What can we learn from transfer, and how is best to do it?

Wilton Catford
University of Surrey

A Single Particle States; Changing magic no.'s

B How reactions can study this physics
C Practicalities; Inverse Kinematics

D Experimental setups
E Results \&
Perspectives

TIARA + MUST2 experiments at SPIRAL/GANIL:

Beam of ${ }^{20} \mathrm{O}$ at $10^{5} \mathrm{pps}$ and $10 \mathrm{MeV} / \mathrm{A}$ (stripping at target to remove ${ }^{15} \mathrm{~N}^{3+}$ with $\mathrm{A} / \mathrm{q}=5$)
(This experiment not discussed, in these lectures).
Beam of ${ }^{26} \mathrm{Ne}$ at $10^{3} \mathrm{pps}$ (pure) and $10 \mathrm{MeV} / \mathrm{A}$
The (d,p) could be studied to both BOUND and UNBOUND states
Gamma-ray coincidences were recorded for bound excited states

With MUST2 we could measure (d.t) at forward angles with good PID
The 16% of ${ }^{1} \mathrm{H}$ in the ${ }^{2} \mathrm{H}$ target allowed (p, d) measurements also

> BEA FERNANDEZ DOMINGUEZ, LIVERPOOL (GANIL) JEFFRY THOMAS, SURREY SIMON BROWN, SURREY
> ALEXIS REMUS, IPN ORSAY

TIARA+MUST2+VAMOS+EXOGAM @ SPIRAL/GANIL

${ }^{27}$ Ne UNBOUND STATES

${ }^{27} \mathrm{Ne}$ results

- level with main $\mathrm{f}_{7 / 2}$ strength is unbound
- excitation energy measured
- spectroscopic factor measured
- the $f_{7 / 2}$ and $p_{3 / 2}$ states are inverted
- this inversion also in ${ }^{25} \mathrm{Ne}$ experiment
- the natural width is just $3.5 \pm 1.0 \mathrm{keV}$

${ }^{27} \mathrm{Ne}$ results

- we have been able to reproduce the observed energies with a modified WBP interaction, full 1hw SM calculation
- the SFs agree well also
- most importantly, the new interaction works well for ${ }^{29} \mathrm{Mg},{ }^{25} \mathrm{Ne}$ also
- so we need to understand why an ad hoc lowering of the fp-shell by 0.7 MeV is required by the data!

Preliminary results for ${ }^{26} \mathrm{Ne}(\mathrm{d}, \mathrm{t}){ }^{25} \mathrm{Ne}$ and also (p, d) JEFFRY THOMAS, SURREY
${ }^{26} \mathrm{Ne}(\mathrm{d}, \mathrm{t}){ }^{25} \mathrm{Ne} \quad{ }^{26} \mathrm{Ne}(\mathrm{p}, \mathrm{d}){ }^{25} \mathrm{Ne}$

NEW ALGORITHM FOR ENERGY

Preliminary results for ${ }^{26} \mathrm{Ne}(\mathrm{d}, \mathrm{t})^{25} \mathrm{Ne}$ and also (p, d)

JEFFRY THOMAS, SURREY
${ }^{26} \mathrm{Ne}(\mathrm{d}, \mathrm{t}){ }^{25} \mathrm{Ne} \quad{ }^{26} \mathrm{Ne}(\mathrm{p}, \mathrm{d}){ }^{25} \mathrm{Ne}$

${ }^{26} \mathrm{Ne}(\mathrm{d}, \mathrm{t} \gamma){ }^{25} \mathrm{Ne}$ GAMMA ENERGY

분
First 5/2+
1701 keV

1000

INDIVIDUAL DECAY SPECTRA OF EXCITED 5/2+ STATES

Migration of Levels as nuclei become more exotic, normalised to 7/2- energy

- $3 / 2-, \mathrm{N}=15$
- $3 / 2-, \mathrm{N}=17$
-..7/2-, $N=15$
- 7/2-, $N=17$
- $3 / 2+, N=17$
- $3 / 2+, N=15$
- $1 / 2+, N=15$

