ISOLDE Nuclear Reaction and Nuclear Structure Course

Fusion reaction at low energy

A. Di Pietro

1

Reactions induced by halo nuclei at the Coulomb barrier

From R.Raabe K.U. Leuven

Higher total reaction cross-section than "normal" nuclei.

Nuclear halo

The nuclear halo is a threshold effect arising from the very weak binding energy (0.1-1 MeV) of the outer nucleon(s)

➢ Nuclear halo appears when the weakly bounds valence nucleon(s) are in s or p states, close to the particles emission threshold.

> Due to the low binding energy for these nucleon(s) tunnelling is possible. Heisenberg principles allows the valence nucleon(s) to spend a time interval $\Delta t \leq \hbar/2\Delta E$ outside the nuclear core.

Properties of neutron halo nuclei

The wave function presents a long tail which extends outside the potential well;
Radius X $r_0 A^{1/3}$

Some examples:

⁶He \equiv ⁴He + n + n ¹¹Li \equiv ⁹Li + n + n ¹¹Be \equiv ¹⁰Be + n

Effects of halo structure on reaction processes: the sub-barrier fusion case.

Sub-barrier fusion occurs by tunneling. Even with simple one dimensional tunneling there are challenges.

Text Book Approach:

$H \Psi = E \Psi$

Transmission Probability T= $|\Psi_t(x)|^2 / |\Psi_i(x)|^2$

T+R=1 :transmitted flux + reflected flux =1

Fusion

Use a one dimension parabolic potential

(Hill, Wheeler, 1953)

Orientation

Lower B

Higher B

E Incident Energy

BARRIER DISTRIBUTION

How does halo affect fusion ? Possibilities: Static effect

Radius \mathbf{X} r₀ A^{1/3}

Static effects due to long tail in density distribution:

longer tail in ion-ion potential, lowering of Coulomb barrier, larger subbarrier fusion probabilities, etc

Sub-barrier fusion induced by halo nuclei

• Theory: fusion probability *larger* due to diffuse halo structure (static effect).

From R.Raabe K.U. Leuven

Sub-barrier fusion induced by halo nuclei

• Theory: fusion probability *smaller* due to competition with break-up (low binding energy).

From R.Raabe K.U. Leuven

Dynamic effects

Coupling between relative motion of projectile and target and their intrinsic states.

Halo nuclei \rightarrow low binding energy \rightarrow g.s. close to break-up threshold \rightarrow coupling with break-up important \rightarrow effect on sub-barrier fusion?

Inelastic will always increase Sub- Barrier fusion

For stable fusing nuclei this has been a very successful approach

Fusion excitation function for: ${}^{58}Ni + {}^{58,64}Ni$ and ${}^{64}Ni + {}^{64}Ni$

M. Beckerman et al. Phys. Rev. Lett 45 (1980) 1472, M. Beckerman et al. Phys. Rev. C23 (1981) 1581 M. Beckerman et al. Phys. Rev. C25 (1982) 837 12

When one talks about enhancement or suppression, is that in relation to what?

Different type of comparisons of barrier penetration:

L.F. Canto et al. Nuclear Physics A 821 (2009) 51-71

^{4,6}He+⁶⁴Zn heavy residue excitation function

^{4,6}He+⁶⁴Zn fusion excitation function

Excitation function obtained by replacing the measured ⁶⁵Zn contribution with the calculated value.

<u>Conclusions:</u> No evidence for fusion cross-section enhancement A. Di Pietro et al. Phys.Rev.C 69(2004)044613

In Canto et al. NPA 821 (2009) 51 suggested a comparison independent on the system under investigation.

How to measure fusion cross-section?

- 1) Direct detection of Evaporation Residues (ER)
- 2) Detection of all evaporated particles (difficult to reconstruct the correct crosssection)
- 3) Detection of γ -rays (part of the information could be missing due to g.s. population of some ER
- 4) If the CN is fissile one can measure fission cross-section
- 5) If ER are radioactive measure of the off-line activity

Experimental thechniques used to measure fusion with low intensity halo beams.

"OFF-LINE" measurement of characteristic X-rays

Complete fusion:

$$^{6}\text{Li} + ^{120}\text{Sn} \rightarrow ^{126}\text{I}^{*}$$

 $^{7}\text{Li} + ^{119}\text{Sn} \rightarrow ^{126}\text{I}^{*}$

⁶Liad ta⁷Li

Incomplete fusion:

d +¹²⁰Sn t +¹¹⁹Sn

From X-ray analysis is possible to identify in charge the evaporation residues.

From the fit it is possible to extract $A_{0exp} \rightarrow N_o \lambda$

Activity curve

Possibility to discriminate in charge the different residues

To overcome the problem of low beam intensity, large beam energy spread, thick targets and/or target stacks generally used.

> What is the effect on low energy cross-section? What about target non-uniformity?

Are the targets uniform? SEM view of a Sn evaporated target on Nb

Activation technique with a stack of targets

One uses activation technique when ER are too slow to be detected directly

If ER are radioactive they can be identified by measuring the decay products

Activation technique with a single foil

How to define the effective energy where to plot the measured cross-section

Drawbacks of the the activation technique

INFN 2014

Straggling effect on energy distribution in the target

In the case of a stack the energy range is two times larger than in the single foil case.

Target non-uniformity

Targets have been made by evaporating Sn on Ho o Nb

Target characterisation

Effect of using a stack on the excitation function of ⁶Li+¹²⁰Sn

✓ By increasing the number of targets in the stack, increases the difference between *average* energy ($E_{average}$) and weighted average (E_{eff}).

✓ For a given number of targets in the stack the difference between $E_{average}$ and E_{eff} increases with decreasing energy.

✓ For very thick targets even using the E_{eff} to plot cross-section is not correct since what is measured is not the weighted cross-section but the integrated cross-section over an energy range.

The effect of the stack is important in determining the exctation function

Summary

 \Box With halo nuclei the σ_{rea} large and a large fraction is due to transfer and break-up processes.

□ Fusion cross-section of light weakly-bound nuclei on heavy targets shows a suppression due to the competing brak-up process.

□ Fusion cross-section induced by halo nuclei seem to show an enhancement due to static effects.

 \Box When measuring $\sigma_{FUS}(E)$ with activation techniques and multiple thick targets, effects of straggling and target non uniformity have to be carefully considered. Related information should be reported in corresponding papers.

> New fusion data with n-halo nuclei better exploring the sub-barrier region.

 \succ What is the effect for p halo nuclei ? \rightarrow new data needed

⁶⁴Zn NON-UNIFORMITY

Compound nucleus formation

- Each initial state can produce all three final states
- The cross section for each final state does not depend on the initial reactants.
- All reactions have the same intermediate (compound) nucleus.
- The cross section for producing each final state depends on the excitation energy in the compound nucleus.