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Chapter 1Some general sattering theory
1.1 IntrodutionMost of our present knowledge of stable and exoti nulei stems from the analysis of nu-lear reations. These proesses are traditionally separated into two groups: ompoundnuleus and diret reations. In these notes, we will be onerned only with the latter.These refer to ollisions in whih the nulei make �glaning� ontat and separate im-mediately. They are said also to be peripheral (surfae) proesses. The olliding nuleipreserve their �identity� (a+A → a∗+A∗). Thus, these proesses involve a small numberof degrees of freedom and an be haraterized and studied in terms of the exitation ofthese degrees of freedom.The �nal goal of the sattering theory is to develop appropriate models to whih om-pare the measured observables, with the aim of extrating information on the strutureof the olliding nulei as well as understanding the dynamis governing these proesses.The measured quantities are typially total or partial ross setions with respet to angleand/or energy of the outgoing nulei. Therefore, the hallenge of reation theory is toobtain these ross setions by solving the dynamial equations of the system (at non-relativisti energies, the Shrödinger equation) with a realisti but amenable struturemodel of the olliding nulei. By solving the Shrödinger equation, one obtains the wave-funtion of the system. This wavefuntion will be a funtion of the degrees of freedom(eg. internal oordinates) of the projetile and target, denoted generially as ξp and ξt,as well as on the relative oordinate between them (R). Thus, we will express the totalwavefuntion as Ψ(R, ξp, ξt). The Hamiltonian of the system is written in the form

H = T̂R +Hp(ξp) +Ht(ξt) + V (R, ξp, ξt), (1.1)where T̂R is the kineti energy operator (T̂ = − ~
2

2µ
∇2

R
) and Hp(ξp) (Ht(ξt)) denote theprojetile (target) internal Hamiltonians and V (R, ξp, ξt) is the projetile-target intera-tion. After the ollision, the projetile and target may exhange some nuleons, or evenbreakup, so the Hamiltonian (1.1) orresponds atually to the entrane hannel. To de-note the possible mass partitions that may arise in a reation, we will use greek letters,5



6 CHAPTER 1. SOME GENERAL SCATTERING THEORYwith α denoting the initial partition. So, the previous Hamiltonian is rewritten as
H = T̂α +Hα(ξα) + Vα(Rα, ξα) (1.2)where ξα denotes the projetile and target internal oordinates in partition α. The totalenergy of the system is given by the sum of the kineti energy (Eα) and the internalenergy of the projetile and target:
E = Eα + εα =

~
2Kα

2

2µα
+ εα , (1.3)where ~Kα is just the linear momentum. The wavefuntion Ψ(R, ξ) will be a solution ofthe time dependent Shrödinger equation. For the purpose of extrating the satteringobservables, one may solve the time-independent Shrödinger equation for a total energy

E (see Chapter 1 of [6℄ for a disussion on the relation between the time-dependent andtime-independent pitures). So, ΨK will be a solution of
[H − E] ΨK = 0 . (1.4)This is a seond order di�erential equation that must be solved subjet to the ap-propriate boundary onditions. These boundary onditions must re�et the nature of asattering proess. In our time-independent piture, the inident beam will be representedby a plane wave1. After the ollision with the target, a set of outgoing spherial waveswill be formed. The situation is shematially depited in Fig. 1.1. So, asymptotially,

Ψ
(+)
K0

(R, ξ) → Φ0(ξ)e
iK0·R + outgoing spherial waves, (1.5)with Φ0(ξ) ≡ φ

(0)
p (ξp)φ

(0)
t (ξt) and where the supersript �+� indiates that we this or-responds to the solution with outgoing boundary onditions (mathematially, one mayonstrut also the solution with inoming boundary onditions).During the ollision, the inident wave will be highly distorted by the projetile�target interation but, after the ollision, at su�iently large distanes (that is, when

V beomes negligible), the projetile and target will energy in any of the (kinematiallyallowed) eigenstates of system. So, asymptotially, we may write2
Ψ

(+)
Kα

→ Φα(ξα)e
iKα·Rα + Φα(ξα)fα,α(θ)

eiKαRα

Rα

+
∑

α′ 6=α

Φα′(ξα)fα′,α(θ)
eiKα′Rα

Rα

+
∑

β

Φβ(ξβ)fβ,α(θ)
eiKβRβ

Rβ
, (1.6)1This is only true for the ase of short-range potentials; in presene of the Coulomb potential, theinident wavefuntion is represented by a Coulomb wave2Note that we distinguish between Rα and Rβ sine, for a rearrangement proess, the oordinates willbe di�erent. We will return to this issue in Chapter 4.



1.2. AN INTEGRAL EQUATION FOR Fβ,α(θ) 7
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Figure 1.1: Left: shemati representation of a sattering proess. Right: initial, �naland transferred momenta.The �rst, seond and third lines orrespond to elasti, inelasti and transfer hannels,respetively. The angle θ is the CM sattering angle, and orresponds to the angle betweenthe inident and �nal momenta (Kα and Kβ). The funtion eiKβRβ/Rβ is a spherialoutgoing wave. The funtion multiplying this outgoing wave is the sattering amplitudefor hannel β. Note (Fig. 1.1) that the vetors Kβ and Rβ are parallel. The di�erentialross setion for partiles sattering in the diretion θ in hannel β is de�ned as the �uxof sattered partiles through the area dA = r2dΩ in the diretion θ, per unit inident �ux.This quantity is diretly related to the sattering amplitude as (see e.g. Chap. 3, Se. Gof [11℄)
(
dσ

dΩ

)

α→β

=
vβ
vα

|fβ,α(θ)|2 . (1.7)It is ustomary to de�ne the transition matrix (T-matrix):
Tβα(θ) = −2π~2

µβ

fβα(θ) , (1.8)in terms of whih (
dσ

dΩ

)

α→β

=
µαµβ

(2π~2)2

∣
∣
∣
∣

Kβ

Kα

Tβα(θ)

∣
∣
∣
∣

2 (1.9)1.2 An integral equation for fβ,α(θ)Consider that we are interested on a partiular hannel β. The sattering amplitudeorresponding to this partiular hannel an be obtained from the asymptoti form ofthe total wavefuntion, Eq. (1.6), multiplying on the left by the �internal� wavefuntion
Φ∗

β(ξβ) orresponding the hannel of interest, and integrating over the oordinates ξβ, i.e.
(Φβ|Ψ(+)

Kα
〉 R≫−−→ δβ,αe

iKα·Rα + fβ,α(θ)
eiKβRβ

Rβ
(1.10)



8 CHAPTER 1. SOME GENERAL SCATTERING THEORYwhere (. . .〉 denotes integration over internal oordinates only. Thus, (Φβ |Ψ(+)
Kα

〉 remainsa funtion of Rβ, so we may de�ne Xβ(Rβ) ≡ (Φβ|Ψ(+)
Kα

〉. So, if we know Ψ
(+)
Kα

or anapproximation to it, we an extrat the sattering amplitude from the asymptotis of
Xβ(Rβ). Using this result, it is possible to obtain a formal expression for fβ,α(θ). Westart writing the Shrödinger equation, using the form of the Hamiltonian appropriate forthe hannel β, that is,

H = T̂β +Hβ(ξβ) + Vβ(Rβ) (1.11)Using this form of the Hamiltonian in the Shrödinger equation, Eq. (1.4), multiplying onthe left by Φ∗
β(ξβ) and integrating along the oordinates ξβ we get the projeted equation:

[T̂β + εβ − E]Xβ(Rβ) = −(Φβ |VβΨ
(+)
Kα

〉 (1.12)were we have used εβ = 〈Φβ(ξβ)|Hβ|Φβ(ξβ)〉 and the fat that the kineti energy operatordoes not depend on the internal oordinates ξβ. This is a seond-order inhomogeneousdi�erential equation for the funtion Xβ. The most general solution is the sum of thesolution of the orresponding homogeneous equation, plus a partiular solution of theinhomogeneous equation. The homogeneous equation is trivially solved, sine it ontainsonly the kineti energy operator; its solution is just a plane wave with momentum Kβ,with modulus Kβ =
√
2µβ(E − εβ)/~. The partiular solution of the inhomogeneousequation an be formally obtained using Green funtion tehniques (see, for example,[21, 11℄) leading to:

Xβ(Rβ) = eiKα·Rαδα,β −
µβ

2π~2

∫

Gβ(Rβ,R
′
β)(Φβ|VβΨ

(+)
α 〉dR′

β (1.13)where Gβ is the Green funtion in hannel β. Expliitly:
Gβ(Rβ,R

′
β) =

eiKβ |Rβ−R
′

β
|

|Rβ −R′
β|

(1.14)To extrat the sattering amplitude, we must take the asymptoti limit, Rβ ≫ R′
β . Inthis limit, the Green funtion redues to3

Gβ(Rβ,R
′
β) →

eiKβRβ

Rβ
(1.15)and the funtion Xβ(Rβ) tends to

Xβ(Rβ)
Rβ≫−−−→ eiKα·Rαδα,β −

µβ

2π~2

eiKβRβ

Rβ
(Φβ |VβΨ

(+)
Kα

〉 (1.16)Comparing with the asymptoti form (1.6), and realling the de�nition of the satter-ing amplitude, we have
fβ,α(θ) = − µβ

2π~2
〈e−iKβRβΦβ |VβΨ

(+)
Kα

〉

= − µβ

2π~2

∫ ∫

e−iKβRβΦ∗
β(ξβ)Vβ(Rβ, ξβ)Ψ

(+)
Kα

dξβdRβ (1.17)3For Rβ ≫ R′
β , |Rβ −R

′
β| ≈ Rβ − R̂β · R̂′

β = K̂β · R̂′
β.



1.3. GELL-MANN�GOLDBERGER TRANSFORMATION (TWO-POTENTIAL FORMULA)9Or, in terms of the T-matrix,
Tβ,α =

∫ ∫

e−iKβRβΦ∗
β(ξβ)Vβ(Rβ, ξβ)Ψ

(+)
Kα

(Rα, ξα)dξβdRβ. (1.18)1.3 Gell-Mann�Goldberger transformation (two-potentialformula)A more general expression for Eq. (1.18) an found introduing an auxiliary (and by nowarbitrary) potential Uβ(Rβ) on both sides of Eq. (1.12),
[T̂β + Uβ + εβ − E]Xβ(Rβ) = −(Φβ |Vβ − UβΨ

(+)
Kα

〉 (1.19)where, again, Xβ(Rβ) ≡ (Φβ|Ψ(+)
Kα

〉.The solution of (1.19) is given by a general solution of the homogeneous equation, plusa partiular solution of the full equation. The homogeneous equation is given by
[T̂β + Uβ + εβ − E]χ+

β (Rβ) = 0 (1.20)This equation represents the sattering of the partiles in hannel β under the potential
Uβ . The solution is of the form

χ
(+)
β (Rβ) = eiKβ ·Rβ + outgoing spherial waves (1.21)In the next hapter, we will disuss in more detail how this equation is solved in pratialsituations, making use of the partial wave expansion.Finally, the full equation (1.19) is solved adding a partiular solution of the inhomo-geneous equation. This is done using again Green funtion tehniques. Details are givenin [6℄. The full solution (whih generalizes Eq. (1.16)) is written as

Xβ(Rβ) ≡ (Φβ |Ψ(+)
Kα

〉 = χ+
β (Rβ)δαβ +

∫

G
(+)
β (Rβ,R

′
β)(Φβ |Vβ − UβΨ

(+)
Kα

dR′
β (1.22)The sattering amplitude (or the T-matrix) is extrated from the asymptotis of theoutgoing waves. Nnote that, we have outgoing waves in both terms of the RHS of theprevious equation, and giving rise also to two ontributions to the sattering amplitude,

Tβ,α = T (0)
β,αδαβ +

∫ ∫

χ
(−)∗
β (Kβ,Rβ)Φβ(ξβ)[Vβ − Uβ ]Ψ

(+)
Kα

dξβdRβ, (1.23)The �rst term is the sattering amplitude due to the potential Uβ and is present onlyfor the hannel β = α. In here, χ(−)
β , is the time-reverse of χ(+) and orresponds to thesolution onsisting on a plane wave with momentum Kβ and ingoing spherial waves. Itan be readily obtained from χ(+) using the relationship χ(−)∗(K,R)= χ(+)(−K,R).The result (1.23) is known as theGell-Mann�Goldberger transformation or two-potential formula. This expression is exat but it annot be solved as suh, sine itontains the exat wavefuntion of the system. However, it provides a very useful startingpoint to derive approximate expressions, as we will see later on.



10 CHAPTER 1. SOME GENERAL SCATTERING THEORY1.4 De�ning the modelspaeWe have seen that the dynamis of the system in a sattering proess is enoded in thefull wavefuntion, Ψ(+). Formally, it an be obtained by solving the Shrödinger equationof the system. Asymptotially, this wavefuntion onsists on an inoming plane plane,and outgoing spherial waves in all possible hannels. Pratial alulations require asa �rst step reduing the full spae to a tratable modelspae. This is motivated bytwo things: (i) the hannels of interest to analyze a partiular experiment and (ii) thenumerial/omputational omplexity of the problem. For example, if we are interestedin analyzing some inelasti sattering experiment, our model spae might onsist on theground state of the projetile and target, plus the states more strongly populated in theexperiment.The formal proedure to redue the problem from the full spae to a seleted mod-elspae was developed by Feshbah [9, 10℄. The idea is to separate the full spae intotwo parts, denoted as P and Q. The P spae omprise the hannels of interest and willtherefore be taken into aount expliitly in the model wavefuntion Ψ(+). The Q spae isomposed by the remaining hannels. So, following Feshbah (see also [6℄ and [11℄, Chap-ter 8G), we may write Ψ(+) = ΨP +ΨQ. The omponents ΨP and ΨQ obey a ompliatedsystem oupled equations, with the deeptively simple form
(E −HPP )ΨP = HPQΨQ (1.24)
(E −HQQ)ΨQ = HQPΨP (1.25)where HPP = PHP , HPQ = PHQ, and so on. The projeted Hamiltonian HPP ontainsthe oupling among the states of the P spae, and likewise for HQQ. The terms HPQ and

HQP desribe ouplings between the states of P and those of Q. Sine we are interestedonly inΨP , we eliminateΨQ from the RHS of the �rst equation, using the seond equation:
[

E −HPP −HPQ
1

E −HQQ + iǫ
HQP

]

ΨP = 0 (1.26)Let us rewrite this equation as
[E −Hα − Tα − V] ΨP = 0 (1.27)with

V = VPP + VPQ
1

E −HQQ + iǫ
VQP (1.28)Diret reation theories replae the above equation by an approximated one of theform

(E −Heff)Ψmodel = 0 (1.29)where Heff is an e�etive Hamiltonian whih aims at representing the ompliated objet
V. Although the Feshbah formalism provides a expression for suh operator, it annotbe evaluated in pratie. Yet, this formal solution provides an useful guidane on how to



1.4. DEFINING THE MODELSPACE 11replae suh a ompliated objet by some approximate one. In partiular, the e�etiveHamiltonian is found to be omplex, energy-dependent and non-loal. Furthermore, sinethe e�etive Hamiltonian involves the oupling to all the possible hannels, it annot beevaluated in pratie. For all these reasons, the interations entering Heff are usuallydetermined phenomenologially, and represented by simple (ommonly loal) forms.One the model spae and the e�etive interations have been de�ned, the modelwavefuntion is expanded in the set of internal states expliitly inluded (that is, those ofthe P-spae),
Ψ