X ${ }_{21} \mathrm{O}, \mathrm{N}=13$

+ ${ }_{23} \mathrm{O}, \mathrm{N}=15$

Dashed: $\mathrm{N}=15$
Full line: $\mathrm{N}=17$

sodium
 ${ }^{26} \mathrm{Na}$

MULTIPLETS e.g. $\pi\left(d_{5 / 2}\right) \otimes v\left(p_{3 / 2}\right) \rightarrow(1,2,3,4)^{-}$

Shell Model Predictions (modified WBP) for ${ }^{26} \mathrm{Na}$ states expected in (d, p)

$1 s_{1 / 2} \quad 0 d_{3 / 2} \quad 0 d_{5 / 2} \quad 0 f_{7 / 2} \quad 1 p_{3 / 2} \quad 1 p_{1 / 2}$

TRIUMF
 ISAC

SHARC at ISAC2 at TRIUMF

Christian Diget

Digital signal processing was used for all Ge and all Si signals, via TIG10 modules

Preliminary Analysis: E vs θ

Preliminary Analysis: $ү$ ray spectra

[1] Contrib.Proc. 5th Int.Conf.Nuclei Far from Stability, Rosseau Lake, Canada, D1 (1987)

Preliminary Analysis

Measuring Trifoil performance

- 80% of protons tagged
- Signal to background improved by factor of 10

Data from $\mathrm{d}\left({ }^{25} \mathrm{Na}, \mathrm{p}\right){ }^{26} \mathrm{Na}$ at $5 \mathrm{MeV} / \mathrm{A}$ using SHARC at ISAC2 at TRIUMF

Excitation energy deduced from proton energy and angle

Gemma Wilson, Surrey

Doppler corrected ($\beta=0.10$) gamma ray energy measured in TIGRESS

Substate populations over proton CM angle for a 2.2 MeV state in ${ }^{26} \mathrm{Na}$

However, our gamma-ray angular coverage is sufficient that the integrated efficiency for gamma detection remains very similar and the SHAPE of the proton angular distribution is unchanged by gating.

Shell Model Predictions (and new candidates) for ${ }^{26} \mathrm{Na}$ states expected in (d,p)

$1 s_{1 / 2} \quad 0 d_{3 / 2} \quad 0 d_{5 / 2} \quad 0 f_{7 / 2} \quad 1 p_{3 / 2} \quad 1 p_{1 / 2}$

Shell Model Predictions (and new candidates) for ${ }^{26} \mathrm{Na}$ states expected in (d,p)...
Comparison of spectroscopic strength in theory and experiment

Above: $s 1 / 2$ strength for $2+$ states
Below: p3/2 to 4-states

个experimental SF magnitude
excitation energy
shell model SF magnitude

Above: d3/2 to 3+ states

Below: d3/2 to 4+ states

SOME FUTURE PERSPECTIVES

"... WORK IN PROGRESS"

FUTURE:

- We have experiments planned with ${ }^{16} \mathrm{C},{ }^{64} \mathrm{Ge}$ at GANIL \& ${ }^{28} \mathrm{Mg}$ and others at TRIUMF
- Many other groups are also busy! T-REX at ISOLDE, ORRUBA at ORNL etc
- New and extended devices are planned for SPIRAL2, HIE-ISOLDE and beyond

CASPARD

Designed to use cryogenic target CHyMENE and gamma-arrays PARIS, AGATA... A development of the GRAPA concept originally proposed for EURISOL.

CHyMENE (Saclay/Orsay/...) SOLID Hydrogen TARGET

Left: photograph from 2007 of a $200 \mu \mathrm{~m}$ pure solid hydrogen film being extruded. Right: more recent photograph of $100 \mu \mathrm{~m}$ pure solid hydrogen film being extruded.

The CHyMENE project has achieved $100 \mu \mathrm{~m}$ and is designed to achieve $50 \mu \mathrm{~m}$ uniform films.
For $100 \mu \mathrm{~m}$ target, the energy loss by a typical beam is equivalent to a $1 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{CD}_{2}$ target.
For $100 \mu \mathrm{~m}$ target, the number of hydrogen atoms is THREE TIMES that of a $1 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{CD}_{2}$.

