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Chapter 1

Some general scattering theory

1.1 Introduction

Most of our present knowledge of stable and exotic nuclei stems from the analysis of nu-
clear reactions. These processes are traditionally separated into two groups: compound
nucleus and direct reactions. In these notes, we will be concerned only with the latter.
These refer to collisions in which the nuclei make “glancing” contact and separate im-
mediately. They are said also to be peripheral (surface) processes. The colliding nuclei
preserve their “identity” (a+ A — a*+ A*). Thus, these processes involve a small number
of degrees of freedom and can be characterized and studied in terms of the excitation of
these degrees of freedom.

The final goal of the scattering theory is to develop appropriate models to which com-
pare the measured observables, with the aim of extracting information on the structure
of the colliding nuclei as well as understanding the dynamics governing these processes.
The measured quantities are typically total or partial cross sections with respect to angle
and /or energy of the outgoing nuclei. Therefore, the challenge of reaction theory is to
obtain these cross sections by solving the dynamical equations of the system (at non-
relativistic energies, the Schrodinger equation) with a realistic but amenable structure
model of the colliding nuclei. By solving the Schrodinger equation, one obtains the wave-
function of the system. This wavefunction will be a function of the degrees of freedom
(eg. internal coordinates) of the projectile and target, denoted generically as &, and &,
as well as on the relative coordinate between them (R). Thus, we will express the total
wavefunction as V(R &, &;). The Hamiltonian of the system is written in the form

H=1Tr + Hy(&) + Hi(&) + V(R &, &), (1.1)

where Tg is the kinetic energy operator (7' = —%V%) and H,(&,) (H¢(&)) denote the
projectile (target) internal Hamiltonians and V(R &, &) is the projectile-target interac-
tion. After the collision, the projectile and target may exchange some nucleons, or even
breakup, so the Hamiltonian (1.1) corresponds actually to the entrance channel. To de-
note the possible mass partitions that may arise in a reaction, we will use greek letters,



6 CHAPTER 1. SOME GENERAL SCATTERING THEORY

with « denoting the initial partition. So, the previous Hamiltonian is rewritten as
H =T, + Ho (&) + Va(Ras &) (1.2)

where &, denotes the projectile and target internal coordinates in partition a. The total
energy of the system is given by the sum of the kinetic energy (F,) and the internal
energy of the projectile and target:
h2 2
E=E,+¢, = 2 tea, (1.3)
210

where hK, is just the linear momentum. The wavefunction W(R, &) will be a solution of
the time dependent Schrédinger equation. For the purpose of extracting the scattering
observables, one may solve the time-independent Schrédinger equation for a total energy
E (see Chapter 1 of [6] for a discussion on the relation between the time-dependent and
time-independent pictures). So, Wk will be a solution of

[H— E]Ux =0 (1.4)

This is a second order differential equation that must be solved subject to the ap-
propriate boundary conditions. These boundary conditions must reflect the nature of a
scattering process. In our time-independent picture, the incident beam will be represented
by a plane wave!. After the collision with the target, a set of outgoing spherical waves
will be formed. The situation is schematically depicted in Fig. 1.1. So, asymptotically,

\Ifgo)(R, £) — Oy(&)e™oR 1 outgoing spherical waves, (1.5)

with ®g(&) = S)) (&) EO) (&) and where the superscript “+” indicates that we this cor-
responds to the solution with outgoing boundary conditions (mathematically, one may
construct also the solution with incoming boundary conditions).

During the collision, the incident wave will be highly distorted by the projectile—
target interaction but, after the collision, at sufficiently large distances (that is, when
V' becomes negligible), the projectile and target will energy in any of the (kinematically
allowed) eigenstates of system. So, asymptotically, we may write?

@ _— eiKaRa
\I’Ka — P (Ea)e T £ q)a(éa>fa,a<9) R
oiKarRa :
+ Z q)a’ (ga)fa/,aw) R
a'#a @
eiKﬁRﬁ
+ 30 (&) fpal0) (1.6)
B

!This is only true for the case of short-range potentials; in presence of the Coulomb potential, the
incident wavefunction is represented by a Coulomb wave

*Note that we distinguish between R, and Rg since, for a rearrangement process, the coordinates will
be different. We will return to this issue in Chapter 4.
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Figure 1.1: Left: schematic representation of a scattering process. Right: initial, final
and transferred momenta.

The first, second and third lines correspond to elastic, inelastic and transfer channels,
respectively. The angle 6 is the CM scattering angle, and corresponds to the angle between
the incident and final momenta (K, and Kgz). The function e®s% /Ry is a spherical
outgoing wave. The function multiplying this outgoing wave is the scattering amplitude
for channel 5. Note (Fig. 1.1) that the vectors Kg and Ry are parallel. The differential
cross section for particles scattering in the direction € in channel g is defined as the flux
of scattered particles through the area dA = r2dS) in the direction 0, per unit incident fluz.
This quantity is directly related to the scattering amplitude as (see e.g. Chap. 3, Sec. G

of [11]) )
(G) = %

It is customary to define the transition matrix (T-matrix):

Tra(0) = —QZZ fal6) (18)

do __Halip
Q) 5 (2wh?)?