(+)model = ∑

α

Φα(ξα)χ
(+)
α (Rα) (1.30)where χ

(+)
α (Rα) obey the usual outgoing boundary onditions [.f. Eq. (1.6)℄.
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Chapter 2Single-hannel sattering: the optialmodelDiret reation theories try to redue the ompliated many-body sattering problem toa tratable problem of the form
(E −Heff)Ψmodel = 0 (2.1)where Heff is an e�etive Hamiltonian de�ned in the model spae, that is, the set ofhannels of interest (in the Feshbak language, the P spae). The Ψmodel will be ingeneral an expansion in the states of the P spae.The rudest approximation to the P spae is to redue the physial spae to just theground state of the projetile and target. This gives rise to the optial model formalism.In this ase, the model wavefuntion (1.30) is approximated by a single term,1

Ψ
(+)model(ξ,R) = Φ0(ξ)χ

(+)
0 (R) (2.2)and the e�etive Hamiltonian is expressed as

Heff = Hα + Uα (2.3)The model wavefuntion is a solution of
[Tα +Hα + Uα(R)− E]Ψ

(+)model = 0 (2.4)Using the fat that, by onstrution, HαΦ0(ξ) = ε0Φ0(ξ), we get
[Tα + Uα(R)− E0]χ

(+)
0 (R) = 0 (2.5)where E0 = E − ε0, i.e., the kineti energy assoiated with the relative motion betweenthe projetile and target.1The subsript α is omitted here when impliitly understood.13



14 CHAPTER 2. SINGLE-CHANNEL SCATTERING: THE OPTICAL MODELIf the e�etive Hamiltonian, Heff , is to represent the ompliated Feshbah operator,desribing not only the interation in the P spae, but also the ouplings between the Pand Q spaes (all non-elasti hannels in this ase), then the e�etive interation Uα(R)will be omplex, non-loal and energy-dependent. The imaginary part aounts for the�ux leaving the elasti hannel (P spae) to the hannels not expliitly inluded (theQ spae). The energy dependene is usually taken into aount phenomenologially, byparametrizing U with some suitable form and adjusting the parameters to the experimen-tal data over some energy region. Finally, non-loality is rarely taken into aount. Thee�etive interation Uα is referred to as optial potential.2.1 Partial wave expansionAs an additional simpli�ation, we onsider the ase in whih the spins of the ollidingpartiles are ignored and the optial potential is assumed to be a funtion only of theprojetile-target separation, R = |R|. In this ase, the wave funtion an expanded inspherial harmonis,
χ
(+)
0 (K,R) =

∑

ℓm

Cℓ,m
χℓ(K,R)

R
Yℓm(R̂) (2.6)where the radial funtions are a solution of

[

− ~
2

2µ

d2

dR2
+

~
2

2µ

ℓ(ℓ+ 1)

R2
+ U(R)− E0

]

χℓ(K,R) = 0. (2.7)The oe�ients Cℓ,m are determined imposing that, in the ase of zero potential, thesolution must be a plane wave, that is
Uα = 0 ⇒ χ

(+)
0 (K,R) = eiK·R (2.8)whose expansion in terms of spherial harmonis is given by

eiK·R =
4π

KR

∑

ℓ,m

iℓFℓ(KR)Yℓm(R̂)Y ∗
ℓm(K̂) (2.9)

=
1

KR

∑

ℓ

iℓ(2ℓ+ 1)Fℓ(KR)Pℓ(cos θ) (2.10)where Fℓ(KR) = (KR)jℓ(K,R) with jℓ(K,R) a spherial Bessel funtion. Comparingthis expression with (2.6), it is onvenient to use the oe�ients Cℓ,m suh that in thelimit U → 0, the expansion (2.6) redues to (2.9),
χ
(+)
0 (K,R) =

1

KR

∑

ℓ

iℓ(2ℓ+ 1)χℓ(K,R)Pℓ(cos θ) (2.11)In the ase in whih the potential is non-zero, we an still say that χ(+)
0 (K,R) mustverify the following equation at large distanes,

[

− ~
2

2µ

d2

dR2
+

~
2

2µ

ℓ(ℓ+ 1)

R2
−E0

]

χℓ(K,R) = 0 (for large R) (2.12)



2.1. PARTIAL WAVE EXPANSION 15and the most general solution will be ombination of two independent solutions for thisequation. One of them an be taken as the regular solution Fℓ(KR). The other an bethe irregular solution,
Gℓ(KR) = −(KR)nℓ(KR) (2.13)or any ombination of G and F , that is,

χℓ(K,R)
R≫−−→ AFℓ(KR) +BGℓ(KR) (2.14)The ombination appropriate for our purposes is suggested by the known asymptotibehavior of our physial sattering wavefuntion, i.e.

χ
(+)
0 (K,R)

R≫−−→ eiK·R + f(θ)
eiKR

R
(2.15)The exponential part of the outgoing wave, eiKR, turns out to be just a suitable ombi-nation of the F and G funtions, beause

Gℓ(ρ) + iFℓ(ρ) ≡ H
(+)
ℓ (ρ) → ei(ρ−ℓπ/2) (2.16)So, returning to the partial wave expansion, the appropriate boundary ondition on-sistent with the behavior (2.15) is given by

χℓ(K,R) → Fℓ(KR) + TℓH
(+)
ℓ (KR) (2.17)where the (yet undetermined) oe�ient Tℓ is known as transmission oe�ient. It isusual to write Tℓ in terms of the so-alled phase-shifts,

Tℓ = eiδℓ sin(δℓ) (2.18)or, in terms of the re�etion oe�ient, Sℓ, or S-matrix,2
Sℓ = 1 + 2iTℓ = e2iδℓ (2.19)The ondition (2.17) an be also written as,

χℓ(K,R) → i

2

[

H
(−)
ℓ (KR)− SℓH

(+)
ℓ (KR)

] (2.20)where
H

(−)
ℓ (ρ) = Gℓ(ρ)− iFℓ(ρ) → e−i(ρ−ℓπ/2) (2.21)The S-matrix Sℓ is therefore the oe�ient of the outgoing wave (H(+)) for the partialwave ℓ. It re�ets the e�et of the potential on this partiular wave in the sense that,2When these expressions are generalized to the multiple hannel ase, the quantity Sℓ beomes amatrix and is referred to as sattering or ollision matrix (the name is also used in single-hannel ase,but the terminology is less obvious).



16 CHAPTER 2. SINGLE-CHANNEL SCATTERING: THE OPTICAL MODEL
• If no potential is present, there is no outgoing wave. Then, Tℓ = 0 or, equivalently,
Sℓ = 1 and δℓ = 0.

• As a onsequene of the previous item, for large values of ℓ the entrifugal barrierkeeps the projetile well apart from the target, and thus the e�et of the (short-ranged) potential Uα will be negligible. Consequently, for ℓ → ∞ ⇒ Sℓ → 1.
• If the sattered potential is real, the overall outgoing �ux for a given partial wavemust be onserved, and hene |Sℓ| = 1.
• On the other hand, for a omplex potential (with negative imaginary part), we have
|Sℓ| < 1, thus re�eting that part of the inident �ux has left the elasti hannel infavor of other hannels.2.2 Sattering amplitudeTo get the sattering amplitude, we substitute the asymptoti radial funtion χℓ(K,R)from (2.20) into the full expansion (2.11):

χ
(+)
0 (K,R) → 1

KR

∑

ℓ

iℓ(2ℓ+ 1)
{

Fℓ(KR) + TℓH
(+)
ℓ (KR)

}

Pℓ(cos θ)

=
1

KR

∑

ℓ

iℓ(2ℓ+ 1)Fℓ(KR)Pℓ(cos θ) +
1

K

∑

ℓ

iℓ(2ℓ+ 1)Tℓ
ei(KR−ℓπ/2)

R
Pℓ(cos θ)

= eiK·R +
1

K

∑

ℓ

(2ℓ+ 1)eiδℓ sin δℓPℓ(cos θ)
eiKR

R
(2.22)The elasti sattering amplitude is the oe�ient of eiKR/R in the last line,i.e.,

f(θ) =
1

K

∑

ℓ

(2ℓ+ 1)eiδℓ sin δℓPℓ(cos θ)

=
1

2iK

∑

ℓ

(2ℓ+ 1)(Sℓ − 1)Pℓ(cos θ). (2.23)The di�erential elasti ross setion will be given by
dσ

dΩ
= |f(θ)|2. (2.24)In priniple, the sum in (2.23) runs from ℓ = 0 to in�nity. However, remember that, forlarge values of ℓ, the S-matrix tends to 1 so, in pratie, the sum an be safely trunatedat a maximum value ℓmax, determined by some onvergene riterion of the ross setion.



2.3. COULOMB CASE 172.3 Coulomb aseThe Coulomb ase deserves a speial onsideration beause the expressions derived in theprevious setion are stritly appliable to the ase of short-range potentials, for whih theasymptoti form (2.15) is appropriate. For a pure Coulomb ase, we an perform a partialwave expansion of the sattering wavefuntion χC(K,R) of the form
χC(K,R) =

1

KR

∑

ℓ

(2ℓ+ 1)iℓχC
ℓ (KR)Pℓ(cos(θ)) (2.25)with the radial funtions χC

ℓ (KR) obeying the equation
[

d2

dR2
+K2 − 2ηK

R
+

ℓ(ℓ+ 1)

R2

]

χC
ℓ (KR) = 0 (2.26)where

η =
ZpZte

2

~v
=

ZpZte
2µ

~2K
(2.27)the so-alled Coulomb or Sommerfeld parameter.The solution of (2.26) must be regular at the origin. Asymptotially, it behaves as

χC
ℓ (KR)

R≫−−→ eiσℓFℓ(η,KR) (2.28)where Fℓ(η,KR) is the regular Coulomb funtion and σℓ is the Coulomb phase-shift fora partial wave ℓ,
σℓ = arg Γ(ℓ+ 1 + iη) (2.29)The Coulomb funtion behaves asymptotially as

Fℓ(η, ρ) → sin(ρ− η ln(2ρ)− ℓπ/2 + σℓ) (2.30)whih in the ase η = 0 (σℓ = 0) redues to the regular Fℓ(KR) funtion introdued inthe ase of short-range potentials
Fℓ(η = 0, ρ) = Fℓ(ρ) = ρjℓ(ρ) (2.31)Analogously, an irregular solution of (2.26) an be found, whih redues to Gℓ(ρ) in theno Coulomb ase

Gℓ(η, ρ) → cos(ρ− η ln(2ρ)− ℓπ/2 + σℓ)
η=0−−→ Gℓ(ρ) = −ρnℓ(ρ) (2.32)as well as the ingoing and outgoing funtions,

H(+)(η, ρ) = Gℓ(η, ρ) + iFℓ(η, ρ) (2.33)
H(−)(η, ρ) = Gℓ(η, ρ)− iFℓ(η, ρ) (2.34)



18 CHAPTER 2. SINGLE-CHANNEL SCATTERING: THE OPTICAL MODELFor the pure Coulomb ase, the sattering amplitude will be given by
fC(θ) =

1

2K

∑

ℓ

(2ℓ+ 1)(e2iσℓ − 1)Pℓ(cos θ) (2.35)This integral is not onvergent (annot be trunated at a �nite ℓ) but the full result isknown analytially and is given by
fC(θ) = − η

2K sin2(1
2
θ)
e−iη ln(sin2( 1

2
θ)+2iσ0) (2.36)The di�erential ross setion yields the well-known Rutherford formula

dσR

dΩ
= |fC(θ)|2 =

η2

4K2 sin4(1
2
θ)

=

(
ZpZte

2

4E

)2
1

sin4(1
2
θ)

(2.37)2.4 Coulomb plus nulear aseIf both Coulomb and nulear potentials are present, the sattering funtion χ
(+)
0 (K,R)will never reah the asymptoti form of a plane wave plus outgoing waves, due to thepresene of the 1/R term in Shrödinger equation. Nevertheless, it an be written as

χ
(+)
0 (K,R) → χ

(+)
C (K,R) + outgoing spherial waves (2.38)where the outgoing waves part are now proportional to the funtions H

(+)
ℓ (η,KR). Ofourse, when only the Coulomb potential is present, this term vanishes, and the satteringwavefuntion redues to χ

(+)
C (K,R).If we write, as usual, the χ

(+)
0 (K,R) as a partial wave expansion, the orrespondingradial oe�ients χℓ(K,R) verify the asymptoti ondition

χℓ(K,R) → eiσℓ

[

Fℓ(η,KR) + TℓH
(+)
ℓ (η,KR)

] (2.39)
= eiσℓ

i

2

[

H
(−)
ℓ (η,KR)− SℓH

(+)
ℓ (η,KR)

] (2.40)whih is very similar to (2.17) and (2.20), expet for additional Coulomb phase eiσℓ andreplaement of the funtions F (KR), H(+), et by their Coulomb generalizations.The sattering amplitude results
f(θ) = fC(θ) +

1

2iK

∑

ℓ

(2ℓ+ 1)e2iσℓ(Sℓ − 1)Pℓ(cos θ) (2.41)where the �rst term orresponds to the pure-Coulomb amplitude, and arises from theoutgoing waves in the �rst term of (2.38).



2.5. PARAMETRIZATION OF THE PHENOMENOLOGICAL OPTICAL POTENTIAL19Numerial alulation of the sattering wavefuntion and phase-shiftsIn pratie, the alulations of the sattering wave funtion and the orrespondingre�etion oe�ients (or phase-shifts) are usually omputed as follows:1. Integrate the radial di�erential equation from the origin outwards, with theinitial value χℓ(K, 0) = 0 and some �nite (arbitrary) slope.2. At a su�iently large distane, Rmax, beyond whih the nulear potentials havebeome negligible, the numerially obtained solution is mathed to the asymp-toti form
Nχℓ(K,Rmax) → Fℓ(η,KRmax) + TℓH

(+)
ℓ (η,KRmax) (2.42)3. This equation ontains two unknowns, Tℓ and the normalization N . Thus, it issupplemented with the ondition of ontinuity of the derivative

Nχ′
ℓ(K,Rmax) → F ′

ℓ(η,KRmax) + Tℓ(H
(+)
ℓ (η,KRmax))

′ (2.43)4. The proedure is repeated for eah ℓ, from ℓ = 0 to ℓmax, suh that Sℓmax
≈ 1.2.5 Parametrization of the phenomenologial optialpotentialThe e�etive optial optial potential is usually taken as the sum of Coulomb and nu-lear entral potentials U(R) = Unuc(R) + Ucoul(R), with the Coulomb part taken as thepotential orresponding to a uniform distribution of harge of radius Rc:

Uc(R) =

{
Z1Z2e2

2Rc

(

3− R2

R2
c

) if R ≤ Rc

Z1Z2e2

R
if R ≥ Rc

(2.44)As for the nulear part, it ontains in general real and imaginary parts. The moststandard parametrization is that of Woods-Saxon
Unuc(R) = V (R) + iW (R) = − V0

1 + exp
(

R−R0

a0

) − i
W0

1 + exp
(

R−Ri

ai

) (2.45)The parameters V0, R0 and a0 are the depth, radius and di�useness (likewise for theimaginary part). They are usually determined from the analysis of elasti sattering data.If the spin-of the projetile (or target) is onsidered, the potential will ontain alsospin-dependent term. The most ommon one is the spin-orbit term, whih is usually
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Uso(R) = (Vso + iWso)

(
~

mπc

)2
1

R

df(R,Rso, aso)

dR
(2ℓ · s) (2.46)where the radial funtion f(R,Rso, aso) is again a Woods-Saxon form, and (~/mπc)

2 =
2 fm2, is just introdued in order Uso have dimensions of energy.