TSR@ISOLDE

Circumference 55.4 m

- Existing storage ring
- Re-deploy at ISOLDE
- Thin gas jet targets
- Light beams will survive
- Increased luminosity
- Supported by CERN
- In-ring initiative led by UK
- Also linked to post-ring helical spectrometer

Ultimately, with single particle transfer reactions, we can certainly:

- make the measurements to highlight strong SP states
- measure the spin/parity for strong states
- associate experimental and Shell Model states and see
- when the shell model works (energies and spectroscopic factors)
- when the shell model breaks down
- whether we can adjust the interaction and fix the calculation
- how any such modifications can be interpreted in terms of NN interaction

And clearly:

- monopole shifts need to be measured and understood because the changes

In energy gaps fundamentally affect nuclear structure (collectivity, etc.)

David M. Brink, Phys. Lett. B40 (1972) 37
N. Anyas-Weiss et al., Physics Reports, 12 (1974) 201

IDEA: for the transferred nucleon, we match the initial and final values of the linear momentum and of the angular momentum
Linear momentum in y-direction (relative motion), before and after:

$$
\mathrm{p}_{i}=\mathrm{m} v-\hbar \lambda_{1} / \mathrm{R}_{1} \quad \mathrm{p}_{f}=\hbar \lambda_{2} / \mathrm{R}_{2} \quad \Delta \mathrm{p}=\mathrm{p}_{f}-\mathrm{p}_{i} \approx 0
$$

Set $\Delta p=0$ within accuracy of Uncertainty Principle $\Delta p \sim \hbar / \Delta y ; \Delta y \sim R / 2$
k-matching: $\Delta \mathrm{k}=\mathrm{k}_{0}-\lambda_{1} / \mathrm{R}_{1}-\lambda_{2} / \mathrm{R}_{2} \approx 0 ; \quad \Delta \mathrm{k} \leq 2 \pi / \mathrm{R}$

Angular momentum projected in the z-direction (perpendicular to relative motion) is given by
$\mathrm{L}_{\text {init }}=\mathrm{L}(\text { relative motion })_{i}+\lambda_{1} \hbar=\mu v \mathrm{R}+\lambda_{1} \hbar \quad$ and $\quad \mathrm{L}_{\text {final }}=\mathrm{L}(\text { relative })_{f}+\lambda_{2} \hbar$
$\Delta \mathrm{L} \hbar=\mathrm{L}_{\text {final }}-\mathrm{L}_{\text {init }}=\left(\lambda_{2}-\lambda_{1}\right) \hbar+\delta(\mu v \mathrm{R})$ where each of μ, v and R changes
$\Delta \mathrm{L} \hbar=\left(\lambda_{2}-\lambda_{1}\right) \hbar+1 / 2 \mathrm{~m} v\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right)+\mathrm{R} \mathrm{Q}_{\text {eff }} / v ; \mathrm{Q}_{\mathrm{eff}}=\mathrm{Q}-\left(\mathrm{Z}_{1}{ }^{\mathrm{C}} \mathrm{Z}_{2}{ }^{\mathrm{f}}-\mathrm{Z}_{1}{ }^{i} \mathrm{Z}_{2}{ }^{i}\right) \mathrm{e}^{2} / \mathrm{R}$
ℓ-matching

Q-value Coulomb-corrected for nucleon rearrangement

Set $\Delta \mathrm{L}=0$ precisely, in principle (in practice, classical treatment of $\mathrm{E}_{\text {rel }} \Rightarrow$ allow $\Delta \mathrm{L} \leq 2$)
And finally, there is a simple requirement that $\ell_{1}+\lambda_{1}=$ even and $\ell_{2}+\lambda_{2}=$ even

Linear momentum in y -direction (relative motion), before and after:

$$
\text { k-matching: } \Delta \mathrm{k}=\mathrm{k}_{0}-\lambda_{1} / \mathrm{R}_{1}-\lambda_{2} / \mathrm{R}_{2} \approx 0 \quad ; \quad \Delta \mathrm{k} \leq 2 \pi / \mathrm{R}
$$