1.2 An integral equation for fz,(6)

in terms of which

K 2
—T3,(0
K, sa(0)

Consider that we are interested on a particular channel 5. The scattering amplitude
corresponding to this particular channel can be obtained from the asymptotic form of
the total wavefunction, Eq. (1.6), multiplying on the left by the “internal” wavefunction
®3(&p) corresponding the channel of interest, and integrating over the coordinates g, i.e.

iKgRg

Rg

: e
(g W)y 25 55 (e KaRe o g5 (6)

(1.10)
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where (...) denotes integration over internal coordinates only. Thus, (<I>5|\If§2) remains

a function of R, so we may define X3(Rg) = (9s|V +)). So, if we know \I/ga) or an
approximation to it, we can extract the scattering amplitude from the asymptotics of
X3(Rg). Using this result, it is possible to obtain a formal expression for fz,(0). We
start writing the Schréodinger equation, using the form of the Hamiltonian appropriate for
the channel 3, that is, )

H =Ty + Hg(&p) + Vs(Rp) (1.11)

Using this form of the Hamiltonian in the Schrédinger equation, Eq. (1.4), multiplying on
the left by @g(ég) and integrating along the coordinates {3 we get the projected equation:

[T + e5 — E1X5(Rg) = — (5] VaWid)) (1.12)

were we have used eg = (Pg(€s)|Hp|Ps(£3)) and the fact that the kinetic energy operator
does not depend on the internal coordinates {z. This is a second-order inhomogeneous
differential equation for the function Xg. The most general solution is the sum of the
solution of the corresponding homogeneous equation, plus a particular solution of the
inhomogeneous equation. The homogeneous equation is trivially solved, since it contains
only the kinetic energy operator; its solution is just a plane wave with momentum Kgp,
with modulus K = \/2ug(E —e5)/h. The particular solution of the inhomogeneous
equation can be formally obtained using Green function techniques (see, for example,
[21, 11]) leading to:

X5(Rp) = eEeRog, o — o hz/Gﬁ (Rg, Rj) (5] V)R (1.13)
where G is the Green function in channel 8. Explicitly:
oiKsRs—RY|

To extract the scattering amplitude, we must take the asymptotic limit, Rg > R'ﬁ. In
this limit, the Green function reduces to*

Go(Ro, R — (1.15)
EANER) .
8 R
and the function X3(Rg) tends to
iKgR
s> iKaR ps €7 (+)
Xs(R N Op| VW 1.16
( 5) e ) 27Th2 Rﬁ ( 5‘ B Ka> ( )

Comparing with the asymptotic form (1.6), and recalling the definition of the scatter-
ing amplitude, we have

Hg i
f@a(@) = 2 22 <6 K,BRB(I) |V5\I/(+)>
WLZ / / e KR (£5)Va( Ry, §5) Wi dEpdR g (1.17)

3For RB>>R,/6’7 |RB—RIB| %Rﬂ—RB-R'BZKB-R'B.
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Or, in terms of the T-matrix,

[m,a _ / / e KRG () V(R €6) UL (R, €0)dE IR 5. (1.18)

1.3 Gell-Mann—Goldberger transformation (two-potential
formula)

A more general expression for Eq. (1.18) can found introducing an auxiliary (and by now
arbitrary) potential Us(Rj) on both sides of Eq. (1.12),

[T + Us + e5 — E|X5(Rg) = —(®5|Vs — UsU)) (1.19)

where, again, X3(Rs) = (CIDB\\II%E))
The solution of (1.19) is given by a general solution of the homogeneous equation, plus
a particular solution of the full equation. The homogeneous equation is given by

[T5+ Us + €5 — E]x}(Rg) = 0 (1.20)

This equation represents the scattering of the particles in channel § under the potential
Ug. The solution is of the form

X(;)(Rﬁ) = ™o Rs | outgoing spherical waves (1.21)

In the next chapter, we will discuss in more detail how this equation is solved in practical
situations, making use of the partial wave expansion.