Chapter 3Inelasti satteringNulei are not inert or frozen objets; they do have an internal struture of protons andneutrons that an be modi�ed (exited), for example, in ollisions with other nulei. Infat, a important and ommon proess that may our in a ollision between two nuleiis the exitation of one (or both) of the nulei.Inelasti sattering is an example of diret reation (see Chapter 1) and, as suh, theolliding nulei preserve their ollision after the ollision.The energy required to exite a nuleus is taken from the kineti energy assoiated withprojetile-target relative motion. This means that, if one of the olliding nulei is exited,the �nal kineti energy of the system is redued by an amount equal to the exitationenergy of the exited state populated in the reation. So, by measuring the kineti energyof the outgoing fragments, one an infer the exitation energy of the projetile and target.This has been indeed a ommon tehnique to identify suh exited states.The information provided by the analysis of inelasti reations is not restrited to thelevel spetrum of nulei. By omparing the energy and angular distribution of the ejetilewith an appropriate reation theory, we an infer also useful struture information, suh asthe spin and parity of the populated states, the eletri transition probabilities onnetingthese states, the deviation from the spherial shape in deformed systems, et3.1 Colletive versus single-partile exitationsNulei, like atoms, tend to be in their state of minimal energy (the so-alled ground state)whih orresponds to a ertain arrangement of protons and neutrons inside the nuleus.The exitation of the nuleus orresponds mirosopially to a rearrangement of protonsand neutrons. This is a many-body quantum-mehanial problem, whih an be verydi�ult to treat in a general situation. However, in many ases, it is possible to rely on asimpler piture, whih emphasize some partiular degree of freedom of the system. This isthe ase of the single-partile exitations observed in even-odd nulei, or that of olletiveexitations due to the rotation or vibration of the nuleus.21
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Figure 3.1: Energy levels of 209Bi and 11Be, interpreted as single-partile exitations.
• Single-partile exitations: If we have a nuleus with one �valene� nuleon out-side a losed shell, there will be low exited states whih orresponds to promotingthis odd nuleon into higher shell-model orbits without disturbing the inner losedshells. Two examples are shown in Fig. 3.1. In the 209Bi ase, the �rst 82 protonsonstitute a relatively inert ore and the remaining proton moves in the averagepotential reated by this ore.The seond example shown in Fig. 3.1 is 11Be, whih is an example of �exoti�nuleus. The exess of neutrons (N = 7 versus Z = 4) makes this system veryunstable, deaying into 11B by β− emission (T1/2 = 13.76 s). The ground state(1/2+) an be interpreted in a single-partile piture as a neutron moving around a

10Be ore in a 2s1/2 orbital. Very lose to the ground state, at Ex = 320 keV, thereis a 1/2− exited state, whih an be obtained promoting the last neutron the 1p1/2orbital1.
• Colletive exitations: Some exited states are not easily interpreted in terms ofsingle-partile exitations, even onsidering more than one ative nuleon. However,in many ases they an be interpreted as olletive exitations of the nuleus as a1Note that this is not the expeted sequene of stable nulei, for whih one would expet the 1p1/2orbital to be below the 2s1/2 orbital. This parity inversion is a onsequene of the proton/neutronasymmetry and is subjet nowadays of many studies.



3.1. COLLECTIVE VERSUS SINGLE-PARTICLE EXCITATIONS 23

Figure 3.2: Energy levels of a typial rotational (left) and a typial vibrational (right)nuleus.whole. This is the ase of nulei with a permanent deformation in whih exitedstates orrespond to the rotational motion of the nuleus, slowly rotating as a whole.In the pure rotational model, the energy spetrum is of the form
E(I) =

~
2

2I [I(I + 1)−K(K + 1)] , (3.1)where I is spin of the level with exitation energy E(I), K is the projetion of theangular momentum along the symmetry axis of the deformed system and I is themoment of inertia of the nuleus. For even-even nulei, the ground state has I = 0and hene the rotational band built on top of the ground state has K = 0 too.Physially, this means that the rotation ours about an axis perpendiular to thenulear symmetry axis. It an be shown that in this ase only even values of Iappear. An example of rotational spetrum for an even-even nuleus is shown inthe left-hand-side of Fig. 3.2.Another example of olletive exitations are the vibrations experiened by an spher-ial nuleus. These an be visualized as harmoni osillations of the surfae about
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Figure 3.3: Energy levels of samarium isotopes showing the evolution from a typialvibrational spetrum in 148Sm to a rotational spetrum fully developed in 152Sm and
154Sm. Quoted from Ref. [11℄, p. 229.the spherial shape. In an even-even nuleus, the orresponding energy spetrumfor a multipolarity λ onsists of evenly spaed levels with

En = n~ωλwhere n = 0, 1, . . . is the number of phonons, eah arrying an energy of ~ωλ andangular momentum λ~. For example, for quadrupole phonons (λ=2), n = 0 orre-sponds to the state with no phonons, and has I = 0. This is the ground state of thesystem. For n = 1 phonon, we have a (exited) state with I = 2 angular momentumand energy ~ωλ. With two quadrupole phonons (n = 2), we get an exited statewith energy 2~ωλ. Sine eah phonon arries an angular momentum of 2~, they anouple to angular momenta I=0, 2 and 4, so we atually have 3 degenerated levels.An example of vibrational spetrum is shown in the right-hand-side of Fig. 3.2,orresponding to the 114Cd nuleus. The 0+, 2+ and 4+ triplet of states around Ex ≈
1 MeV orresponds to the exitation of two quadrupole phonons. The additional 0+and 2+ states observed nearby are due to a di�erent kind of exitation.It is worth noting that the vibrational or rotational harater an hange froman isotope to another within the same isotopi hain. An example is shown inFig. 3.3, for the �rst levels of the samarium isotopes, exhibiting the harateristilevel spaing of vibrator and rotor at the extremes.



3.2. ENERGY BALANCE CONSIDERATIONS 25There are other kinds of olletive exitations (monopole, giant resonanes, et) butthey will not be onsidered here.3.2 Energy balane onsiderationsWe start by realling the onept of Q-value. Consider the binary diret reation a+A →
b + B, where a projetile a ollides with a target A giving rise to an ejetile b and aresidual nuleus B. Due to energy onservation in the CM frame,

Ei
cm +Mac

2 +MAc
2 = Ef

cm +Mbc
2 +MBc

2, (3.2)where Ei
cm (Ef

cm) is the total kineti energy in the initial (�nal) hannels. It is ustomaryto introdue the Q-value, de�ned as
Q = Mac

2 +MAc
2 −Mbc

2 −MBc
2. (3.3)In terms of Q, the energy balane an be expressed as

Ef
cm = Ei

cm +Q. (3.4)For Q > 0 we have Ef
cm > Ei

cm and the reation is said to be exothermi. Conversely,for Q < 0 we have Ef
cm < Ei

cm and the reation is said to be endothermi.For an inelasti proess, the nulei are the same in the initial and �nal hannels. Letus assume, for de�niteness, that the projetile is exited to an exited state Ex. Then,the energy balane beomes in this ase
Ei

cm +Mac
2 +MAc

2 = Ef
cm +M∗

ac
2 +MAc

2, (3.5)where M∗
a = Ma + Ex.In this ase, the Q-value is simply given by

Q = Mac
2 +MAc

2 −M∗
ac

2 −M2
A = −Ex,that is, Q = −Ex < 0. Consequently, an inelasti reation is always endothermi. This isnot unexpeted, sine part of the kineti energy is used to exite one of the nulei.From these onsiderations, we see that the exitation energy of the states populatedin a inelasti proess an be inferred by just measuring the kineti energy of the outgoingfragments. In fat, this is a powerful tehnique to obtain the energy spetrum of a nuleus.Example: the p+7Li reationAs an example, let us onsider the sattering of a proton beam by a 7Li target. InFig. 3.4, we see the experimental exitation energy spetrum inferred from the energyof the outgoing protons deteted at an sattering angle of 25◦. We have superimposedthe known energy spetrum of 7Li to emphasize the orrespondene between the observed
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Figure 3.4: Energy spetrum of deteted outgoing protons sattered from a 7Li target(quoted from Ref. [14℄).peaks and these states. The peak at Ex = 0 (orresponding to Q = 0) orresponds to theground state of 7Li. Thus, it is just elasti sattering. At Ex = 0.48 MeV, we should seea seond peak orresponding to the �rst exited state of 7Li. However, due to the energyresolution, this peak is not resolved in these data from the elasti peak. At Ex = 4.6 MeVthere is a prominent peak orresponding to a 7/2− state in 7Li. This state is above the
4He+t threshold and does atually orrespond to a ontinuum resonane. This thresholdorresponds to the energy neessary to dissoiate the 7Li nuleus into 4He+t. Therefore,for exitation energies above this value, we have a ontinuous of aessible energies, ratherthan a disrete spetrum, and any value of Ex is possible. This explains the bakgroundobserved at these exitation energies.Note that the information provided by these data is not enough to determine otherproperties of the energy spetrum, suh as as the spin/parity assignment or their olletive/single-partile harater. To do that, one needs to ompare the data with a suitable reationalulation, as we will see in the next setion.3.3 Formal treatment of inelasti reations3.3.1 The oupled-hannels (CC) methodRemember from Chapter 1 (Se. 1.4) that any pratial solution of the sattering prob-lem starts with a redution of the full physial spae into P and Q spaes, the former



3.3. FORMAL TREATMENT OF INELASTIC REACTIONS 27orresponding to the hannels that are to be expliitly inluded. In an inelasti proess,this P spae will onsist of the elasti hannel, plus some exited states of the projetileand/or target, those more strongly oupled in the proess or, at least, those that will beompared with the experimental data.Let us onsider the sattering of a projetile a by a target A, and let us assume forsimpliity that only the projetile an be exited during the proess, the target being justan inert spetator. We denote this mass partition by the index α, i.e., α ≡ a + A. Ourmodel Hamiltonian will desribe a set of states of the projetile, and the oupling betweenduring the ollision. This model Hamiltonian will be expressed as:
H = − ~

2

2µaA
∇2

R
+Ha(ξ) + Vα(ξ,R) (3.6)where Vα(ξ,R) is the projetile-target interation and Ha(ξ) is the internal Hamiltonianof the projetile2. The symbol ξ denotes the set of internal oordinates of a. For example,in deuteron sattering, ξ may refer to the relative oordinate between the proton and theneutron3. R is the relative oordinate between a and A.Let us denote by {φn(ξ)} the internal states of the projetile. These will be theeigenstates of the Hamiltonian Ha(ξ):

Haφn = εnφn. (3.7)The key idea of the CC method is to expand of the total wavefuntion of the systemthe set of internal states {φn(ξ)},
Ψ(+)(R, ξ) = φ0(ξ)χ0(R) +

N∑

n>0

φn(ξ)χn(R) (3.8)with φ0(ξ) representing the ground-state wavefuntion and N the number of states in-luded.The unknown oe�ients χn(R) desribe the relative motion between the projetileand target in the orresponding internal states. They have a de�nite physial meaning.They tell us the relative �probability�, as a funtion of R, for the projetile (or target)being in state n. The di�erent possibilities for n are frequently referred to as �hannels�.The total wavefuntion Ψ(R, ξ) veri�es the Shrödinger equation:
[E −H ]Ψ(+)(R, ξ) = 0.We now proeed as follows:

• Use the expansion (3.8) and the Hamiltonian (3.6) in this equation.2If both the projetile and target an be exited, we an generalize the equation above by inludingalso the internal Hamiltonian of the target, so Ha(ξ) should be replaed by Hα = Ha(ξ) +HA(ξ
′).3The intrinsi spins of the proton and neutron, ould be also part of these set of internal oordinates.
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• Multiply on the left by eah of the basis funtions φ∗

n(ξ), and integrate over theinternal oordinates ξ.
• For eah n, we get a di�erential equation of the form:

[

E − εn − T̂R − Vn,n(R)
]

χn(R) =
∑

n′ 6=n

Vn,n′(R)χn′(R) (3.9)where T̂R is the kineti energy operator and Vn,n′ are the so alled oupling potentials,de�ned by:
Vn,n′(R) =

∫

dξφ∗
n(ξ)V (ξ,R)φn′(ξ) (3.10)Thus, for example, V0,m is the potential responsible for the exitation from theground state (n = 0) to a given �nal state m. We have still not de�ned the formof the e�etive potential V (ξ,R) and the internal states φn, that is, the modelHamiltonian. These potentials are onstruted within a ertain model, as we willsee later.Note that in the equation for a given value of n, we have the unknown χn(R), but alsothose χn′(R) with n′ 6= n. Consequently, Eq. (3.9) represents a set of oupled di�erentialequations for the set of funtions {χn(R)}.Boundary onditionsSimilarly to the OM ase, the CC equations have to be solved with the appropriateboundary onditions. These boundary onditions orrespond to the physial situation inwhih the projetile is initially in the ground-state (φ0) and the projetile-target relativemotion is represented by a plane wave with momentumK0

4. The situation is shematiallyrepresented in Fig. 3.5. Classially, the diretion of the momentum K0 orresponds to thediretion of motion of the projetile. As a result of the ollision with the target, a serialof outgoing spherial waves is reated. That is, the general struture of the wave funtionof the system is of the form
Ψ

(+)
K0

(R, ξ) = eiK0·Rφ0(ξ) + (outgoing spherial waves)Unlike the planes waves, the spherial waves satter in all diretions. In addition to theoutgoing waves orresponding to elasti sattering, there will be outgoing hannels for allthe open hannels (that is, all the possible �nal states allowed by energy onservation).So, outside the range of the potentials, the total wave funtion satis�es:
Ψ

(+)
K0

(R, ξ)
R≫−−→

{

eiK0·R + f0,0(θ)
eiK0R

R

}

φ0(ξ) +
∑

n>0

fn,0(θ)
eiKnR

R
φn(ξ), (3.11)4A more realisti desription would be in terms of wave-pakets but the formal treatment is muhmore ompliated. To link both pitures, one an bear in mind that a wave paket an be onstrutedas a superposition of plane waves.



