How to transfer experimental results to theorists?

Convener: Thomas Blake (Warwick U.)

Contributors: Konstantinos Petridis (Imperial College) and Danny van Dyk (Siegen U.)

April 3rd, 2014

Current Situation

How is data used right now? - New Physics searches

- Altmannshofer,Straub [1308.1501] and within
- Experimental errors Gaussian, measurements of same quantities by different experiments averaged (weighted average of symmetrised errors).
- Form factor correlations included
- Beaujean,Bobeth,van Dyk [1310.2478] and within
- Experimental errors if symmetric treated as Gaussian, if > few\% asymmetry use LogGamma.
- Correlation info for lattice FFs, but not for LCSRs FFs nor LHCb data...
- Descotes,Matias,Virto [1307.5683] and within
- Experimental errors Gaussian.
- For exclusive decays LHCb data only, no \mathcal{B} s
- Correlation info for data from "toys"
- Horgan,Liu,Meinel,Wingate ${ }_{[1310.3887]}$
- Experimental errors Gaussian, measurements of same quantities by different experiments averaged (weighted average of symmetrised errors).

Current Situation

How is data used right now? - Form factors

- Beaujean,Bobeth,van Dyk [1310.2478] and within
- combination of $B \rightarrow K^{*} \gamma, B \rightarrow K^{*} \ell^{+} \ell^{-}$helpful to fix non-factorizable power corrections
- constraints on FFs, power corrections
- Hambrock,Hiller,Schacht,Zwicky [1308.4379] and within
- Fit FFs from large q^{2} data only
- Experimental errors Gaussian
- Only ratios of $B \rightarrow K^{*}$ angular observables

Binning of Angular Observables

- fine bins as used for $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$analysis appear OK
- basically $1 \mathrm{GeV}^{2}$ steps, with slight adjusments
- ϕ cut out
- J/ $\psi, \psi(2 S)$ cut out
- some reservations about cutting out ϕ (Sebastian)

Table 2: Differential branching fraction results for $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$

	Differential branching fraction $\left(\times 10^{-9}\right)$		
q^{2} range $\left(\mathrm{GeV}^{2} / c^{4}\right)$	central value	stat error	syst error
$0.1<q^{2}<0.98$	33.2	1.8	1.7
$1.1<q^{2}<2.0$	23.3	1.5	1.2
$2.0<q^{2}<3.0$	28.2	1.6	1.4
$3.0<q^{2}<4.0$	25.4	1.5	1.3
$4.0<q^{2}<5.0$	22.1	1.4	1.1
$5.0<q^{2}<6.0$	23.1	1.4	1.2
$6.0<q^{2}<7.0$	24.5	1.4	1.2
$7.0<q^{2}<8.0$	23.1	1.4	1.2
$11.0<q^{2}<11.8$	17.7	1.3	0.9
$11.8<q^{2}<12.5$	19.3	1.2	1.0
$15.0<q^{2}<16.0$	16.1	1.0	0.8
$16.0<q^{2}<17.0$	16.4	1.0	0.8
$17.0<q^{2}<18.0$	20.6	1.1	1.0
$18.0<q^{2}<19.0$	13.7	1.0	0.7
$19.0<q^{2}<20.0$	7.4	0.8	0.4
$20.0<q^{2}<21.0$	5.9	0.7	0.3
$21.0<q^{2}<22.0$	4.3	0.7	0.2
$1.1<q^{2}<6.0$	24.2	0.7	1.2
$15.0<q^{2}<22.0$	12.1	0.4	0.6

Charmonium

- so far, vetoe windows J / ψ and $\psi(2 S)$
- for further studies, also give results within existing charmonium vetoes
- angular observables J_{n} should be fine
- use similar bin size as in rest of the phase space
- experiment: J / ψ tail is problematic due to detector effects
- expierment: $\psi(2 S)$ seems fine
- do not remove broad resonances, see previous session

Correlation and Likelihood

- So far experimental results do not provide information on:
- Correlations between observables and their uncertainties arising from experimental effects such as background or detector acceptance
- Confidence level intervals beyond 1σ
- Particularly in light of recent results/deviations it is crucial to provide both
- How exactly? Case dependent?