Finally, the full equation (1.19) is solved adding a particular solution of the inhomo-
geneous equation. This is done using again Green function techniques. Details are given
in [6]. The full solution (which generalizes Eq. (1.16)) is written as

Xa(Rs) = (@5UE)) = (Rabbos + [ G (Ra R (@alVs — VU aRG (122

The scattering amplitude (or the T-matrix) is extracted from the asymptotics of the
outgoing waves. Nnote that, we have outgoing waves in both terms of the RHS of the
previous equation, and giving rise also to two contributions to the scattering amplitude,

Too = Tdas + //X%)*(Kﬁa Ry)Ps(&5)[Vs — Up Wi dépdRs, (1.23)

The first term is the scattering amplitude due to the potential Ug and is present only
for the channel § = a. In here, X(Bf), is the time-reverse of x(*) and corresponds to the
solution consisting on a plane wave with momentum Kz and ingoing spherical waves. It
can be readily obtained from x(*) using the relationship y*(K,R)= " (—=K,R).
The result (1.23) is known as the Gell-Mann—Goldberger transformation or two-
potential formula. This expression is exact but it cannot be solved as such, since it
contains the exact wavefunction of the system. However, it provides a very useful starting

point to derive approximate expressions, as we will see later on.
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1.4 Defining the modelspace

We have seen that the dynamics of the system in a scattering process is encoded in the
full wavefunction, U(+). Formally, it can be obtained by solving the Schrédinger equation
of the system. Asymptotically, this wavefunction consists on an incoming plane plane,
and outgoing spherical waves in all possible channels. Practical calculations require as
a first step reducing the full space to a tractable modelspace. This is motivated by
two things: (i) the channels of interest to analyze a particular experiment and (ii) the
numerical /computational complexity of the problem. For example, if we are interested
in analyzing some inelastic scattering experiment, our model space might consist on the
ground state of the projectile and target, plus the states more strongly populated in the
experiment.

The formal procedure to reduce the problem from the full space to a selected mod-
elspace was developed by Feshbach [9, 10]. The idea is to separate the full space into
two parts, denoted as P and Q. The P space comprise the channels of interest and will
therefore be taken into account explicitly in the model wavefunction W(*). The Q space is
composed by the remaining channels. So, following Feshbach (see also [6] and [11], Chap-
ter 8G), we may write U = Up + Vg. The components Wp and Wq obey a complicated
system coupled equations, with the deceptively simple form

(E— Hpp)Up = HpoUy (1.24
(E = Hog)Vg = HopWp (1.25)

where Hpp = PHP, Hpg = PH(), and so on. The projected Hamiltonian Hpp contains
the coupling among the states of the P space, and likewise for Hgg. The terms Hpg and
Hgp describe couplings between the states of P and those of Q. Since we are interested
only in U p, we eliminate ¥ from the RHS of the first equation, using the second equation:

1

E_HPP_HPQE—HQQ+i€

Hop| Up =0 (1.26)

Let us rewrite this equation as

[E—Hy,—T,—-V|¥p=0 (1.27)
with ]
— N 1.2
)% VPP+VPQE—HQQ+i€VQP ( 8)

Direct reaction theories replace the above equation by an approximated one of the
form

(E - Heff>\I’m0del =0 (129)

where H.g is an effective Hamiltonian which aims at representing the complicated object
V. Although the Feshbach formalism provides a expression for such operator, it cannot
be evaluated in practice. Yet, this formal solution provides an useful guidance on how to



1.4. DEFINING THE MODELSPACE 11

replace such a complicated object by some approximate one. In particular, the effective
Hamiltonian is found to be complex, energy-dependent and non-local. Furthermore, since
the effective Hamiltonian involves the coupling to all the possible channels, it cannot be
evaluated in practice. For all these reasons, the interactions entering H.gs are usually
determined phenomenologically, and represented by simple (commonly local) forms.

Once the model space and the effective interactions have been defined, the model
wavefunction is expanded in the set of internal states explicitly included (that is, those of
the P-space),

U= Pa(€axS) (Ra) (1.30)

where x5 (R,) obey the usual outgoing boundary conditions [c.f. Eq. (1.6)].
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Chapter 2

Single-channel scattering: the optical
model

Direct reaction theories try to reduce the complicated many-body scattering problem to
a tractable problem of the form

(E - Heff)\ljmodel =0 (21)

where H.g is an effective Hamiltonian defined in the model space, that is, the set of
channels of interest (in the Feshback language, the P space). The W, g will be in
general an expansion in the states of the P space.

The crudest approximation to the P space is to reduce the physical space to just the
ground state of the projectile and target. This gives rise to the optical model formalism.
In this case, the model wavefunction (1.30) is approximated by a single term,'

Viona (6 R) = 20(§)x6” (R) (2:2)
and the effective Hamiltonian is expressed as
Hg=H,+ U, (2.3)
The model wavefunction is a solution of
[Ty + Ho + Uas(R) — EJOS) =0 (2.4)
Using the fact that, by construction, H,®q(§) = g0®o(&), we get

[T, + Ua(R) — EgxoP(R) = 0 (2.5)

where Fy = F — €, i.e., the kinetic energy associated with the relative motion between
the projectile and target.

! The subscript « is omitted here when implicitly understood.