3.3. FORMAL TREATMENT OF INELASTIC REACTIONS 29Comparing with (3.8) we see that the funtions χn(R) must verify following boundaryonditions:
χ
(+)
0 (K0,R) → eiK0·R + f0,0(θ)

eiK0R

R
n = 0 (elasti)

χ(+)
n (Kn,R) → fn,0(θ)

eiKnR

R
, n 6= 0 (non-elasti) (3.12)where the supersript �+� indiates that this is the solution whih ontains outgoingspherial waves (one an onstrut also a solution with ingoing spherial waves that behaveas exp(−iK0R)/R. The oe�ient of the outgoing wave exp(−iK0R)/R, fn,0(θ), is justthe sattering amplitude. One we have determined the sattering amplitude, the rosssetion is alulated as (.f. Chapter 1)

dσ(θ)

dΩ
(0 → n) =

Kn

K0

|fn,0(θ)|2 (3.13)Note that:
• There are only inoming waves for the χ0 omponent (that is, the elasti omponent)but outgoing waves for all omponents.
• The sattering angle in the .m. frame, θ, is determinted by the diretion of themomenta K0 and Kn. De�ning the momentum transfer as q = Kn −K0, we have(see Fig. 3.5):

q2 = K2
0 +K2

n − 2K0Kn cos(θ) (3.14)
• The modulus of the momentum K is related to the kineti energy of the system inhannel n in the CM frame:

En
cm =

~
2K2

n

2µ

• Due to energy onservation5,
E = ε0 +

~
2K2

0

2µ
= εn +

~
2K2

n

2µ5For εn > E, the kineti energy is negative and the orresponding momentum Kn beomes imaginary.Consequently, the asymptoti solutions χn of Eq. (3.12) vanish exponentially and then these hannels donot ontribute to the outgoing �ux.
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Figure 3.5: Left: inident and sattered waves in a sattering proess. Right: inidentand �nal momenta, and momentum transfer3.3.2 The DWBA methodIf the number of states is large, the solution of the oupled equations an be a di�ulttask. In many situations, however, some of the exited states are very weakly oupled tothe ground state and an be treated perturbatively. In this ase, the set of equations (3.9)an be solved iteratively, starting from the elasti hannel equation, and setting to zerothe soure term (the RHS of the equation). This allows the alulation of the distortedwave χ0(K0,R). This solution is then inserted into the equation orresponding to anexited state n, thus providing a �rst order approximation for χn(K0,R). If the proessis stopped here, then the method is referred to as distorted wave Born approximation(DWBA).We provide here an alternative derivation of the DWBA method, whih leads to amore diret onnetion with the sattering amplitude. We make use of the exat satteringamplitude (1.23) derived in Chapter 1 using the Gell-Mann�Goldberger transformation,and that we reprodue here for ompleteness:
Tβ,α = T (0)

β,αδαβ +

∫ ∫

χ
(−)∗
β (Kβ,Rβ)Φ

∗
β(ξβ)WβΨ

(+)
Kα

dξβdRβ , (3.15)where Wβ = Vβ − Uβ. Let us partiularize to our ase, assuming that we are to desribea transition between an initial state i (typially, the g.s.) and a �nal state f . Sine thesestates belong to the same partition (α) we do not need to speify expliitly the subsript
α or β. Then, the expression above beomes

Tf,i =

∫ ∫

χ
(−)∗
f (Kf ,R)φ∗

f(ξ)[Vf − Uf ]Ψ
(+)
Ki

dξdR , (3.16)where, within the CC method, Ψ(+)
Ki

is given by the expansion (3.8). Reall that, in this
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(−)
f (Kf ,R) is the time reverse of χ(+)

f (Kf ,R), whih is a solution of
[T̂R + Uf + εf − E]χ

(+)
f (Kf ,R) = 0 (3.17)for some auxiliary potential Uf (R). Typially, Uf(R) is hosen as a phenomenologialpotential that desribes the elasti sattering in the �nal hannel.In DWBA, the wavefuntion of the system in the initial state is approximated by:

Ψ
(+)
i (R, ξ) ≃ χ

(+)
i (Ki,R)φi(ξ), (3.18)where χ

(+)
i (K,R) is the distorted wave desribing the projetile-motion in the entranehannel, [

E − εi − T̂R − Ui(R)
]

χ
(+)
i (Ki,R) = 0 , (3.19)where Ui(R) is the average potential in the initial hannel, and is usually taken as thepotential that desribes the elasti sattering in this hannel. With this hoie, one hopesto inlude e�etively some of the e�ets of the negleted hannels.In DWBA, the sattering amplitude orresponding to the inelasti exitation of theprojetile from the initial state φi(ξ) and momentum K to a �nal state φf(ξ) and mo-mentum Kf is given by (for details, see for example Ref. [26℄)

fDWBA
f,i (θ) = − µ

2π~2

∫

dRχ
(−)∗
f (Kf ,R)Wif(R)χ

(+)
i (Ki,R) (3.20)where Wif(R) is the oupling potential

Wif(R) ≡ 〈φf |Vf − Uf |φi〉 =
∫

dξφ∗
f(ξ)(Vf − Uf )φi(ξ) (3.21)Atual appliations of the DWBA amplitude (3.20) require the spei�ation of thestruture model (that will determine the funtions {φi(ξ)} as well as the projetile-targetinteration Vf . We give some examples in the following setion.3.4 Appliation of the DWBA method to olletive ex-itations3.4.1 Coulomb exitationLet us onsider the Coulomb potential between a omposite projetile of harge Zpeand a target nuleus of harge Zte. We ignore the struture of the target but we onsiderexpliitly the internal struture of the projetile (see Fig. 3.6). Consequently, the Coulombpotential is the sum of the interation with all the protons of the projetile, that is,6

V (R, ξ) =

Zp∑

i

κZte
2

|R− ri|
, (3.22)6In many textbooks and papers, it is ustomary to use units in whih κ = 1.
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Figure 3.6: Coulomb interation between a partile and a omposite system.with κ ≡ 1/4πǫ0 and ξ = {ri}. .We use the following multipole expansion, whih is valid for R > ri:
1

|R− ri|
=

∑

λµ

4π

2λ+ 1

rλi
Rλ+1

Yλµ(r̂i)Y
∗
λµ(R̂) (R > ri) (3.23)This allows to express the Coulomb potential in terms of the so-alledmultipole eletrioperator, de�ned as:

M(Eλ, µ) ≡ e

Zp∑

i

rλi Yλµ(r̂i), (3.24)giving rise to
V (R, ξ) =

∑

λ,µ

4π

2λ+ 1

κZte

Rλ+1
M(Eλ, µ)Y ∗

λµ(R̂), (3.25)where R̂ ≡ {θ, ϕ}.For the appliation of the DWBA method, we write the interation as V (R, ξ) =
V0(R) +W (R, ξ) with

V0(R) =
κZtZpe

2

R
(3.26)and

W (R, ξ) = κZte
∑

λ>0,µ

4π

2λ+ 1
M(Eλ, µ)

Y ∗
λµ(R̂)

Rλ+1
(3.27)The term V0(R) is just the usual monopole (λ = 0) Coulomb potential. This termdoes not depend on the internal oordinates of the projetile and hene annot indueexitations. We an use the results of the preeding setion, and alulate the satteringamplitude orresponding to the transition from an initial state φi to a �nal state φf .Aording to Eq. (3.20), we need to alulate matrix elements between initial and �nalstates (i.e., the transition potentials). It is onvenient to express the eigenstates of theinternal Hamiltonian in terms of their angular momentum (I) and their projetion (M),i.e.

|φi〉 ≡ |i; IiMi〉, |φf〉 ≡ |f ; IfMf 〉 (3.28)
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Wif(R) = κZte

∑

λ6=0,µ

4π

2λ+ 1
〈f ; IfMf |M(Eλ, µ)|i; IiMi〉

Y ∗
λµ(R̂)

Rλ+1
(3.29)Substituting this expression into the DWBA amplitude (3.20) we get

f(θ)iMi→fMf
=− µ

2π~2
κZte

4π

2λ+ 1
〈f ; IfMf |M(Eλ, µ)|iIiMi〉

×
∫

dRχ
(−)∗
f (Kf ,R)

Y ∗
λµ(R̂)

Rλ+1
χ
(+)
i (Ki,R) (3.30)(reall that θ is the angle between Ki and Kf )If we de�ne

T λ
if (Kf ,Ki) ≡

∫

dRχ
(−)∗
f (Kf ,R)

Y ∗
λµ(R̂)

Rλ+1
χ
(+)
i (Ki,R) (3.31)we an rewrite the DWBA amplitude as

fDWBA(θ)iIiMi→fIfMf
= − µ

2π~2
κZte〈f ; IfMf |M(Eλ, µ)|i; IiMi〉T λ

if (Kf ,Ki) (3.32)This result shows that the DWBA sattering amplitude fatorizes into a produt oftwo terms; the amplitude T λ
if (Kf ,Ki), whih ontains information on the reation part,but does not depend on the spei� struture of the projetile or target, and the struturefator 〈f ; IfMf |M(Eλ, µ)|i; IiMi〉, whih ontains all the information on the nuleus beingexited. This fatorization makes it possible the extration of struture information byomparing the angular and energy distributions of the outgoing nulei with the DWBAalulation, provided that the approximations that lead to the DWBA result are valid.The di�erential ross setion will be given by,

(
dσ

dΩ

)

iMi→fMf

=
Kf

Ki

∣
∣f(θ)iMi→fMf

∣
∣2 . (3.33)This expression orresponds to a proess in whih the projetile is initially in a state withspin Ii and projetion Mi and is exited to a state with spin If and projetion Mf . Inmany experiments, the spin projetion is not measured in either the initial nor the �nalstates. In this ase, the ross setion is obtained averaging over the initial spin orientationsand summing over their �nal orientations. If the spins are randomly oriented initially,

(
dσ

dΩ

)

i→f

=
1

2Ii + 1

Kf

Ki

∑

Mi,Mf

∣
∣f(θ)iMi→fMf

∣
∣2 . (3.34)It an be shown that this result is independent of the azimuthal angle ϕ.



34 CHAPTER 3. INELASTIC SCATTERINGThe matrix elements of the eletri multipole operator appearing in Eq. (3.32) an beexpressed, using the Wigner-Ekart theorem, in terms of the redued matrix elements as[8℄
〈f ; IfMf |M(Eλ, µ)|i; IiMi〉 = 〈IfMf |λµIiMi〉〈f ; If ||M(Eλ)||i; Ii〉BS , (3.35)where the quantity 〈f ; If ||M(Eλ)||i; Ii〉 is referred to as a redued matrix element. It doesnot depend on the projetions Mi and Mj . In the ase of the eletri operator, this isrelated to the redued transition probability:7

B(Eλ; i → f) ≡ 2If + 1

2Ii + 1
|〈f ; If ||M(Eλ)||i; Ii〉BS|2 (3.36)For a inelasti exitation i → f of multipolarity λ the di�erential ross setion isproportional to the eletri redued probability B(Eλ; Ii → If ) beause

(
dσ

dΩ

)

i→f

∝ |〈f ; If ||M(Eλ)||i; Ii〉|2 ∝ B(Eλ; Ii → If)So, if the approximations involved in the derivation of the DWBA amplitude are valid,the transition probabilities B(Eλ; If → If) an be obtained omparing the magnitudeof the inelasti ross setions with DWBA alulations. Note that the Clebsh-Gordanoe�ient in Eq. (3.35) imposes ertain restritions with respet to the allowed transitionsfor a multipolarity λ, sine this oe�ient will be zero unless |Ii − If | ≤ λ ≤ Ii + If .3.4.2 Nulear exitation in the olletive modelWithin a olletive model (e.g. vibrational, rotational,. . . ) nulear exitations are inter-preted in terms of the deformation of the harge or mass distribution of the nuleus.The interation of a nuleus with a partile is typially haraterized by a funtion ofthe distane from the partile to the nulear surfae (see Fig. 3.7). This is the ase, forexample, of the popular Woods-Saxon parametrization,
Unuc(R) = V (R− R0) = − V0

1 + exp
(

R−R0

ar

) − i
W0

1 + exp
(

R−Ri

ai

) .For a spherial nuleus, the interation is of ourse independent on the orientation ofthe nuleus. However, if the nuleus is deformed (rotational nuleus) or an experiene7If the onvention of redued matrix elements of Bohr and Mottelson is used [7℄, the redued matrixelements are de�ned as
〈f ; IfMf |M(Eλ, µ)|i; IiMi〉 = (2If + 1)1/2〈IfMf |λµIiMi〉〈f ; If ||M(Eλ)||i; Ii〉BMand hene, for the eletri transition probability, we have

B(Eλ; i → f) ≡ 1

2Ii + 1
|〈f ; If ||M(Eλ)||i; Ii〉BM|2
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Figure 3.7: Interation of a partile with a nuleus.osillations with respet to the spherial shape (vibrational nuleus), then the radius willhave a dependene on the angles θ and ϕ (see appendix A.1):
r(θ, ϕ) = R0 +

∑

λ,µ

δ̂λµY
∗
λµ(θ, ϕ) (3.37)where δ̂λµ are the so-alled deformation length operators and haraterize the deviation ofthe radius of the surfae with respet to the spherial shape. Typially, the quadrupole(λ = 2) and otupole (λ = 3) deformations are the most relevant.If we assume that the interation with the referene partile is a funtion of the distaneto the surfae, we have:

V (R, ξ) = V (R− r(θ, ϕ)) = V (R− (R0 +
∑

λ,µ

δ̂λµY
∗
λµ(θ, ϕ))) (3.38)Assuming that the deformation is small ompared with the variation of the potential(eg. the di�useness), we an perform a Taylor expansion of the potential in δ̂λµ whih, upto �rst order, gives

V (R, ξ) = V (R −R0)−
∑

λ,µ

δ̂λµ
dV (R− R0)

dR
Y ∗
λµ(θ, ϕ) + . . . (3.39)To apply the DWBA formalism, we write the full interation as V = U + (V −U); weidentify the seond term with the residual interation W = V −U , and the �rst term withthe auxiliary potential U . The oupling potentials of the residual interation betweenstates |i; IiMi〉 and |f ; IfMf 〉 are [see Eq.(3.21)℄:

Wif (R) ≡ 〈f ; IfMf |V |i; IiMi〉 = −dV0(R −R0)

dR

∑

λ,µ

〈f ; IfMf |δ̂λµ|i; IiMi〉Y ∗
λµ(R̂) (3.40)Inserting these transition potentials in the general expression for the DWBA amplitude
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ff,i(θ) = − µ

2π~2
〈f ; IfMf |δ̂λµ|i; IiMi〉

×
∫

dRχ
(−)∗
f (Kf ,R)

dV

dR
Y ∗
λµ(θ, ϕ)χ

(+)
i (Ki,R) (3.41)As we did for the Coulomb ase, this expression an be rewritten in a more ompat formas:

ffi(θ) = − µ

2π~2
〈f ; IfMf |δ̂λµ|i; IiMi〉T λ

i→f(Kf ,Ki) (3.42)with
T λ
i→f(Kf ,Ki) ≡

∫

dRχ
(−)∗
f (Kf ,R)

dV0

dR
Y ∗
λµ(θ, ϕ)χ

(+)
i (Ki,R) (3.43)And, for the di�erential ross setion [.f. (3.33)℄,:

(
dσ(θ)

dΩ

)

iMi→fMf

=
( µ

2π~2

)2 Kf

Ki

∣
∣
∣〈f ; IfMf |δ̂λµ|i; IiMi〉

∣
∣
∣

2

×
∣
∣
∣
∣

∫

dRχ
(−)∗
f (Kf ,R)

dV0

dR
Y ∗
λµ(θ, ϕ)χ

(+)
i (Ki,R)

∣
∣
∣
∣

2 (3.44)or, in terms of T λ
i→f

(
dσ(θ)

dΩ

)

iMi→fMf

=
( µ

2π~2

)2 Kf

Ki

∣
∣
∣〈f ; IfMf |δ̂λµ|i; IiMi〉

∣
∣
∣

2

|T λ
i→f(Kf ,Ki)|2 (3.45)The matrix elements of the deformation operators an be expressed in terms of aClebsh-Gordan oe�ient and a redued matrix element (Wigner-Ekart theorem):

〈f ; IfMf |δ̂λµ|i; IiMi〉 = 〈f ; IfMf |λµIiMi〉〈f ; If‖δ̂λ‖i; Ii〉BS. (3.46)When inserted into Eq. (3.44), we see that the di�erential ross setion is proportional tothe square of the redued matrix elements 〈f ; If‖δ̂λ‖i; Ii〉 whih, in turn, are related to thestruture of the deformed nuleus. Consequently, if the approximations whih lead to theDWBA are ful�lled, the omparison of experimental data on inelasti nulear exitationof a nuleus provides information on its struture, for example, on its deviation of itsshape from the spherial one.In the partiular ase of the rotational model (see Appendix A.1) the deformationoperator is given by:
δ̂λµ = βλR0Dλ

µ0(ω) = β2R0

√

4π

2λ+ 1
Yλµ(θ0, φ0), (3.47)where D stands for a rotation matrix and ω is the set of Euler angles (α, β, γ) orre-sponding to the transformation of the symmetry axis of the rotor to the laboratory frame.