Angular momentum projected in the z-direction (perpendicular):

$$
\frac{\Delta \mathrm{L} \hbar=\left(\lambda_{2}-\lambda_{1}\right) \hbar+1 / 2 \mathrm{~m} v\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right)+\mathrm{R} \mathrm{Q}_{\text {eff }} / v ;}{\ell \text {-matching }} \mathrm{Q}_{\text {eff }}=\mathrm{Q}-\left(\mathrm{Z}_{1}{ }^{\mathrm{f}} \mathrm{Z}_{2}{ }^{\mathrm{f}}-\mathrm{Z}_{1}{ }^{\left.\mathrm{I} Z_{2}{ }^{i}\right) \mathrm{e}^{2} / \mathrm{R}}\right.
$$

And finally, there is a simple requirement that $\ell_{1}+\lambda_{1}=$ even and $\ell_{2}+\lambda_{2}=$ even

$$
\begin{aligned}
& \text { Initial } \psi_{1}=u_{1}\left(r_{1}\right) Y_{\ell 1, \lambda 1}\left(\theta_{1}, \phi_{1}\right) \\
& \text { Final } \psi_{2}=u_{2}\left(r_{2}\right) Y_{\ell 2, \lambda 2}\left(\theta_{2}, \phi_{2}\right) \\
& \text { and the main contribution to the } \\
& \text { transfer is at the reaction plane: } \\
& \Rightarrow \theta_{1}=\theta_{2}=\pi / 2 \\
& \text { But } \begin{array}{l}
Y_{\ell \lambda}(\pi / 2, \phi)=0 \text { unless } \\
\qquad \quad \ell+\lambda=\text { even }
\end{array}
\end{aligned}
$$

Example of Brink matching conditions

$$
{ }^{12} \mathrm{C}\left({ }^{17} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{13} \mathrm{C}{ }^{*}
$$

$$
\mathrm{E}_{\text {beam }}=100 \mathrm{MeV}
$$

Projectile is ${ }^{17} \mathrm{O}$ which has transferred nucleon in $\mathrm{d}_{5 / 2}$ orbital which can have $\lambda_{1}=0, \pm 2$ (π selection rules)
best matched lambda2 vs. excitation energy for $(170,160)$ on 12 c at 100 MeV

$\longrightarrow \mathrm{L}$ matching, lambda1 $=0$
$\longrightarrow \mathrm{k}$ matching, lambda1 $=0$
$\longrightarrow \mathrm{~L}$ matching, lambda1 $=-2$
$\longrightarrow \mathrm{k}$ matching, lambda1 $=-2$
-L matching, lambda1 $=+2$
-k matching, lambda1 $=+2$

Given λ_{1} and the reaction: intersection point gives λ in final nucleus and E_{x} at which transfer is matched

$\mathrm{j}_{>} / \mathrm{j}_{<}$selectivity

P.D. Bond, Phys. Rev., C22 (1980) 1539
P.D. Bond, Comments Nucl. Part. Phys.,

11 (1983) 231-240

The application of $\mathrm{j}_{>} / \mathrm{j}_{<}$selectivity is difficult if considering experiments with complete kinematics with RNBs

However, detecting just the beam-like particle in coincidence with decay gamma-rays has much potential (recent experiments at ORNL, F. Liang)

FIGURE 1 Single neutron transfer reactions for ${ }^{148} \mathrm{Sm} \rightarrow{ }^{149} \mathrm{Sm}$. Spectra were taken at the peaks of the bell-shaped angular distributions. Note the strong difference in the relative population of final states with (a) the $\left({ }^{13} \mathrm{C},{ }^{12} \mathrm{C}\right)$ reaction, (b) the $\left({ }^{12} \mathrm{C},{ }^{11} \mathrm{C}\right)$ reaction and (c) the (${ }^{16} \mathrm{O},{ }^{15} \mathrm{O}$) reaction.

Thank you to all of the

 Collaborators...

And

thank you to all of the Audience...