13
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If the effective Hamiltonian, H.g, is to represent the complicated Feshbach operator,
describing not only the interaction in the P space, but also the couplings between the P
and @ spaces (all non-elastic channels in this case), then the effective interaction U,(R)
will be complex, non-local and energy-dependent. The imaginary part accounts for the
flux leaving the elastic channel (P space) to the channels not explicitly included (the
Q space). The energy dependence is usually taken into account phenomenologically, by
parametrizing U with some suitable form and adjusting the parameters to the experimen-
tal data over some energy region. Finally, non-locality is rarely taken into account. The
effective interaction U, is referred to as optical potential.

2.1 Partial wave expansion

As an additional simplification, we consider the case in which the spins of the colliding
particles are ignored and the optical potential is assumed to be a function only of the
projectile-target separation, R = |R|. In this case, the wave function can expanded in

Spherical harmonics,
(+) K R) = E C 7X€< ’ )Y R 2.6
Xo ( ) ) = Lm R Zm( ) ( . )

where the radial functions are a solution of
h? d? B2 00+ 1)
- — U(R) — E K,R)=0. 2.7
2MdR2+2u R2? +U(R) 0])@( . R) (2.7)
The coefficients Cy,, are determined imposing that, in the case of zero potential, the
solution must be a plane wave, that is

U,=0 = y\(K R)=¢KR (2.8)
whose expansion in terms of spherical harmonics is given by
) 4 ~ A
¢KR K—Z i Fy(K R)Yy(R)Yg, (K) (2.9)
lm
= —— ) i*(20 + 1) F,(KR) Py(cos ) (2.10)
KR

¢
where Fy(KR) = (KR)j(K, R) with j,(K,R) a spherical Bessel function. Comparing
this expression with (2.6), it is convenient to use the coefficients Cy,, such that in the
limit U — 0, the expansion (2.6) reduces to (2.9),

1
WHK,R) = e (20 + 1)xe(K, R)Py(cos 8) (2.11)
4

In the case in which the potential is non-zero, we can still say that X(()Jr)(K, R) must
verify the following equation at large distances,
h? d? R 00+ 1)

oudR? ' 2u  R?

- EO] xe(K,R) =0 (for large R) (2.12)
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and the most general solution will be combination of two independent solutions for this
equation. One of them can be taken as the regular solution Fy(KR). The other can be

the irregular solution,

or any combination of G and F', that is,
Ye(K, R) 22 AF,(KR) + BG,(KR) (2.14)

The combination appropriate for our purposes is suggested by the known asymptotic
behavior of our physical scattering wavefunction, i.e.

eiKR

Xy (K R) =25 @R f(0) (2.15)

The exponential part of the outgoing wave, e’%, turns out to be just a suitable combi-
nation of the ' and GG functions, because

Gelp) + iFu(p) = H{P(p) — o=/ (2.16)

So, returning to the partial wave expansion, the appropriate boundary condition con-
sistent with the behavior (2.15) is given by

xe(K,R) = F,(KR) + T,H."(KR) (2.17)

where the (yet undetermined) coefficient T, is known as transmission coefficient. It is
usual to write Ty in terms of the so-called phase-shifts,

T, = €™ sin(6) (2.18)

or, in terms of the reflection coefficient, S, or S-matrix,?

Sp =1+ 2T, = ¥ (2.19)

The condition (2.17) can be also written as,

[ xe(K, R) — % H(KR) — SZH§+>(KR)} ] (2.20)

where '
H 7 (p) = Gelp) — iFi(p) — e~/ (2.21)

The S-matrix Sy is therefore the coefficient of the outgoing wave (H™)) for the partial
wave £. It reflects the effect of the potential on this particular wave in the sense that,

2When these expressions are generalized to the multiple channel case, the quantity S, becomes a
matrix and is referred to as scattering or collision matriz (the name is also used in single-channel case,
but the terminology is less obvious).
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e If no potential is present, there is no outgoing wave. Then, T, = 0 or, equivalently,
nglandég:O.

e As a consequence of the previous item, for large values of ¢ the centrifugal barrier
keeps the projectile well apart from the target, and thus the effect of the (short-
ranged) potential U, will be negligible. Consequently, for £ — oo = S, — 1.

e If the scattered potential is real, the overall outgoing flux for a given partial wave
must be conserved, and hence |S;| = 1.

e On the other hand, for a complex potential (with negative imaginary part), we have

|S¢| < 1, thus reflecting that part of the incident flux has left the elastic channel in
favor of other channels.

2.2 Scattering amplitude

To get the scattering amplitude, we substitute the asymptotic radial function y,(K, R)
from (2.20) into the full expansion (2.11):

[Q—
WK R) - — %: (20 + 1) {Fg(KR) n Tng)(KR)} Py(cos §)

, 1 , oK R—tm/2)
= 25 2 12+ DF(KR)Py(cost) + > e+ )T, 7 Pi(cos6)
¢ ¢
] 1 ] eiKR
= KR4 % Z(% + 1)e™ sin 6, P;(cos 6) 7 (2.22)
¢
The elastic scattering amplitude is the coefficient of e’/ R in the last line,i.e.,
1 5, -
f(0) = e ;(% + 1)e™* sin 6, P;(cos 6)
1
= 5% > (204 1)(Sy = 1)Py(cosb). (2.23)
¢
The differential elastic cross section will be given by
QO ~IfOF (2.21)
ds2

In principle, the sum in (2.23) runs from ¢ = 0 to infinity. However, remember that, for
large values of /, the S-matrix tends to 1 so, in practice, the sum can be safely truncated
at a maximum value /.., determined by some convergence criterion of the cross section.