3.5. EXAMPLE: 16O+208 PB INELASTIC SCATTERING 37In general, D depends on three indexes but, in the ase of a axially symmetri rotor, oneof the indexes is zero. In this ase, D is given by a spherial harmoni, as indiated bythe seond equality of the previous equation. The rotor states are haraterized in therotor model by the total angular momentum (I), its projetion along the z axis of thelaboratory frame (M) and the projetion of I along the symmetry axis (K). State withthe same value of K belong to the same rotational band. A pure rotational exitationan hange the value of I, but onserves K, that is, rotational exitations our amongstates of a given rotational band. Using the results of Appendix A.1, the orrespondingredued matrix elements of δ̂λµ between these rotor states are given by8
〈f ; If‖δ̂λ‖i; Ii〉BS = (−1)If−Ii〈IfKλ0|IiK〉βλR0. (3.49)3.4.3 Simultaneous Coulomb and nulear exitationsSo far, we have onsidered separately the Coulomb and nulear exitations. In somesituations negleting one of the interations is justi�ed. For example, we expet Coulombexitation to be dominant when

• The projetile and/or target harges are large (i.e. large ZpZt ≫ 1)
• At energies well below the Coulomb barrier (where nulear e�ets are less impor-tant).
• At very forward angles (large impat parameters).However, in other ases, both Coulomb and nulear ontributions an be importantand so the sattering amplitudes for both proesses should be added oherently:

(
dσ

dΩ

)

i→f

=
Kf

Ki

∣
∣f coul

if + fnucl
if

∣
∣
2 (3.50)Note that, in this situation, interferene e�ets will appear, making more deliate theextration of struture information.3.5 Example: 16O +208 Pb inelasti satteringAs an example, we onsider the inelasti sattering of 16O+208Pb at energies around theCoulomb barrier, populating the low-lying states 3− and 2+ in 208Pb [27℄.8For the Bohr-Mottelson onvention of redued matrix elements:

〈f ; If‖δ̂λ‖i; Ii〉BM = (−1)If−Ii
√

2If + 1〈IfKλ0|IiK〉βλR0 (3.48)
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Figure 3.8: E�etive (nulear + Coulomb) potential for the 16O+208Pb system.Using the nulear potential from Ref. [27℄ the e�etive potential is as shown in Fig. 3.8.The energy of the Coulomb barrier, de�ned as the maximum of this e�etive potential, isslightly above 75 MeV. This is onsistent with the simple estimate
Vbarrier ≈

ZpZte
2

1.44(A
1/3
p + A

1/3
t )

≃ 78 MeVSo, for inident energies below 78 MeV, we expet that the Coulomb e�ets dominate,whereas above this energy nulear e�ets will start to ontribute too.In Fig. 3.9 we show the experimental elasti and inelasti ross setion angular dis-tributions, taken from Ref. [27℄. The elasti angular distribution (left panel) has beendivided by the Rutherford ross setion to make more lear the e�et of the nulear inter-ation and higher order (λ > 0) Coulomb e�ets. We see that, for energies well below thebarrier, this relative angular distribution is one at all angles, meaning that the satteringis governed by the monopole Coulomb interation (VC(r) = κe2ZpZt/r). As the inidentenergy approahes the barrier, a redution of the ross setion is observed at the largestsattering angles, whereas at small angles it remains lose to one. This an be understoodin a lassial piture. Classially, the smaller angles orrespond to large impat param-eters and hene to distant ollisions. For these trajetories, the projetile feels only theCoulomb interation, due to the short-range nulear interation. At large angles (smallimpat parameters) the lassial turning point ours at a small distane, and there ismore hane to probe the nulear interation. As the bombarding energy inreases abovethe barrier, these nulear e�ets beome more and more important, and the deviationfrom the Rutherford formula is more evident.For the inelasti angular distributions we see also a evolution as the inident energyinreases from the sub-barrier to the above-barrier regime. For energies below the barrier,
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Figure 3.9: Experimental angular distribution for the elasti (left) and inelasti (right)ross setion for the 16O+208Pb reation for several inident energies. Quoted from [27℄.the angular distribution is relatively featureless (at least for the angles displayed). Aroundand above the barrier, the distributions start to develop a deep minimum, and a moreompliate pattern arises.We try now to understand this behavior omparing the data with theoretial alu-lations, using the DWBA formalism disussed above. We assume that the DWBA isvalid, and that the population of the 3− state of the 208Pb nuleus an be treated as anotupole olletive exitation. We inlude both nulear and Coulomb exitations. Theorresponding DWBA amplitudes are given by Eqs. (3.30) and (3.41), respetively. Therequired physial ingredients are the redued matrix elements 〈f ; If ||M(E3)||i; Ii〉 (for theCoulomb part) and 〈f ; If ||δ3||i; Ii〉 (for the nulear part). The former an be obtained fromthe experimental value of the eletri transition probability B(E3; 0+ → 3−) = 0.595 e2b3.The redued matrix element for the nulear part was taken from the DWBA analysis ofRef. [27℄.The alulated angular distributions are shown in Fig. 3.10 for Elab = 69 MeV and82 MeV. The dashed and dot-dashed lines are the DWBA alulations for pure Coulomband nulear exitations, whereas the solid line is the oherent superposition of nulearand Coulomb exitation. We see that at Elab = 69 MeV (below the barrier) the dataan be mostly explained in terms of the Coulomb exitation. Nulear exitation is verysmall at all angles, exept at the largest angles, where it interferes destrutively with theCoulomb amplitude. At Elab = 82 MeV, Coulomb ouplings still dominate the smallerangles, but nulear ouplings are of the same order and even larger lose to θc.m. = 180◦.At θc.m. ≈ 140◦, there is a strong interferene between both mehanisms, produing theminimum observed in the data.
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Chapter 4Transfer reations: the DWBA method
4.1 IntrodutionA transfer reation is another example of diret proess. In this ase, one or more nuleonsof one of the olliding nulei are transferred to the other nuleus. Historially, one uses theterm stripping when nuleons are transferred from the projetile to the target, and pik-upwhen the nuleons are transferred from the target to the projetile. The prototypes ofthese reations are the deuteron stripping reations � denoted (d, p) and (d, n) � and theirpik-up ounter-parts (p, d) and (n, d).4.2 Energy balane onsiderationsLet us denote generially a (binary) transfer reation as:

a+ A → b+BIn the CM frame, the energy balane for this reation is
Ei

cm +Mac
2 +MAc

2 = Ef
cm +Mbc

2 +MBc
2 (4.1)Introduing the Q0 value, de�ned in the same way as we did in the ase of inelastisattering (setion 3.2),

Q0 = Mac
2 +MAc

2 −Mbc
2 −MBc

2,the energy balane is rewritten as
Ef

cm = Ei
cm +Q0 (4.2)Depending on the sign of Q0, we have two distint situations:

• Q0 > 0: the system gains kineti energy (exothermi reation)41
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Figure 4.1: Illustration of the Q-value in the 208Pb(d,p)209Pb stripping reation for atransfer to the ground state (left) and to an exited state (right) of the residual nuleus.
• Q0 < 0: the system loses kineti energy (endothermi reation)As an example, we onsider the deuteron stripping reation:

d+ 208Pb → p+ 209PbIn this ase:
Q0 = Mdc

2 +M(208Pb)c2 −Mpc
2 −M(209Pb)c2 = +1.7MeVso this orresponds to an exothermi reation. This means that the outgoing proton willgain energy with respet to the inident deuteron. The energy balane is shematiallydepited in Fig. 4.1(left).Note that the di�erene M(208Pb)c2 +M(1n)c2 −M(209Pb)c2 is just the one-neutronseparation energy of 209Pb. Analogously, Mp +Mn −Md is just the deuteron separationenergy. Consequently, the Q-value an be interpreted (and alulated) also as the di�er-ene between the separation energy of the transferred partile(s) in the �nal and initialnulei. In the previous example:

Q0 = Sn(f)− Sn(i) = 3.936− 2.224 = +1.7 MeVSo far, we have onsidered that the outgoing nulei are left in their ground-state.Indeed, this is not neessarily the ase and both the ejetile (that is, the fragment omingfrom the projetile) and the residual nuleus (the one oming from the target) an beleft in an exited state. In this ase, the energy balane should take into aount theexitation energy of the �nal nulei.
Ef

cm = Ei
cm +Q = Ei

cm +Q0 − Ex (4.3)where Ex denotes the exitation energy of the exited nuleus. In Fig. 4.1 (right) weillustrate the energy balane in the 208Pb(d,p)209Pb reation, in whih the transferredneutron populates an exited state of the residual nuleus 209Pb.In general, the residual nuleus will ontain a number of bound exited states, whihan be populated during the transfer reation. Aording to Eq. (4.3), the exitation en-ergy of the outgoing nulei is diretly related to their kineti energy. So, for example, in
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Figure 4.2: Proton energy in the reation 208Pb(d,p)209Pb measured with a deuteron beamat 18.7 MeV and for a �xed proton sattering angle of 33◦.the 208Pb(d,p)209Pb example, the kineti energy of the outgoing proton gives informationabout the energy spetrum of the 209Pb nuleus1. This is shown in Fig. 4.2, whih orre-sponds to the number of protons deteted in a real 208Pb(d,p)209Pb reation, as a funtionof its kineti energy, for a given sattering angle. The peaks orrespond to exited statesof the 209Pb nuleus. The labels aompanying eah peak are single-partile quantumnumbers assigned aording to a simple independent partile model.In the spetrum shown in Fig. 4.2, we see also that not all states are populated withthe same intensity. The population probability will depend on the reation dynamis aswell as and on the struture properties of these states. Furthermore, transfer reationsan be used to infer spetrosopi information of the olliding nulei, suh as the intrinsispin and parity of the populated states. The exitation spetrum by itself does notprovide in general enough information to extrat these properties. This information isusually obtained from the angular distribution of the outgoing ejetile. In order to extratuseful physial information, these angular distributions must be ompared with a suitablereation theory, as we will see below.4.3 The DWBA methodWe want to derive a formal expression for the di�erential ross setion orresponding tothe transfer proess (see Fig. 4.3)
(a+ v)
︸ ︷︷ ︸

A

+b → a+ (b+ v)
︸ ︷︷ ︸

B

.Under the assumption that the transfer oupling is small with respet to the elasti1Note that, in this partiular example, the target is muh more massive than the projetile and henethe laboratory energy of the proton will not di�er muh from its energy in the CM frame.
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Figure 4.3: Post and prior representations for a transfer reationhannel, we will desribe this proess using DWBA approximation, whih was derived inChapter 1 and was applied in Chapter 3 to the ase of inelasti sattering.In the ase of transfer reations, a similar expression an be derived, but the followingdi�erenes need to be taken into aount:1. The projetile-target oordinate (R) is di�erent now in the initial and �nal hannels,beause they refer to di�erent mass partitions. To distinguish between them we willuse the notation R and R′ (see Fig. 4.3).2. The e�etive Hamiltonian is also di�erent in the initial and �nal hannels. Depend-ing on whether we use the interations for the initial or �nal hannels we will usethe names prior and post.We start from the exat sattering amplitude derived in Chapter 1 using the Gell-Mann�Goldberger formula. The projetile�target interation in the �nal partition (Vβ)is expressed as Uβ + (Vβ − Uβ), where Uβ(Rβ) is some arbitrary potential. The exatsattering amplitude an be written as [.f. Eq. (1.23)℄:
Tβ,α = T (0)

β,αδαβ +

∫ ∫

χ
(−)∗
β (Kβ,Rβ)Φ

∗
β(ξβ)(Vβ − Uβ)Ψ

(+)
Kα

(Rα, ξα)dξβdRβ , (4.4)Remember that the term T (0)
β,α orresponds to the sattering amplitude for an arbitrarypotential Uβ. By assumption, this potential does not depend on the internal oordinates ofthe projetile or target and, therefore, annot ontribute to inelasti sattering or transfer.Sine we are interested in a transfer proess, it an be dropped out. The distorted wave

χ
(−)
β (Kβ,Rβ) is the time-reverse of χ(+)(Kβ,Rβ), whih desribes the elasti satteringby the potential Uβ .The DWBA approximation is obtained approximating the total wavefuntion Ψ

(+)
Kα

by
Ψ

(+)
Kα

(Rα, ξα) ≈ χ(+)
α (Kα,Rα)Φα(ξα) (4.5)where Φα(ξα) is just the produt of the internal states of the projetile and target ground-state wavefuntions. This gives rise to the DWBA approximation:
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Tβ,α =

∫ ∫

χ
(−)∗
β (Kβ,Rβ)Φ

∗
β(ξβ)(Vβ − Uβ)χ

(+)
α (Kα,Rα)Φα(ξα)dξβdRβ . (4.6)The expressions (4.4) and (4.6) are known as post forms of the sattering amplitude,beause they ontain a matrix element of the residual interation Vβ − Uβ in the �nalhannel. An analogous (and equivalent) prior form exat amplitude is given by (β 6= α)

T prior
β,α =

∫ ∫

Ψ
(−)∗
Kβ

(Rβ, rβ)(Vα − Uα)χ
(+)
α (Kα,Rα)Φα(ξα)dξαdRα , (4.7)where Vα is the projetile-target interation in the initial partition, Uα(Rα) some arbitrarypotential de�ned in the oordinate and χ

(+)
α (Kα,Rα) a distorted wave desribing theprojetile-target motion under the potential Uα(Rα).The prior DWBA approximation is obtained making the approximation

Ψ
(−)
Kβ

(Rβ, ξβ) ≈ χ
(−)
β (Kβ,Rβ)Φα(ξα) (4.8)In the remaining of this hapter, we relax the notation by taking: Rα → R and

Rβ → R′. With this new notation, the relevant oordinates are shown in Fig. 4.3.Even within the DWBA approximation, Eqs. (4.6) or (4.8) are di�ult to solve, be-ause they involve many-body wavefuntions of the initial and �nal nulei (Φα(ξα) and
Φβ(ξβ)) and the projetile�target interations (Vα and Vβ). With some further approx-imations, we an redue this ompliate many-body problem to an e�etive three-bodyproblem. First, we write the wavefuntion Φα(ξα) as (see Fig. 4.3):

Φα(ξα) = ΦA(ξ, r)φb(ξ
′) (4.9)and the quantum mehanial state of the omposite nuleus A is further expanded as

ΦA(ξ, r) = CA
vaφa(ξ)φvϕav(r) + ΦC

A. (4.10)In this simpli�ed notation, φa and φv represent the internal wavefuntions of lusters
a and v, CA

avϕav(r) represents the overlap funtion, whih an be written in terms of anormalized relative wavefuntion ϕav(r) and a spetrosopi amplitude CA
av. The produtof these three terms is impliitly oupled to the angular momentum of nuleus A.Notie that not all the state ΦA an be desribed as two lusters b, v with a ertainstate of relative motion. ΦC

A represents the part of the state that has a more ompliatedon�guration.Similarly, for the �nal partition, we may write
Φβ(ξβ) = ΦB(ξ

′, r′)φa(ξ) (4.11)and the state of the omposite nuleus B is expanded as
ΦB(ξ

′, r′) = CB
vbφb(ξ

′)φvϕbv(r
′) + ΦC

B. (4.12)The following approximations allow us to redue the many-body problem to a three-body problem:
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• The terms ΦC

A and ΦC
B, orresponding to omplex on�gurations of A and B, do notontribute signi�antly to transfer and are therefore negleted.