Correlation and Likelihood

Take a typical tough case:

- Full angular fit of $B \rightarrow K^{*}$ involves large number of parameters
- 8 to 24 per B flavour and q^{2} region depending on parametrisation
- Cannot trivially sample the likelihood space
- Even if we could, likelihood parametrisation might not be ideal
- e.g coefficients of amplitude ansatz
- transforming likelihood to more user-friendly basis non-trivial
- Additionally fitting for J's or amplitudes results in non-Gaussian likelihood with level of non-Gaussian behaviour depending on fitting strategy
- Cannot blindly provide error matrix of fit either
- Devise methods to quantify/correct non-Gaussian behaviour

Correlation and Likelihood

Easy and user friendly solution:

- Provide stripped down LHCb dataset (background subtracted?)
- e.g ROOT n-tuple with angles, q^{2}, B flavour, background fraction...
- Provide continuous q^{2} data for large and low recoil region(?)
- Helper classes that:
- Build likelihood based on pdf with J's or amplitudes (or whatever else experimentalists use) with a full working example reproducing published result
- Allows users to build their own likelihood with interfaces to EOS, SuperIso... (requires understanding of how data is used right now)
- Provide tools that automatically add experimental nuisance parameters to a given likelihood

Fitting the $B \rightarrow K^{*}$ Amplitudes - How?

- fit transversity amplitudes instead of angular observables at $1 \mathrm{GeV}^{2} \leq q^{2} \leq 6 \mathrm{GeV}^{2}$
- parametrization: $\lambda=\perp, \|, 0$ transversity states, $\chi=L, R$ lepton chirality

$$
A_{\lambda}^{\chi}=\frac{\alpha_{\lambda}^{\chi}}{q^{2}}+\beta_{\lambda}^{\chi}+\gamma_{\lambda}^{\chi} q^{2}
$$

- amplitudes are complex \Rightarrow parameters $\alpha, \beta, \gamma \in \mathbb{C}$
- 4 symmetry relations between amplitudes matias,Mescia,Ramon,Virto [1202.4266]
- number of real-valued fit parameters N

$$
N=(3 \times 2 \times 2-4) \times 3=24
$$

- only usable with full correlation information

Fitting the $B \rightarrow K^{*}$ Amplitudes - Why?

- contains more information on q^{2} dependence than large bins
- other reasons?

Fitting the $B \rightarrow K^{*}$ Amplitudes - Why Not?

- model bias, disregards A_{S}, A_{t}, tensor amplitudes
- not yet excluded (scalars: Hurth,Mahmoudi [1312.5267], tensors: Bobeth,Hiller,van Dyk [1212.2312])
- 2014 LHCb measurement of $B \rightarrow K \mu^{+} \mu^{-}$might exclude scalars and tensors
- transversity basis is only one basis of amplitudes
- some groups prefer helicity basis: Jäger,Camalich [1212.2263]
- correlation information needed: 24×24 no S-wave contributions
- observables: 18×18 per bin, with S wave
- virtually no inter- q^{2}-bin correlation
- small bins provide also shape information

Fitting the $B \rightarrow K^{*}$ Amplitudes - ToDo

- is parametrization sufficient? back of an envelope!

$$
A\left(q^{2}\right)=N\left(q^{2}\right) \times\left(C_{9} \pm C_{10}+\frac{\mathcal{T}\left(q^{2}\right)}{\xi\left(q^{2}\right)}\right) \xi\left(q^{2}\right)
$$

- norm N (modulo prefactors)

$$
N\left(q^{2}\right) \sim \frac{\sqrt{q^{2} \lambda\left(M_{B}^{2}, M_{K}^{2}, q^{2}\right)}}{M_{B}^{3}}=N_{0} \sqrt{q^{2}}+N_{1}{\sqrt{q^{2}}}^{3}+N_{2}{\sqrt{q^{2}}}^{5}+\ldots
$$

- form factor ξ (asymptotically)

$$
\xi\left(q^{2}\right)=\frac{1}{q^{2}-M_{B}^{2}}=\xi_{0}+\xi_{1} q^{2}+\xi_{2} q^{4}+\ldots
$$

- correlator \mathcal{T} (C_{7} only)

$$
\frac{\mathcal{T}\left(q^{2}\right)}{\xi\left(q^{2}\right)}=\frac{M_{B}^{2}}{q^{2}} C_{7}+\ldots
$$

- so shouldn't amplitudes be parametrized as

$$
A\left(q^{2}\right) \simeq \sqrt{q^{2}}\left(\frac{\alpha}{q^{2}}+\beta+\gamma q^{2}\right) \quad ?
$$