2.3. COULOMB CASE 17

2.3 Coulomb case

The Coulomb case deserves a special consideration because the expressions derived in the
previous section are strictly applicable to the case of short-range potentials, for which the
asymptotic form (2.15) is appropriate. For a pure Coulomb case, we can perform a partial
wave expansion of the scattering wavefunction yo(K,R) of the form

VoK. R) = KLR (20 + 1)iC (K R) Py(cos(0)) (2.95)

with the radial functions x§ (K R) obeying the equation

2
[d_+K2_277K+€(£+1)

T = = } xS (KR) =0 (2.26)

where
ZpZte2 . ZpZt€2,U/

A 2K
the so-called Coulomb or Sommerfeld parameter.
The solution of (2.26) must be regular at the origin. Asymptotically, it behaves as

(2.27)

O (KR) 22 ¢t Fy(n, KR) (2.28)

where Fy(n, KR) is the regular Coulomb function and o, is the Coulomb phase-shift for
a partial wave /,
o =argl'({ 4+ 1+ in) (2.29)

The Coulomb function behaves asymptotically as

Fi(n,p) — sin(p —nln(2p) — n/2 + o) (2.30)

which in the case n = 0 (0, = 0) reduces to the regular F;(KR) function introduced in
the case of short-range potentials

Fi(n=0,p) = Fu(p) = pje(p) (2.31)

Analogously, an irregular solution of (2.26) can be found, which reduces to G(p) in the
no Coulomb case

Go(n, p) = cos(p —nln(2p) — bw /2 + oy) 20, Gi(p) = —pne(p) (2.32)

as well as the ingoing and outgoing functions,
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For the pure Coulomb case, the scattering amplitude will be given by

fe(6) = L D (204 1)(e*7* — 1) Py(cos ) (2.35)

2K

This integral is not convergent (cannot be truncated at a finite ¢) but the full result is
known analytically and is given by

_ Ui —inIn(sin(L6)+2i00)
0) = -3¢ " 2 2.36
fe(®) 2Ksin2(%9)€ ( )

The differential cross section yields the well-known Rutherford formula

dCTR n? ZyZye* ’ 1
_ 2.37

2.4 Coulomb plus nuclear case

If both Coulomb and nuclear potentials are present, the scattering function Xo (K R)
will never reach the asymptotic form of a plane wave plus outgoing waves, due to the
presence of the 1/R term in Schrodinger equation. Nevertheless, it can be written as

(+)(K R) — XC J(K,R) + outgoing spherical waves (2.38)

where the outgoing waves part are now proportional to the functions H(+) (n, KR). Of
course, when only the Coulomb potential is present, this term vanishes, and the scattering
wavefunction reduces to Xc (K R).

If we write, as usual, the X0+)(K, R) as a partial wave expansion, the corresponding
radial coefficients y,(K, R) verify the asymptotic condition

Xe(K, R) — ¢ [Fg(n, KR)+T,H® (n, KR)} (2.39)

= e [0, KR) - S,H( D (0, K R)| (2.40)

which is very similar to (2.17) and (2.20), expect for additional Coulomb phase ¢ and
replacement of the functions F(K R), H™®) etc by their Coulomb generalizations.
The scattering amplitude results

F(0) = fo(0) + Z(2€+1)62i‘7‘(5g— 1) Py(cos 0) (2.41)

2K

where the first term corresponds to the pure-Coulomb amplitude, and arises from the
outgoing waves in the first term of (2.38).
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Numerical calculation of the scattering wavefunction and phase-shifts

In practice, the calculations of the scattering wave function and the corresponding

reflection coefficients (or phase-shifts) are usually computed as follows:

1. Integrate the radial differential equation from the origin outwards, with the
initial value x,(K,0) = 0 and some finite (arbitrary) slope.