• The normalized overlap funtions ϕbv(r
′) and ϕav(r) an be approximated by theeigenstates of two-body Hamiltonians with interations Vbv and Vav, respetively.They will be represented by some real mean-�eld interations.

• During the ollision proess the interations between the lusters a,b, and v areompletely desribed by two-body interations Vbv, Vav and Uab, that annot alterthe internal states of the lusters. In our desription of transfer, we do not onsiderexpliitly proesses that lead to the exitations of the lusters b and a, so the in-teration between them is represented by an e�etive optial potential, omplex ingeneral, that we denote by Uab. So we will write:
Vα − Uα → Vbv + Uab − UbA ≡ Vprior (4.13)
Vβ − Uβ → Vav + Uab − UaB ≡ Vpost . (4.14)The di�erenes Uab − UbA (in prior form) and Uab − UaB (in post form) are alledremnant terms. For a suitable hoie of UbA (prior) or UbA (post) we an ahievesome anellation of these remnant terms and hene the transfer will be dominatedby the valene�ore interation Vbv (prior) or Vav (post).The orresponding transition amplitudes result:

T prior ≈ CB∗
bv CA

avT 3b
prior (4.15)

T post ≈ CB∗
bv CA

avT 3b
post (4.16)with2

T 3b
prior =

∫ ∫

χ
(−)∗
β (K′,R′)ϕ∗

bv(r
′)Vpriorχ

(+)
α (K,R)ϕav(r)dRdr. (4.17)and

T 3b
post =

∫ ∫

χ
(−)∗
β (K′,R′)ϕ∗

bv(r
′)Vpostχ

(+)
α (K,R)ϕav(r)dR

′dr′. (4.18)It an be formally demonstrated that the prior and post DWBA expressions give ex-atly the same result. Hene, the hoie of one of another representation is done byomputational onveniene, determined by the range of the interations. In many situa-tions, an appropriate hoie of the auxiliary potential produes a ertain anellation ofthe remnant term. In those situations, the transition amplitude is mostly determined by2Note that, dξβ = dξdξ′dr. To evaluate the T-matrix, we have to perform integrals of the form
∫

Φ∗
B(ξ

′, r′)Φb(ξ
′)dξ′ = CB

bvϕbv(r
′).where we have used the parentage deomposition of Φ∗

B in terms of b state (likewise for A).



4.3. THE DWBA METHOD 47the interation Vav (post) or Vbv (prior) and it results numerially advantageous to hoosethe representation for whih this interation is of shorter range.The auray of DWBA depends on the hoie of the auxiliary potentials for theinident (UAb) and �nal (UaB) hannels. These ould be, in priniple, any funtion of theo-ordinate R and R′, respetively. Two approahes are usually taken:
• The mirosopi approah. The auxiliary potential in the outgoing hannel UaB istaken as the expetation value, in the �nal bound state ϕbv(r

′), of the sum of theinterations Uab + Vva. Expliitly,
UaB(R

′) =

∫

d3r′ |ϕbv(r
′)|2 (Uab + Vav). (4.19)Similarly, UAb is taken as the expetation value, in the initial bound state, of thesum of the interations Uab + Vvb,

UAb(R) =

∫

d3r |ϕav(r)|2 (Uab + Vbv). (4.20)In pratial appliations of DWBA, it is very onvenient that the auxiliary po-tentials are entral, so that they depend on the value of the radial o-ordinate
UAb(R), UaB(R

′) and not in its diretion. This is ahieved onsidering only themonopole part of the folding interation, or, equivalently, averaging the folding po-tential over all the magneti substates.The mirosopi approah has the advantage of being ompletely determined by thetwo-body interations between the fragments. From the formal point of view, thiswould be the natural hoie for UAb, in order to make the residual term Uab+Vvb−UAbminimal, for the bound state ϕav.On the negative side, it is not trivial that the interation UAb, so obtained, would re-produe aurately the A+ b elasti sattering. The interations Uab, Vav, Vbv wouldhave to be taken as omplex interations, in order to reprodue elasti sattering ortransfer, but in this ase Vav, Vbv an not be used to obtain bound states, unless theinterations are expliitly energy dependent. Finally, this approah exludes om-pletely any e�et of break-up hannels on the three-body wavefuntion. Hene, thisapproah would be valid when the three-body sattering wavefuntions is dominatedby the elasti omponent, either in the inident or in the exit hannels.
• The phenomenologial approah. The auxiliary potential in the inident hannel
UAb is obtained by �tting the elasti sattering data on the α (=A + b) hannel.The auxiliary potential in the exit hannel, UaB , is obtained by �tting the elastisattering on the β (= a+B) hannel. This approah has the advantage of allowingfor a onsistent desription of transfer reations, as well as of elasti satteringin the inident and outgoing hannels. It takes into aount, through the use of



48 CHAPTER 4. TRANSFER REACTIONS: THE DWBA METHODoptial potentials, the e�et of omplex reation proesses, suh as fusion, that anremove �ux from the elasti and from the transfer hannels. Furthermore, the e�etof some three-body reations, suh as break-up, whih remove �ux from elastiand transfer hannels, are approximately taken into aount beause the optialpotentials �t the experimental elasti ross setions, whih are a�eted by all thesedynami proesses. On the negative side, it is not always possible to �nd the elastidata for the outgoing hannel. If the �nal state of nuleus B is not in its groundstate, but on an exited state, it will not be possible to measure the orrespondingelasti sattering. This is partiularly true if the �nal state is in the ontinuum.Besides, the optial potentials reprodue typially the asymptoti wavefuntions,whih determines the S-matrix and the sattering amplitudes leading to di�erentialross setions. It does not neessarily reprodue the wavefuntions in the internalradial range that is relevant for the transfer matrix elements.Realling the relation between the T-matrix and the sattering amplitude we have(prior form, likewise for post form)
fprior
β,α (θ) = − µβ

2π~2
CB∗

bv CA
av

∫ ∫

χ
(−)∗
β (K′,R′)ϕbv(r

′)Vprior(R, r)ϕav(r)χ
(+)
α (K,R)dRdr(4.21)and the orresponding di�erential ross setion

(
dσα,β

dΩ

)prior

=
µαµβ

(2π~2)2
Kβ

Kα
|CB

bv|2|CA
av|2

×
∣
∣
∣
∣

∫ ∫

χ
(−)∗
β (K′,R′)ϕbv(r

′)Vprior(R, r)ϕav(r)χ
(+)
α (K,R)dRdr

∣
∣
∣
∣

2 (4.22)The fators SB
ℓbv = |CB

bv|2 and SA
av = |CB

bv|2 are alled spetrosopi fators. Thespetrosopi fator SA
av an be regarded as the probability of �nding the valene partile

v in a given state ϕav(r) oupled to the ore in the state a. Aording to this result, inDWBA, the transfer ross setion is proportional to the produt of spetrosopi fators
SB
bv S

A
av. This is a very important and useful result beause, whenever the approximationswhih lead to Eq. (4.22) are justi�ed, we an extrat information on the spetrosopifators of the olliding nulei by omparing the experimental data with the DWBA pre-dition.Let us �nish by summarizing the approximations and assumptions inherent to theDWBA method:1. Only the transferred partile (or partiles) is treated expliitly, while all the others,whih we refer generially as the ore, are regarded as passive or inert (the ore isassumed to remain unhanged during the ollision92. Assumes that the elasti optial potential Uα provides waves funtions for the rela-tive motion whih are good within the range of the potential V − U . For example,
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Figure 4.4: Comparison of di�erent oupling shemes disussed in this work for the rea-tion 10Be(d,p)11Be: (a) DWBA, (b) CDCC-BA, () ADWA and () CRC.for a (d, p) reation in post form, Vpost = Vβ − Uβ ≈ Vpn and so the distortingpotentials must be aurate for small p− n separations.
3. Assumes that the transfer proess is weak so that it an be treated in �rst order.
The oupling sheme assumed in the DWBA method is shematially depited inFig. 4.4(a) for the 10Be(d,p)11Be ase. The solid arrow indiates that only transfer fromthe ground state of the deuteron to the proton hannel is expliitly inluded. The e�etof breakup hannels of the deuteron (shaded area in this plot) is ompletely negleted inthe afore-mentioned mirosopi approah, and only partially taken into aount in thephenomenologial approah, through its e�et on the elasti wavefuntion.



50 CHAPTER 4. TRANSFER REACTIONS: THE DWBA METHODSpins and antisymmetrization: spetrosopi fatorsThe quantities |CB
bv|2 and |CA

av|2 are alled spetrosopi fators. Realling (4.12)or (4.10), they give information on �nding a given single-partile on�guration inthe omposite system. So, for example, |CA
av|2, tell us the probability of �nding thevalene partile in the single-partile state ϕav(r), oupled to the ore a in somegiven state, to give the omposite state A. We note here that our desription issomewhat shemati, beause (i) we have not introdued the spins expliitly and(ii) we have not onsidered antisymetrization, that is, the fat that the ompositeand ore wavefuntions are desribed by antisymmetrized wavefuntions and that thetransferred partile is indistinguishable from those of the same orbital in the donor orreeptor nulei. So, for example, the omposite nuleus A would be haraterized bysome total angular momentum J and projetionM . Its state should be desribed by afully antisymmetrized wavefuntion, ΦJM

A (ξ, r). Analogously, the ore nuleus B, willbe haraterized by a fully antisymmetrized wavefuntion with angular momentumand projetion I, MI . It is possible to expand the wavefuntion ΦJM
A (ξ, r) in termsof produts of valene and ore on�gurations, i.e.,

ΦJM
A (ξ, r) =

1√
nA

∑

Iℓj

CIJ
ℓsj

[
ΦI

a(ξ)⊗ ϕℓsj
av (r

]

JM

=
1√
nA

∑

Iℓj

〈IMIjm|JM〉CIJ
ℓsjΦ

IMI
a (ξ)ϕℓsjm

av (r) (4.23)where nA is the number of equivalent nuleons. This fator aounts for the anti-symmetrization of the wavefuntion sine these nA nuleons are indistinguishable. Ifthe overlaps funtions ϕℓsjm
av (r) are normalized to unity, the oe�ients C(A|a)IJℓsj arethe spetrosopi amplitudes or oe�ients of frational parentage. Theirsquare are the spetrosopi fators:

SIJ
ℓsj = |CIJ

ℓsj|2 (4.24)The overlap wave funtions ϕℓsjm
av (r) and ϕℓsjm

bv (r′) are not easy to alulate frommirosopi struture models. For that reason, the standard proedure is to approxi-mate these funtions by the solutions of a one-body Shrödinger equation assuming asimple potential shape (typially, a Woods-Saxon shape), for the apropriate quantumnumbers {n, l, s, j}, and the experimental separation energy
[

− ~
2

2µva
∇2

r
+ Vva(r)− εva

]

ϕℓsj
av (r) = 0 , (4.25)and [

− ~
2

2µvb
∇2

r
+ Vvb(r)− εvb

]

ϕℓsj
bv (r) = 0 , (4.26)where εva and εvb are the binding energy of the valene partile in the nulei A and

B, respetively.



4.4. EXAMPLES AND APPLICATIONS OF THE DWBA METHOD 514.4 Examples and appliations of the DWBA methodDependene with the quantum numbers of the transferred partileThe DWBA does not only provide information on spetrosopi fators. The shape of theangular distribution obtained with Eq. (4.22) is found to depend ritially on the internalwavefuntions ϕA
ℓsj(r) and ϕB

ℓ′sj′(r
′). If we have an aurate model for either the projetileor target (this is the ase of a (d, p) reation) then we an infer information on the othernuleus.As an example we show in Fig. 4.5 several alulations for the 56Fe(d,p)57Fe reation,eah of them using a di�erent hoie for the orbital angular momentum of the transferredneutron in the �nal state.
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Figure 4.5: DWBA alulations for the di�erential ross setion of the reation
56Fe(d,p)57Fe, showing several assumptions for the wavefuntion of the transferred neutronin the 57Fe residual nuleus.
Dependene with the binding energyIn addition to the quantum numbers, the wavefuntions ϕA

ℓsj(r) will depend on the bindingenergy of the transferred partile. This is illustrated in Fig. 4.6, where we show severalDWBA alulations for a given single-partile on�guration, and varying the bindingenergy of the transferred neutron in the �nal nuleus. The larger the separation energy,the smaller the ross setion. This is expeted sine a more bound nuleon will be moredi�ult to remove than a weakly bound nuleon.
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Figure 4.6: DWBA alulations for the di�erential ross setion of the reation
56Fe(d,p)57Fe, for a �xed on�guration of the transferred neutron, and several valuesof its separation energy in the 57Fe residual nuleus.Dependene with the inident energyIn inelasti sattering, the exitation probability inreases with the inident energy; thelarger the inident energy, the larger the transferred momentum to the projetile or target.On the other hand, for transfer reations there is an optimal energy for whih the transferours. This is shown in Fig. 4.7 for our working example, 56Fe(d,p)57Fe. In this ase, theoptimum energy is about 9 MeV (that is, about 4.5 MeV per nuleon).4.5 Beyond DWBA: ADWA and CCBA methodsIn general, DWBA has been, and still is, a key approah to desribe transfer reations, andit has been used extensively to extrat spetrosopi information on nulear struture, inpartiular spetrosopi amplitudes. However, DWBA is based on a rather rude approahto the three-body problem, and is expeted to be aurate only when the elasti sattering,in the inident and outgoing hannels, is dominant. For the ase of exoti nulei, whihare frequently weakly bound, break-up hannels an play a very important role in thethree-body dynamis. Hene, it is important, in order to extrat reliable spetrosopiinformation from transfer reations with exoti nulei, to hek the validity of the DWBAmethod by omparing it with other approahes that take into aount the role of break-uphannels.The DWBA approah, as mentioned previously, relies strongly on the assumption thatthe elasti hannel dominates the reation. This does not only imply that the dominant
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Figure 4.7: DWBA alulations for the di�erential ross setion of the reation
56Fe(d,p)57Fe as a funtion of the inident energy.ross setions is elasti, but also that, during the ollision proess, the three-body wave-funtion an be approximated by the elasti omponent. Note that these two fats arenot equivalent. There an be dynami situations in whih elasti ross setion dominates,meaning that the asymptoti three-body wavefuntion, at large distanes, is dominatedby the elasti omponent. However, this does not mean that at short projetile-targetdistanes, whih give the main ontribution to the transfer matrix element, the elastiomponent should be dominant. Dynami polarization e�ets make that the ompos-ite projetile an be strongly distorted at short distanes, even when asymptotially theenergy mathing onditions make the elasti hannel dominant.Moreover, the phenomenologial DWBA approah relies on the use of optial poten-tials, usually taken as loal, L-independent potentials, hosen to reprodue elasti sat-tering. This means that the optial potentials will reasonably reprodue the phase shifts,for all L-values, in the elasti hannel. In other words, the phenomenologial DWBAapproah reprodues the elasti wavefuntion asymptotially, at large projetile-targetdistanes. It is not trivial that the elasti wavefuntion used in the phenomenologialDWBA approah reprodue orretly the elasti omponent of the wavefuntion, in theradial range relevant for the transfer T-matrix elements.We disuss in the next subsetions some approahes that go beyond the DWBAmethod.4.5.1 The adiabati (ADWA) methodIndeed, this ritiism of the DWBA approah is not very useful if an alternative for-mulation is available, whih maintains the relative simpliity of DWBA, and provides



