

HTS insert magnet design: Stack Cable

Johnny Himbele, Arnaud Badel, Pascal Tixador

Outline

- Stack cable Advantage/ Drawback -
- Specification
- Preliminary HTS insert magnet design
- Next steps

Stack cable - Advantage -

Simple structure, Effective cost and Mechanical performance

50-tapes of YBCO stack cable for 50mm dipole

M.Takayasu (MIT), IEEE vol.23 No.3 2013

Stack cable - Drawback -

I_c distribution, Bending radius, Current sharing and Spatial issue

50-tapes of YBCO stack cable for 50mm dipole

M.Takayasu (MIT), IEEE vol.23 No.3 2013

Specification

- Clear bore aperture 40 mm
- Flux density B₁
- Field quality
- Current density
- Mechanical stress
- Operating current
- Cable transposition

5 T 5*10⁻⁴ B₁ 400 – 600 A/mm² (20 T, 4,2K) 100 MPa 5 – 10 kA

- sposition Twisted stacked & Roebel cable
- Homogeneous current distribution

Hypothesis

Next steps

FOR BETTER HTS INSERT MAGNET DESIGN

- <u>Cable design</u>: Cable width and thickness need to be same length (4 - 5 mm) to maintain a good field quality, to twist much easily and to have an effective space consuming at twisting part. The inhomogeneous I_c distribution is caused by twisting, therefore the twisting pitch is necessary to study.
- <u>Detection and protection</u>: Find the reasonable operating current regarding protection scheme and additional materials.