2. At a sufficiently large distance, R,,.x, beyond which the nuclear potentials have
become negligible, the numerically obtained solution is matched to the asymp-
totic form

Nxo(K, Ruax) = Fo(n, K Rina) + TeH Y (17, K Ripay) (2.42)

3. This equation contains two unknowns, 7, and the normalization N. Thus, it is
supplemented with the condition of continuity of the derivative

NXY(K, Rina) = F{(1, K Rua) + To(H (0, K Rina))' (2.43)

4. The procedure is repeated for each ¢, from ¢ = 0 to {y,.x, such that S, ~ 1.

2.5 Parametrization of the phenomenological optical
potential
The effective optical optical potential is usually taken as the sum of Coulomb and nu-

clear central potentials U(R) = Upye(R) + Ueou(R), with the Coulomb part taken as the
potential corresponding to a uniform distribution of charge of radius R,:

2% (3 R if R <
U.(R) = { e (3 R3> . Be (2.44)
S if R > R,

As for the nuclear part, it contains in general real and imaginary parts. The most
standard parametrization is that of Woods-Saxon

Yo —i Wo (2.45)

Uone (R) = V(R) + W (R) = ———— (=8)  1exp (55)

The parameters V, Ry and ag are the depth, radius and diffuseness (likewise for the
imaginary part). They are usually determined from the analysis of elastic scattering data.
If the spin-of the projectile (or target) is considered, the potential will contain also
spin-dependent term. The most common one is the spin-orbit term, which is usually
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parametrized as

h ) 1 df (R, Rs, as0)

) & wiE (20 - ) (2.46)

Uno(R) = (Vio + iV.0) (

where the radial function f(R, Rs,,as,) is again a Woods-Saxon form, and (h/myc)” =
2 fm?, is just introduced in order U,, have dimensions of energy.



Chapter 3

Inelastic scattering

Nuclei are not inert or frozen objects; they do have an internal structure of protons and
neutrons that can be modified (excited), for example, in collisions with other nuclei. In
fact, a important and common process that may occur in a collision between two nuclei
is the excitation of one (or both) of the nuclei.

Inelastic scattering is an example of direct reaction (see Chapter 1) and, as such, the
colliding nuclei preserve their collision after the collision.

The energy required to excite a nucleus is taken from the kinetic energy associated with
projectile-target relative motion. This means that, if one of the colliding nuclei is excited,
the final kinetic energy of the system is reduced by an amount equal to the excitation
energy of the excited state populated in the reaction. So, by measuring the kinetic energy
of the outgoing fragments, one can infer the excitation energy of the projectile and target.
This has been indeed a common technique to identify such excited states.

The information provided by the analysis of inelastic reactions is not restricted to the
level spectrum of nuclei. By comparing the energy and angular distribution of the ejectile
with an appropriate reaction theory, we can infer also useful structure information, such as
the spin and parity of the populated states, the electric transition probabilities connecting
these states, the deviation from the spherical shape in deformed systems, etc

3.1 Collective versus single-particle excitations

Nuclei, like atoms, tend to be in their state of minimal energy (the so-called ground state)
which corresponds to a certain arrangement of protons and neutrons inside the nucleus.
The excitation of the nucleus corresponds microscopically to a rearrangement of protons
and neutrons. This is a many-body quantum-mechanical problem, which can be very
difficult to treat in a general situation. However, in many cases, it is possible to rely on a
simpler picture, which emphasize some particular degree of freedom of the system. This is
the case of the single-particle excitations observed in even-odd nuclei, or that of collective
excitations due to the rotation or vibration of the nucleus.

21
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Figure 3.1: Energy levels of 2°“Bi and !!Be, interpreted as single-particle excitations.

e Single-particle excitations: If we have a nucleus with one “valence” nucleon out-
side a closed shell, there will be low excited states which corresponds to promoting
this odd nucleon into higher shell-model orbits without disturbing the inner closed
shells. Two examples are shown in Fig. 3.1. In the ?%’Bi case, the first 82 protons
constitute a relatively inert core and the remaining proton moves in the average
potential created by this core.

The second example shown in Fig. 3.1 is 'Be, which is an example of “exotic”
nucleus. The excess of neutrons (N = 7 versus Z = 4) makes this system very
unstable, decaying into ''B by S~ emission (T3, = 13.76 s). The ground state
(1/2%) can be interpreted in a single-particle picture as a neutron moving around a
19Be core in a 251/ orbital. Very close to the ground state, at F, = 320 keV, there
is a 1/27 excited state, which can be obtained promoting the last neutron the 1p;
orbital®.

e Collective excitations: Some excited states are not easily interpreted in terms of
single-particle excitations, even considering more than one active nucleon. However,
in many cases they can be interpreted as collective excitations of the nucleus as a

INote that this is not the expected sequence of stable nuclei, for which one would expect the 1p; /2
orbital to be below the 2s;,, orbital. This parity inversion is a consequence of the proton/neutron
asymmetry and is subject nowadays of many studies.
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Figure 3.2: Energy levels of a typical rotational (left) and a typical vibrational (right)
nucleus.

whole. This is the case of nuclei with a permanent deformation in which excited
states correspond to the rotational motion of the nucleus, slowly rotating as a whole.
In the pure rotational model, the energy spectrum is of the form

2

BI) = 5_1 (I +1) - K(K +1)], (3.1)

where [ is spin of the level with excitation energy E(I), K is the projection of the
angular momentum along the symmetry axis of the deformed system and Z is the
moment of inertia of the nucleus. For even-even nuclei, the ground state has I =0
and hence the rotational band built on top of the ground state has K = 0 too.
Physically, this means that the rotation occurs about an axis perpendicular to the
nuclear symmetry axis. It can be shown that in this case only even values of [

appear. An example of rotational spectrum for an even-even nucleus is shown in
the left-hand-side of Fig. 3.2.