54 CHAPTER 4. TRANSFER REACTIONS: THE DWBA METHODingredients of the reation alulation that an be ompletely determined from experi-ment. This is ahieved by the Adiabati Distorted Wave Approximation (ADWA), whihwas initially formulated by Johnson and Soper [16℄. This approah is formulated in prin-iple for (d, p), or (d, p) reations, although it ould be applied to other weakly boundomposite systems. It relies on the fat that the omposite projetile has a relatively lowbinding energy (2.22 MeV in the ase of the deuteron), and so, if the ollision energyis relatively high, we an expet that, during the ollision proess, the relative proton-neutron o-ordinate does not hange signi�antly; it is �frozen�. Under this situation, therelevant interation that determines aurately the projetile-target wavefuntion is notthe phenomenologial deuteron-target interation that would reprodue elasti sattering,but the sum of the interations of eah one of the fragments of the projetile (proton andneutron in the deuteron ase) with the target.In the adiabati approximation [16℄ (also alled sudden approximation by some authors)the three-body wavefuntion an be written as
Ψ

(+)
K

(R, r) ≃ χ(+)
α (K,R, r)ϕav(r), (4.27)where χ

(+)
α (R, r) is the solution of a two-body sattering problem, on the o-ordinate R,in whih the interation is given by

UAb(R, r) = Uab(Rab) + Vvb(r
′). (4.28)Indeed, the potential that desribes the sattering wavefuntion, although two-body, isnot entral and so the alulation of the adiabati wavefuntion, for eah value of the

a-v separation r is very ompliated, but it has been done [3, 4℄. Besides, the adiabatiapproximation to the three-body wavefuntion is not aurate for large values of r, whereone would expet to see outgoing waves, instead of the exponential deay given by thebound two-body wavefuntion ϕav(r).Fortunately, these shortomings of the adiabati wavefuntions are not important, ifone is only interested in evaluating the matrix element involved in transfer. These aredominated by the Vav(r) interation (the proton-neutron interation, in the deuteron ase)whih has a short range. Note that, even if the a-v wavefuntion ϕav(r) has a relativelylong range, whih is the ase for weakly bound halo systems, the Vav(r) has a muh shorterrange. Hene, for the purpose of evaluating the transfer matrix element, one an evaluatethe adiabati wavefuntion using the potential evaluated at r = 0. This leads to theJohnson and Soper approximation [16℄, in whih
Ψ(+)(R, r) ≃ χ(+)

α (K,R)ϕav(r), (4.29)where χ(+)
α (K,R) is the solution of a two-body sattering problem, on the o-ordinate R,in whih the interation is given by

UJS
Ab (R) = Uab(R) + Uvb(R). (4.30)Note that, in this expression, the v − b interation Vvb, whih would in general be energydependent, and would generate the bound state ϕbv(r

′), is replaed by the optial potential
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Uvb that desribes the v − b interation at the same energy per nuleon in the inidentbeam. This is justi�ed by the adiabati approximation; the transfer proess dynamis isonsistent with freezing the a-v o-ordinate, that then satters from the b target with aninteration that is the sum of Ubv and Uba interations at the same energy per nuleon.Several re�nements and orretions have been performed to the ADWA formalism.For example, a �nite-range version of the adiabati potential was proposed by Johnsonand Tandy [17℄:

UJT
Ab (R) =

〈ϕav(r)|Vav(Uab + Uvb)|ϕav(r)〉
〈φav(r)|Vav|φav(r)〉

. (4.31)However, for the purpose of the analysis of (d, p) and (p, d) reations, the simplest Johnson-Soper expression given by Eq. (4.30) is by far the most widely used. Here, we will outlineits advantages and disadvantages. On the positive side, the ADWA approah ingredientsare ompletely determined by experiments. These ingredients are the proton-target andneutron-target optial potentials, evaluated at half of the deuteron sattering energy, aswell as the well known proton-neutron interation.The adiabati approximation is equivalent to neglet the exitation energy of thestates of the projetile [16℄. The adiabati wavefuntion takes into aount the exitationto breakup hannels, but assuming that these states are degenerate in energy with theprojetile ground state, as illustrated in Fig. 4.4(). Therefore, the ADWA approahtakes into aount, approximately, the e�et of deuteron break-up on the transfer rosssetion, within the adiabati approximation. So, it should be well suited to desribedeuteron sattering at high energies, around 100 MeV per nuleon. Systemati studies[13, 25, 30℄ have shown that ADWA is superior to standard DWBA for (d, p) satteringat high energies.On the negative side, the ADWA approah does not onsistently desribe elasti sat-tering and transfer. Although physially one onsiders that elasti sattering, transferand break-up should be losely related, so that the inrease of �ux in one hannel shouldredue the �ux in the others, this onnetion is not present in ADWA. On the other hand,the arguments leading to ADWA are strongly assoiated with the assumption that thetransfer is governed by a short range operator. So, it is not obvious that the methodremains valid for other weakly bound systems, like 11Be. Even in the ase of (d, p) sat-tering, the transfer matrix element is determined not only by the n − p interation, butalso by the proton-target and neutron target interations, that de�ne the remnant term.It is not lear a-priori the role of these terms, that would have ontributions of three-bodyon�gurations in whih proton and neutron are not so lose together.4.5.2 Continuum Disretized Coupled Channels Born Approxi-mation (CDCC-BA)In sattering of weakly bound nulei, oupling to break-up hannels an play an importantrole. DWBA may not be su�iently aurate, as the three-body wavefuntion is notdominated by the elasti hannels. ADWA requires to assume the adiabati approximation



56 CHAPTER 4. TRANSFER REACTIONS: THE DWBA METHODfor the omposite projetile, whih may not be aurate if the ollision energy is notsu�iently high. Besides, the simple Johnson-Soper expression requires to assume a shortrange in the transfer interation, whih may not be aurate beyond (d, p) reations.A more aurate approah for transfer is obtained if the three-body wavefuntion isapproximated in terms of a basis of the states of the relative motion of the a+v sub-system,i.e.
Ψ

(+)
K

(R, r) ≈ ΨCDCC(R, r) =
N∑

i=0

χ
(+)
α,i (Ki,R)ϕav,i(r). (4.32)Here, the index i indiates all states expliitly inluded in a oupled hannels alulation

ϕav,i(r), whih would orrespond in general to a given spin and spin projetion (i =
0 denotes the ground state of the a + v system). This basis of states should inludeother possible bound states of the a + v system, if present, as well as a suitable disreterepresentation of the two-body ontinuum states. In atual alulations, this ontinuummust be trunated in exitation energy and limited to a �nite number of partial waves ℓassoiated to the relative o-ordinate r. Normalizable states representing the ontinuumshould be obtained for eah ℓ value. This an be ahieved making use of a pseudo-statebasis and diagonalizing the a+v Hamiltonian [18℄. Alternatively, ontinuum states of the
a + v Hamiltonian an be obtained, and normalizable states (bins) an be obtained byaveraging these ontinuum states over a ertain energy interval [5℄.One a suitable basis on the a + v o-ordinate is de�ned, the radial oe�ients
χ
(+)
α,i (Ki,R) appearing in the expansion (4.32) are obtained as a solution of the set ofoupled di�erential equations:

[E − εiav − T̂α − U ii
Ab(R)]χ

(+)
α,i (Ki,R) =

N∑

j 6=i

U ij
Ab(R)χ

(+)
α,j (Kj,R), (4.33)where U ij

Ab are the transition potentials de�ned as
U ij
Ab(R) =

∫

dr ϕ∗
av,i(r)(Uab + Uvb)ϕav,j(r) . (4.34)The oupled hannels solution χ

(+)
α,i (K,R) orresponds to the outgoing waves in all di�er-ent hannels i, for boundary onditions given by a plane wave in the initial bound state

i = 0. The potentials Uab and Uvb are to be understood as e�etive interations (omplexin general) desribing the elasti sattering of the orresponding sub-systems, at the sameenergy per nuleon as in the inident projetile. In partiular, Uvb will be desribed ingeneral by a omplex optial potential, and will di�er from the interation Vvb used togenerate the bound state wavefuntion of the vb system.Note that, without any loss of generality, we an introdue an arbitrary auxiliarypotential UAb(R), so that eq.(4.33) an ve written as
[E − εiav − T̂α − UAb(R)]χ

(+)
α,i (Ki,R) =

N∑

j

V ij
prior(R)χ

(+)
α,j (Kj,R), (4.35)



4.5. BEYOND DWBA: ADWA AND CCBA METHODS 57where V ij
prior(R) are the matrix elements of Vprior = Uab + Uvb − UAb.One the CDCC wavefuntion (4.32) is obtained, it an be inserted into Eq. (4.4) togive:

T (CDCC) = 〈χ(−)
β (K′,R′)ϕbv(r

′)|Vpost|ΨCDCC(R, r)〉. (4.36)with Vpost = Vva + Uab − UaB. To larify the link between the CDCC-BA and DWBAmethods it is onvenient to rewrite this expression as:
T (CDCC) = 〈χ(−)

β (K′,R′)ϕbv(r
′)|Vpost|χ(+)

α,0 (R)ϕav,0(r)〉

+

N∑

i=1

〈χ(−)
β (K′,R′)ϕbv(r

′)|Vpost|χ(+)
α,i (R)ϕav,i(r)〉. (4.37)The �st term in this expression orresponds to the diret transfer, that is, the transferproeeding diretly from the ground state of the projetile (eg. the deuteron, in a (d, p)reation), whereas the seond term aounts for the multi-step transfer ourring via theexited states of the projetile (p − n ontinuum states in the ase of the deuteron).These two types of proesses orrespond, respetively, to the solid and dashed lines inFig. 4.4(b) for the 10Be(d,p)11Be ase. Clearly, the multi-step proess going through thebreakup hannels are omitted in the DWBA alulation. At most, the DWBA onsidersthe e�et of these hannels on the elasti sattering if a suitable hoie of the entraneoptial potential is made. The adiabati approximation inludes in priniple both meha-nisms, but under the assumption that the exited (breakup) hannels of the projetile aredegenerate with the ground state [Fig. 4.4()℄. The advantage of the CDCC-BA approahis that all relevant bound and ontinuum states in the a+v system are expliitly inludedin the alulation.Some early omparisons between these three methods an be found in Refs. [24, 15,2, 18℄ and the main results are also summarized in Ref. [5℄. Due to numerial limitations,these �rst studies where done using a zero-range approximation of the Vav potential. Over-all, they �nd that the ADWA model desribes well the diret transfer ontribution. How-ever, the multi-step ontribution, whih are ompletely absent in DWBA, are desribedvery inaurately by the adiabati approximation. At low energies (Ed < 20 MeV) thedisrepany between the ADWA and CDCC-BA alulation an be understood beauseat these energies the adiabati approximation is questionable. However, even at mediumenergies (Ed ≈ 80 MeV) there are situations in whih transfer through breakup hannelsis found to be very signi�ant, and therefore the ADWA method did not work well either.In these situations, the CDCC-BA should be better used instead. The disadvantage ofthe alulations is that, in priniple, a large basis of internal states has to be inluded,making this approah muh more demanding numerially.Finite-range e�ets have been studied within the adiabati approximation in Ref. [20,22℄ and were found to be small ( < 10%) at energies below 20-30 MeV/u but beomemore and more important as the inident energy inreases. This limitation should be alsotaken into aount in the analysis of experimental data.



58 CHAPTER 4. TRANSFER REACTIONS: THE DWBA METHOD4.5.3 The CRC methodIt was stated that Eqs. (4.4) and (4.7) provide the exat solution to the 3-body sat-tering problem, provided that Ψ(+)
K

(R, r) (in the post form) or Ψ(−)
K′ (R′, r′) (in the priorform) orrespond to the exat three-body wavefuntions with the appropriate boundaryonditions. However, in pratial alulations, these exat solutions are not available andthus they need to be replaed by approximated ones, suh as the fatorized form usedin the DWBA method, the adiabati wavefuntion or the CDCC expansion. In all theseapproximations, the three-body wavefuntion is restrited to on�gurations orrespond-ing to either the initial or the �nal hannel. For example, in the post representation, theinitial state is a solution solution of the three-body Shrödinger equation

[

T̂ + Vav + Vvb + Uab − E
]

Ψ(+)(r,R) = 0. (4.38)Asymptotially, the solution of this equation is of the form
Ψ(+)(r,R) → ϕav(r)e

iK·R + outgoing waves (4.39)where the �outgoing waves� ontain ontributions from all open hannels. This inludeselasti and breakup hannels, but also rearrangement hannels of the a+b and v+b pairs, ifthey are present. In priniple, the eigenstates of the a+v Hamiltonian form a omplete setand hene the expansion Eq. (4.32) should ontain all the relevant hannels. In partiular,the asymptoti part of (4.32) should ontain information from all open hannels, inludingrearrangement hannels. However, rearrangement hannels orresponding to the v + bsystem would behave asymptotially as a produt of the bound wavefuntion ϕvb(r
′
vb)times a plane wave in the aB o-ordinate. Although these states ould be in prinipleexpressed in the ϕav(rav) basis, this would require require a very large number of energiesand angular momenta [5℄. In other words, any �nite CDCC approximation will desribepoorly the ontribution from rearrangement hannels.A heuristi way of inorporating rearrangement hannels is provided by the Coupled-Reation-Channels (CRC) framework [23, 19, 26, 29, 12℄. We just give a brief outlineof the method here, and refer the reader to the referred works for details (see also [1℄for a reent review). The idea of the CRC method is to propose a model wavefuntionwhih inorporates expliitly ontributions from several mass partitions. For simpliity,let us assume that we wish to onsider expliitly exited states (bound or unbound) ofthe inoming partition plus some exited states of the aB partition. Then, we use thefollowing ansatz:

Ψ(+)(R, r) ≈ ΨCRC(R, r) =
∑

i

χ
(+)
α,i (R)ϕav,i(r) +

∑

j

χ
(+)
β,j (R

′)ϕbv,j(r
′) . (4.40)This wavefuntion an be interpreted as a generalization of the CDCC expansion ofEq. (4.32). The radial funtions χ(+)

α,i (R) and χ
(+)
β,j (R

′) are obtained by substituting themodel wavefuntion (4.40) into the Shrödinger equation:
[H −E]Ψ(+)CRC = 0. (4.41)



4.5. BEYOND DWBA: ADWA AND CCBA METHODS 59To get the equations satis�ed by χ
(+)
α,i (R) we replae in this equation ΨCRC by the ansatz(4.40), multiply on the left by eah of the funtions ϕ∗

av,i(r) and integrate along r we getthe system of equations:
∑

i′

〈ϕav,i|H −E|χ(+)
α,i′ϕav,i′〉+

∑

j

〈ϕav|H − E|χ(+)
β,j ϕbv,j〉 = 0. (4.42)A ompliation that arises when solving these equations, is that one have to deal withoupling potentials between internal states ϕbv,j and ϕav,i that belong to di�erent Hamil-tonians and, therefore, are not mutually orthogonal. These gives rise to the appearaneof the so-alled non-orthogonality terms in the oupled equations. Furthermore, the ou-pling potentials are found to be non-loal. For all these reasons, the solution of the CRCequations is muh more involved than the onventional CC or CDCC equations.The great advantage of the CRC method is that it an treat transfer ouplings beyondthe �rst order (in addition to the inelasti ouplings). For example, a possible CRCoupling sheme for our 10Be(d,p)11Be reation is shown in Fig. 4.4(d).
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Appendix ARotor and vibrator models
A.1 Axially symmetri partile-rotor model (PRM)The partile-rotor model (PRM) [7℄ assumes that the nuleus has a permanent deforma-tion, and hene its radius will not be longer a onstant. Instead, the distane from theenter to an arbitrary point in the surfae haraterized by a funtion of the angles θ′ and
φ′), de�ned with respet to intrinsi, i.e., body-�xed, frame (see Box),

r(θ′, φ′) = R0[1 +
∑

λ

βλYλ0(θ
′, φ′)] = R0 +

∑

λ

δλYλ0(θ
′, φ′)] ≡ R0 +∆(r̂′) (A.1)where R0 is an average radius of the nuleus and hene the remaining term (denoted

