Region - power corrections

"There are no genuine non-factorizable contributions ($1 / m_{b}$, resonances,..) at zero recoil." gh,zwicky14
consider this in scans, uncertainty estimations.

2. Low recoil Region - universality

Why is it short-distance universal?

$$
\begin{array}{ll}
B \rightarrow V \ell \ell: & H_{0, \|}=C_{-}^{\mathrm{eff}}\left(q^{2}\right) f_{0, \|}\left(q^{2}\right), \quad H_{\perp}=C_{+}^{\mathrm{eff}}\left(q^{2}\right) f_{\perp}\left(q^{2}\right), \\
B \rightarrow \text { Plौ: } & H=C_{+}^{\mathrm{eff}}\left(q^{2}\right) f\left(q^{2}\right)
\end{array}
$$

because the short-distance coefficients $C_{-}^{\text {eff }}\left(q^{2}\right), C_{+}^{\text {eff }}\left(q^{2}\right)$ dont know about the endpoint.

Applications in many modes $B \rightarrow X_{J} l l, J=0,1,2, \ldots$.
Universality in $B \rightarrow K^{*} l l$ allow to extract form factor ratios (assuming no right-handed currents) Hambrock, GH' 12 , Hambrock, GH, Schacht, Zwicky 13

$B \rightarrow K^{*} \mu^{+} \mu^{-}$data progress 2012 to 2013

2012:

	BaBar	CDF		LHCb	
$q^{2}\left[\mathrm{GeV}^{2}\right]$	F_{L}	F_{L}	$A_{T}^{(2)}$	F_{L}	$A_{T}^{(2)}$
$[14.18,16]$	$0.43_{-0.16}^{+0.13}$	$0.40_{-0.12}^{+0.12}$	$0.11_{-0.65}^{+0.65}$	$0.35_{-0.06}^{+0.10}$	$0.06_{-0.29}^{+0.24}$
$[16,19 . x x]$	$0.55_{-0.17}^{+0.15}$	$0.19_{-0.13}^{+0.14}$	$-0.57_{-0.57}^{+0.60}$	$0.37_{-0.08}^{+0.07}$	$-0.75_{-0.20}^{+0.35}$

2013:

q^{2}	BaBarF_{L}	CDF		LHCb			ATLAS F_{L}	CMS F_{L}
		F_{L}	$A_{T}^{(2)}$	F_{L}	$A_{T}^{(2)}$	${ }^{a} P_{4}^{\prime}$		
bin1	$0.43{ }_{-0.16}^{+0.13}$	$0.40_{-0.12}^{+0.12}$	$0.11_{-0.65}^{+0.65}$	0.33 ${ }_{-0.08}^{+0.08}$	0.07 ${ }_{-0.26}^{+0.26}$	$-0.18{ }^{+0.54}$	$0.28{ }_{-0.16}^{+0.16}$	$0.53{ }_{-0.12}^{+0.12}$
bin2	0.55-0.15	0.19 ${ }_{-0.14}^{+0.14}$	$-0.57-0.60$	0.38 ${ }_{-0.09}^{+0.08}$	-0.71-0.36 ${ }_{-0.26}^{+}$	$0^{0.70_{-0.52}^{+0.44}}$	0.35-0.08	$0.44_{-0.08}^{+0.08}$

in these observables, SD-coeffs and fact. stuff drops out!
At endpoint: $F_{L}=1 / 3, A_{T}^{(2)}=-1, P_{4}^{\prime}=\sqrt{2}$

Benefits of $B \rightarrow K^{*}$ at low recoil

At low hadr. recoil transversity amplitudes $A_{i}^{L, R}, i=\perp, \|, 0$ related *:

$$
A_{i}^{L, R} \propto C^{L, R} \cdot f_{i}
$$

$C^{L, R}$: universal short-dist.-physics; $C^{L, R}=\left(C_{9}^{\mathrm{eff}} \mp C_{10}\right)+\kappa \frac{2 \hat{m}_{b}}{\hat{s}} C_{7}^{\mathrm{eff}}$ $1 / m_{b}$ - corrections parametrically suppressed $\sim \alpha_{s} / m_{b}, C_{7} /\left(C_{9} m_{b}\right)$ f_{i} : form factors
$C^{L, R}$ drops out in ratios:

$$
\begin{gathered}
F_{L}=\frac{\left|A_{0}^{L}\right|^{2}+\left|A_{0}^{R}\right|^{2}}{\sum_{X=L, R}\left(\left|A_{0}^{X}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}^{X}\right|^{2}\right)}=\frac{f_{0}^{2}}{f_{0}^{2}+f_{\perp}^{2}+f_{\|}^{2}} \\
A_{T}^{(2)}=\frac{\left|A_{\perp}^{L}\right|^{2}+\left|A_{\perp}^{R}\right|^{2}-\left|A_{\|}^{L}\right|^{2}-\left|A_{\|}^{R}\right|^{2}}{\left|A_{\perp}^{L}\right|^{2}+\left|A_{\perp}^{R}\right|^{2}+\left|A_{\|}^{L}\right|^{2}+\left|A_{\|}^{R}\right|^{2}}=\frac{f_{\perp}^{2}-f_{\|}^{2}}{f_{\perp}^{2}+f_{\|}^{2}} \\
P_{4}^{\prime}\left(q^{2}\right)=\frac{\sqrt{2} f_{\|}\left(q^{2}\right)}{\sqrt{f_{\|}^{2}\left(q^{2}\right)+f_{\perp}^{2}\left(q^{2}\right)}}
\end{gathered}
$$

* assuming only V-A operators

Advances in ... Extracting $B \rightarrow K^{*}$ form factors

Higher order Series Expansion; use theory input from low q^{2} : LCSR (sum rules) or $V(0) / A_{1}(0)=\left(m_{B}+m_{K^{*}}\right)^{2} /\left(2 m_{B} E_{K^{*}}\right)+\mathcal{O}\left(1 / m_{b}\right)=1.33 \pm 0.4$ (LEL) F_{L} :

Advances in ... Extracting $B \rightarrow K^{*}$ form factors

Higher order Series Expansion; use theory input from low q^{2} : LCSR (sum rules) or $V(0) / A_{1}(0)=\left(m_{B}+m_{K^{*}}\right)^{2} /\left(2 m_{B} E_{K^{*}}\right)+\mathcal{O}\left(1 / m_{b}\right)=1.33 \pm 0.4$ (LEL) $A_{T}^{(2)}$:

Advances in ... Extracting $B \rightarrow K^{*}$ form factors

Higher order Series Expansion; use theory input from low q^{2} : LCSR (sum rules) or $V(0) / A_{1}(0)=\left(m_{B}+m_{K^{*}}\right)^{2} /\left(2 m_{B} E_{K^{*}}\right)+\mathcal{O}\left(1 / m_{b}\right)=1.33 \pm 0.4$ (LEL) P_{4}^{\prime} :

Advances in ... Extracting $B \rightarrow K^{*}$ form factors

Predictivity at low q^{2} is obtained from low q^{2} input. (Required at higher order)

Data-extracted form factor ratios constitute benchmark for lattice form factor estimations at low recoil. Blue points: Wingate ' 13 e etal, red: LCSR, band:LEL

Advances in ... Extracting $B \rightarrow K^{*}$ form factors

SM predictions for $A_{F B}$ and P_{5}^{\prime} at low recoil (assuming $V-A$ currents). Good agreement with data in fits in both low recoil bins.
P_{4}^{\prime} escapes explanation within factorizaton Altmanshofoer, Straw ' 13 , Hambrock, GH,
Schacht, Zwicky '13, Beaujean, Bobeth, vanDyk '13, Descotes-Genon, Matias, Virto '13

Yes, we would like to have correlations between them.
At least, please provide ratios, we use them.
LCSR example:
$\delta V(0) / A_{1}(0)=15 \%$ (gaussian error prop. of Ball,Zwicky)
$\delta V(0) / A_{1}(0)=8 \%$ including error correlations a la Hambrock, GH, Schacht Zwicky '13 (parametric, continuum threshold and EOM)

Summary

Ongoing th activities (selected, this workshop):
Relations from kinematics (GH, Zwicky)
Relations by overconstraining observables (Serra, Quim)
Form factors low recoil (Meinel)
Fitting data (Bobeth, Quim, Van Dyk, Jäger,Hofer, Meinel, Straub, et al)
Interpreting $b \rightarrow s$ data with a BSM model (Haisch)

More data, more backgrounds..
S-wave et al (Das, GH, Jung, Shires, in preparation)

It is about time to think about B-factory observables again, too.