Another example of collective excitations are the vibrations experienced by an spher-
ical nucleus. These can be visualized as harmonic oscillations of the surface about
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Figure 3.3: Energy levels of samarium isotopes showing the evolution from a typical

vibrational spectrum in *¥Sm to a rotational spectrum fully developed in '*2Sm and
1%4Sm. Quoted from Ref. [11], p. 229.

the spherical shape. In an even-even nucleus, the corresponding energy spectrum
for a multipolarity A consists of evenly spaced levels with

En = nhw,\

where n = 0,1,... is the number of phonons, each carrying an energy of hw, and
angular momentum M. For example, for quadrupole phonons (A=2), n = 0 corre-
sponds to the state with no phonons, and has I = 0. This is the ground state of the
system. For n = 1 phonon, we have a (excited) state with I = 2 angular momentum
and energy hw,. With two quadrupole phonons (n = 2), we get an excited state
with energy 2hw,. Since each phonon carries an angular momentum of 24, they can
couple to angular momenta /=0, 2 and 4, so we actually have 3 degenerated levels.

An example of vibrational spectrum is shown in the right-hand-side of Fig. 3.2,
corresponding to the 1**Cd nucleus. The 0F, 27 and 47 triplet of states around E, ~
1 MeV corresponds to the excitation of two quadrupole phonons. The additional 0™
and 2% states observed nearby are due to a different kind of excitation.

It is worth noting that the vibrational or rotational character can change from
an isotope to another within the same isotopic chain. An example is shown in
Fig. 3.3, for the first levels of the samarium isotopes, exhibiting the characteristic
level spacing of vibrator and rotor at the extremes.
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There are other kinds of collective excitations (monopole, giant resonances, etc) but
they will not be considered here.

3.2 Emergy balance considerations

We start by recalling the concept of @)-value. Consider the binary direct reaction a4+ A —
b + B, where a projectile a collides with a target A giving rise to an ejectile b and a
residual nucleus B. Due to energy conservation in the CM frame,

El 4+ M, + Mac® = EX + Myc? + Mpc?, (3.2)

where E!  (E/ ) is the total kinetic energy in the initial (final) channels. It is customary
to introduce the ()-value, defined as

Q = M,c* + Myc* — Myc®> — Mpc?. (3.3)
In terms of (), the energy balance can be expressed as
El =E. +Q. (3.4)

For Q > 0 we have B/ > E! and the reaction is said to be exothermic. Conversely,
for Q < 0 we have E/ < E! and the reaction is said to be endothermic.

For an inelastic process, the nuclei are the same in the initial and final channels. Let
us assume, for definiteness, that the projectile is excited to an excited state E,. Then,
the energy balance becomes in this case

Bl 4 M,® + Mac? = EX 4+ M:c® + My, (3.5)

where M} = M, + E,.
In this case, the ()-value is simply given by

Q = M,c® + Myc* — M — M3 = —E,,

that is, ) = —FE, < 0. Consequently, an inelastic reaction is always endothermic. This is
not unexpected, since part of the kinetic energy is used to excite one of the nuclei.

From these considerations, we see that the excitation energy of the states populated
in a inelastic process can be inferred by just measuring the kinetic energy of the outgoing
fragments. In fact, this is a powerful technique to obtain the energy spectrum of a nucleus.

Example: the p+7Li reaction

As an example, let us consider the scattering of a proton beam by a “Li target. In
Fig. 3.4, we see the experimental excitation energy spectrum inferred from the energy
of the outgoing protons detected at an scattering angle of 25°. We have superimposed
the known energy spectrum of “Li to emphasize the correspondence between the observed
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Figure 3.4: Energy spectrum of detected outgoing protons scattered from a “Li target
(quoted from Ref. [14]).

peaks and these states. The peak at E, = 0 (corresponding to () = 0) corresponds to the
ground state of “Li. Thus, it is just elastic scattering. At E, = 0.48 MeV, we should see
a second peak corresponding to the first excited state of “Li. However, due to the energy
resolution, this peak is not resolved in these data from the elastic peak. At E, = 4.6 MeV
there is a prominent peak corresponding to a 7/2~ state in “Li. This state is above the
“He+t threshold and does actually correspond to a continuum resonance. This threshold
corresponds to the energy necessary to dissociate the “Li nucleus into “He-+t. Therefore,
for excitation energies above this value, we have a continuous of accessible energies, rather
than a discrete spectrum, and any value of E, is possible. This explains the background
observed at these excitation energies.