∆(θ′, φ′)) represents the deviation of the radius for a partiular point on the surfae fromthis average radius. The quantities δλ = βλR0 are the deformation lengths. The funtion
∆̂(r̂′) is sometimes referred to as shift-funtion.The angular variables in these expressions are referred to the referene frame alignedwith the symmetry axis, but an be onverted to the laboratory frame (haraterized bythe variables θ, φ) by means of the transformation [see eg. Ref. [8℄, Eq. (2.24)℄:

Yλ0(θ
′, 0) =

∑

µ

Dλ
µ0(ω)Yλµ(θ, φ) (A.2)where D is the so alled rotation matrix (or D-matrix) and with ω = {α, β, γ} are theEuler angles desribing the transformation from the body-�xed frame to the laboratoryframe. In this partiular ase (on the three-indexes equal to zero) the D-matrix is just

Dλ
µ0(α, β, γ) =

√

4π

2λ+ 1
Yλµ(θ0, φ0) (A.3)where {θ0, φ0} are the angles de�ning the orientation of the symmetry axis with respetto the laboratory frame. 61



62 APPENDIX A. ROTOR AND VIBRATOR MODELSThe deformation parameterThe deformation parameter, β, measures the departure of a nuleus from the spherialshape. For a spherial nuleus, we have β = 0. For a nuleus with a quadrupolepermanent deformation, we have β2 6= 0. If β2 > 0, the nuleus is said to be prolate(�rugby ball� shape), whereas for β < 0 it is said to be oblate (�disus-shaped�).Spherial nuleus (β = 0)
0r(  )=Rθ

z

x

y

Deformed nuleus (β 6= 0)
r(  )θ’

y’

z’

x

y

z

x’

It is onvenient to introdue the deformation length operator, de�ned as
δ̂λµ ≡ βλR0Dλ

µ0(ω) = β2R0

√

4π

2λ+ 1
Yλµ(θ0, φ0). (A.4)In terms of this operator, the radius of the nuleus is written in the laboratory frameas

r(θ, φ) = R0 +
∑

µ

δ̂λµYλµ(θ, φ). (A.5)If one assumes that the projetile�target potential is still a funtion of the distanebetween the valene partile and the surfae of the nuleus, the interation potentialwill follow the same funtional dependene as V (r − R0), but replaing R0 by r(θ′, φ′).Choosing a referene frame with the z axis along the symmetry axis:
V rot(~r, θ′, φ′) = V (r − r(θ′, φ′)). (A.6)This expression is expanded in multipoles as:
V rot(r, r̂′) =

∑

λ

V rot
λ (r)Yλ0(r̂

′) (A.7)with
V rot
λ (r) = 2π

∫ 1

−1

V (r − ∆̂(r̂′))Yλ,0(θ
′, 0)d(cos θ′) (A.8)
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Figure A.1: Angular momenta of a rotor. I is the total angular momentum and K itsprojetion along the symmetry axis.For small deformations, one an perform a Taylor series of the potential (A.6) inpowers of ∆:
V rot(r, r̂′) ≈ V rot(r − R0)−

dV coup

dr

∑

λ

δλYλ0(r̂
′) (A.9)Inserting this expansion into Eq. (A.8) gives for a multipole λ > 0

V rot
λ (r) = −δλ

dV rot

dr
(A.10)Inserting (A.2) into (A.7):

V rot(r, r̂′) =
∑

λµ

V rot
λ (r)Dλ

µ0(ω)Yλµ(r̂). (A.11)In the derivation of the DWBA formula for inelasti sattering, we had to evaluate thematrix elements of the deformation length operator between di�erent states of the rotor.These states are also de�ned in the intrinsi frame and an be haraterized by the totalangular momentum I and its projetion on the symmetry axis, K (see Fig. A.1). Thesestates, denoted |IK〉, an be transformed to the laboratory frame as1
|K; IM〉 =

√

2I + 1

8π2
DI

MK(ω)|IK〉 (A.12)The matrix elements thus involve an integral of three D matries. These are given by (see1This expression is valid for a symmetri rotor. For an asymmetri rigid rotor, there is in general asum in K, [.f. Ref. [8℄, disussion following Eq. (2.21)℄.



64 APPENDIX A. ROTOR AND VIBRATOR MODELSe.g. [8℄, Appendix V)2,
∫

DC
c′c(αβγ)DA

a′a(αβγ)DB
b′b(αβγ) sin(β)dβdαdγ = (−)2B−2A+c+c′ 8π2

2C + 1

× 〈AaBb|C − c〉〈Aa′Bb′|C − c′〉 (A.15)Using this formula, the matrix elements of the transition operator result (I is assumed tobe integer here)
〈K; IM |Dλ

µ0|K; I ′M ′〉 =
√
2I ′ + 1√
2I + 1

〈I ′M ′λµ|IM〉〈I ′Kλ0|IK〉. (A.16)Using the Wigner-Ekart theorem (Brink and Sathler onvention), the redued matrixelement is
〈K; I‖Dλ‖K; I ′〉BS =

√
2I ′ + 1√
2I + 1

〈I ′Kλ0|IK〉 = (−1)I−I′〈IKλ0|I ′K〉. (A.17)where, in the seond equality, we have used the properties of the Clebsh-Gordan oe�-ients.A.2 Partile-vibrator model (PVM)In the PVM model [28℄, the nuleus is assumed to be spherial, but it an undergovibrations around the spherial shape. The surfae is parametrized as
r = R0[1 +

∑

λ,µ

α†
αµYλµ(r̂)] ≡ R0 +∆(r̂) (A.18)with ∆(r̂) ≡

∑

λµ α
†
αµYλµ(r̂) and where αλµ are to be understood as dynamial variables,given in terms of phonon reation (b†λµ) and annihilation (bλµ) operators as:3

αλµ =
βλ√
2λ+ 1

[bλµ + (−1)µb†λ,−µ] (A.19)2In [8℄ this expressions is atually given in terms of the 3j symbols
∫

DC
c′c(αβγ)DA

a′a(αβγ)DB
b′b(αβγ) sin(β)dβdαdγ = 8π2

(
A B C

a b c

)(
A B C

a′ b′ c′

) (A.13)Both expressions are simply related taken into aount the relation between 3j-symbols and Clebsh-Gordan oe�ientes
〈AaBb|C − c〉 = (−1)A−B−c

√
2C + 1

(
A B C

a b c

) (A.14)3Di�erent authors use slightly di�erent de�nitions of these operators. In any ase, for r to be real α†
αµmust have the same transformation properties as Yλµ, namely, α†

αµ = (−1)µαα,−µ.



A.2. PARTICLE-VIBRATOR MODEL (PVM) 65where βλ is the so-alled zero-point amplitude, de�ned as the root mean square of α inthe ground state (no phonons) of the system (denote |0〉):
β2
λ = 〈0|

∑

µ

αλµα
†
λµ|0〉 (A.20)As in the rotational ase, one assumes that the projetile�target potential is depen-dent on the distane of the valene partile to the surfae of the deformed nuleus,

V (r, θ, ϕ) = V vib(r − (R0 + ∆(r̂)). We an expand this interation in a Taylor seriesabout the equilibrium position of the surfae (R = R0)
V vib(r − (R0 +∆(r̂)) = V (r − R0)−R0

dV vib

dr
∆(r̂) + . . . (A.21)The states of the nuleus being exited are expressed as |N ; IM〉, where N is thenumber of phonons of a given multipolarity4. The �rst term in (A.21) annot alter thenumber of phonons and hene it has only diagonal matrix elements between nulear states.The seond term, being linear in the amplitude, an onnet vibrational states di�eringby one unit in the number of phonons. For example, for the transition between the groundstate of the system for an even nuleus (N = I = M = 0) to a one-phonon state of angularmomentum I and projetion M , we have to evaluate the matrix element

〈1; IM |α†
λµ|0; 00〉 =

δI,λδM,µ√
2I + 1

, (A.22)And, for the inverse transition
〈0; 0‖α†

λµ‖1;M〉 = (−1)IδI,λδM,µ. (A.23)Of ourse, for the diagonal terms we have
〈1; 1‖α†

λµ‖1; I〉 = 〈0; 0‖α†
λµ‖0; 0〉 = 0. (A.24)

4A generi vibrational mode might ontain phonons of di�erent multipolarities. However, we willonsider only states ontaining phonons of a given multipolarity.
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Appendix BWigner-Ekart theorem and reduedmatrix elementsThe Wigner-Ekart theorem establishes that the matrix element of a tensor operator Ôλµan be expressed as
〈IfMf |Ôλµ|IiMi〉 = C(Ii, If , λ)〈IfMf |λµIiMi〉〈If‖Ôλ‖Ii〉 (B.1)where the objet 〈If‖Ôλ‖Ii〉 is the so alled redued matrix element, and is independentonf the value of the z projetions. The oe�ient C(Ii, If , λ) is an arbitrary funtion of Ii,

If , and λ, but is independent of the projetions. Several onventions are enountered inthe literature, giving rise to di�erent de�nitions for the redued matrix elements (and tothe unavoidable onfusion when works using di�erent onventions are to be ompared!).Here, we ite two popular onventions followed in Nulear Physis:1. Bohr-Mottelson (BM) onvention: C(Ii, If , λ) = (2If + 1)−1/2. Hene,
〈IfMf |Ôλµ|IiMi〉 = (2If + 1)−1/2〈IfMf |λµIiMi〉〈If‖Ôλ‖Ii〉BM (B.2)2. Brink-Sathler (BS) onvention: C(Ii, If , λ) = (−1)2λ

〈IfMf |Ôλµ|IiMi〉 = (−1)2λ〈IfMf |λµIiMi〉〈If‖Ôλ‖Ii〉BS (B.3)So, these redued matrix elements will be related by:
〈If‖Ôλ‖Ii〉BM =

√

2If + 1〈If‖Ôλ‖Ii〉BS (B.4)
67



68APPENDIX B. WIGNER-ECKART THEOREM AND REDUCEDMATRIX ELEMENTS



Bibliography[1℄[2℄ H. Amakawa and N. Austern. Adiabati-approximation survey of breakup e�ets indeuteron-indued reations. Phys. Rev. C, 27:922, 1983.[3℄ H. Amakawa, S. Yamaji, A. Mori, and K. Yazaki. Adiabati Treatment of ElastiDeuteron-Nuleus Sattering. Phys. Lett., 82B:13, 1979.[4℄ H. Amakawa and K. Yazaki. Adiabati treatment of deuteron break-up on a nuleus.Phys. Lett., 87B:159, 1979.[5℄ N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitsher, and M. Yahiro. Phys.Rep. 154, 125, (1987).[6℄ Norman Austern. Diret nulear reation theories. Wiley-Intersiene New York,1970.[7℄ A. Bohr and B. Mottelson. Nulear Struture. New York, W. A. Benjamin edition,1969.[8℄ D.M. Brink and G.R. Sathler. Angular momentum. Clarendon Press, 1994.[9℄ Herman Feshbah. A uni�ed theory of nulear reations. i. Annals of Physis,5(2):357, 1958.[10℄ Herman Feshbah. A uni�ed theory of nulear reations. ii. Annals of Physis,19(2):287�313, 1962.[11℄ Norman K. Glendenning. Diret Nulear Reations. Aademi Press, In., 1983.[12℄ Norman K Glendenning. Diret nulear reations. World sienti�, 2004.[13℄ J.D. Harvey and R.C. Johnson. Phys. Rev. C3, 636, (1971).[14℄ D. Hasselgren, P.U. Renberg, O. Sundberg, and G. Tibell. Inelasti sattering of 185MeV protons from light nulei. Nulear Physis, 69(1):81 � 102, 1965.69



70 BIBLIOGRAPHY[15℄ Yasunori Iseri, Masanobu Yahiro, and Masahiro Nakano. Investigation of AdiabatiApproximation of Deuteron-Breakup E�et on (d, p) Reations. Progress of Theo-retial Physis, 69:1038, 1983.[16℄ R. C. Johnson and P. J. R. Soper. Contribution of deuteron breakup hannels todeuteron stripping and elasti sattering. Phys. Rev. C, 1:976, 1970.[17℄ R. C. Johnson and P. C. Tandy. An approximate three-body theory of deuteronstripping. Nul. Phys. A, 235:56, 1974.[18℄ Mitsuji Kawai. Chapter II. Formalism of the Method of Coupled Disretized Con-tinuum Channels. Progress of Theoretial Physis Supplement, 89(Supplement 1):11,1986.[19℄ Mitsuji Kawai, Masayasu Kamimura, and Kazuo Takesako. Chapter V. Coupled-Channels Variational Method for Nulear Breakup and Rearrangement Proesses.Progress of Theoretial Physis Supplement, 89(Supplement 1):118, 1986.[20℄ A. Laid, J.A. Tostevin, and R.C. Johnson. Phys. Rev. C48, 1397, (1993).[21℄ A. Messiah. Quantum Mehanis. Number v. 2 in Quantum Mehanis. North-Holland, 1981.[22℄ N. B. Nguyen, F. M. Nunes, and R. C. Johnson. Finite-range e�ets in (d, p) reations.Phys. Rev. C, 82:014611, 2010.[23℄ Takashi Ohmura, Bunryu Imanishi, Munetake Ihimura, and Mitsuji Kawai. Study ofDeuteron Stripping Reation by Coupled Channel Theory. II Properties of InterationKernel and Method of Numerial Solution. Progress of Theoretial Physis, 43:347,1970.[24℄ George H. Rawitsher. E�et of deuteron breakup on (d, p) ross setions. Phys.Rev. C, 11:1152, 1975.[25℄ G. R. Sathler. Adiabati Deuteron Model and the 208Pb(p, d) Reation at 22 MeV.Phys. Rev. C, 4:1485, 1971.[26℄ G.R. Sathler. Diret Nulear Reations. Oxford University Press, New York, (1983).[27℄ M. J. Smithson, J. S. Lilley, M. A. Nagarajan, P. V. Drumm, R. A. Cunningham,B. R. Fulton, and I. J. Thompson. The Threshold Anomaly in Inelasti Sattering.Nul.Phys., A517:193, 1990.[28℄ Taro Tamura. Analyses of the sattering of nulear partiles by olletive nulei interms of the oupled-hannel alulation. Rev. Mod. Phys., 37:679, 1965.



BIBLIOGRAPHY 71[29℄ Ian J Thompson and Filomena M Nunes. Nulear reations for astrophysis. NulearReations for Astrophysis, by Ian J. Thompson, Filomena M. Nunes, Cambridge,UK: Cambridge University Press, 2009, 1, 2009.[30℄ G. L. Wales and R. C. Johnson. Deuteron break-up e�ets in (p, d) reations at 65MeV. Nul. Phys. A, 274:168, 1976.