Note that the information provided by these data is not enough to determine other

properties of the energy spectrum, such as as the spin/parity assignment or their collective/single-

particle character. To do that, one needs to compare the data with a suitable reaction
calculation, as we will see in the next section.

3.3 Formal treatment of inelastic reactions

3.3.1 The coupled-channels (CC) method

Remember from Chapter 1 (Sec. 1.4) that any practical solution of the scattering prob-
lem starts with a reduction of the full physical space into P and Q spaces, the former
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corresponding to the channels that are to be explicitly included. In an inelastic process,
this P space will consist of the elastic channel, plus some excited states of the projectile
and /or target, those more strongly coupled in the process or, at least, those that will be
compared with the experimental data.

Let us consider the scattering of a projectile a by a target A, and let us assume for
simplicity that only the projectile can be excited during the process, the target being just
an inert spectator. We denote this mass partition by the index «, i.e., = a + A. Our
model Hamiltonian will describe a set of states of the projectile, and the coupling between
during the collision. This model Hamiltonian will be expressed as:

h2

H=-—
2,LLaA

Vi + Ha(§) + Vo€, R) (3-6)

where V, (&, R) is the projectile-target interaction and H,(§) is the internal Hamiltonian
of the projectile?. The symbol & denotes the set of internal coordinates of a. For example,
in deuteron scattering, ¢ may refer to the relative coordinate between the proton and the
neutron®. R is the relative coordinate between a and A.

Let us denote by {¢,(£)} the internal states of the projectile. These will be the
eigenstates of the Hamiltonian H,(§):

Ha(bn == gn(bn- (37)

The key idea of the CC method is to expand of the total wavefunction of the system
the set of internal states {¢,(£)},

TR, €) = do(Oxo(R) + D ¢u(€)xn(R) (3.8)

n>0

with ¢g(§) representing the ground-state wavefunction and N the number of states in-
cluded.

The unknown coefficients y,,(R) describe the relative motion between the projectile
and target in the corresponding internal states. They have a definite physical meaning.
They tell us the relative “probability”, as a function of R, for the projectile (or target)
being in state n. The different possibilities for n are frequently referred to as “channels”.
The total wavefunction WU(R, ¢) verifies the Schrodinger equation:

[E — HJWW(R,€) = 0.
We now proceed as follows:

e Use the expansion (3.8) and the Hamiltonian (3.6) in this equation.

2If both the projectile and target can be excited, we can generalize the equation above by including
also the internal Hamiltonian of the target, so H,(¢) should be replaced by Hy, = Ho(€) + Ha(€').
3The intrinsic spins of the proton and neutron, could be also part of these set of internal coordinates.
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e Multiply on the left by each of the basis functions ¢ (&), and integrate over the
internal coordinates &.

e For each n, we get a differential equation of the form:

B = = Tr = Va(R) xa(R) = D V(R (R) (3.9)
n’#n

where Tk is the kinetic energy operator and V,, ,,» are the so called coupling potentials,
defined by:

[Vn,n/(R) = /défbi(&)V(f,R)%/(f) (3.10)

Thus, for example, V; ., is the potential responsible for the excitation from the
ground state (n = 0) to a given final state m. We have still not defined the form
of the effective potential V(£,R) and the internal states ¢,, that is, the model
Hamiltonian. These potentials are constructed within a certain model, as we will
see later.

Note that in the equation for a given value of n, we have the unknown y,(R), but also
those x,/(R) with n’ # n. Consequently, Eq. (3.9) represents a set of coupled differential
equations for the set of functions {x,(R)}.

Boundary conditions

Similarly to the OM case, the CC equations have to be solved with the appropriate
boundary conditions. These boundary conditions correspond to the physical situation in
which the projectile is initially in the ground-state (¢o) and the projectile-target relative
motion is represented by a plane wave with momentum K*. The situation is schematically
represented in Fig. 3.5. Classically, the direction of the momentum K corresponds to the
direction of motion of the projectile. As a result of the collision with the target, a serial
of outgoing spherical waves is created. That is, the general structure of the wave function
of the system is of the form

\Ilgo)(R, £) = e®oRpy(€) + (outgoing spherical waves)

Unlike the planes waves, the spherical waves scatter in all directions. In addition to the
outgoing waves corresponding to elastic scattering, there will be outgoing channels for all
the open channels (that is, all the possible final states allowed by energy conservation).
So, outside the range of the potentials, the total wave function satisfies:
eiKOR eiKnR

bonl) 4 32 10l =000, B11)

n>0

‘Ilgo)(Rvé) 2, {eiKO'RﬂLfo,o(e)

4A more realistic description would be in terms of wave-packets but the formal treatment is much
more complicated. To link both pictures, one can bear in mind that a wave packet can be constructed
as a superposition of plane waves.
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Comparing with (3.8) we see that the functions x,,(R) must verify following boundary
conditions:

(K. R iKo-R ciloR B .
Xo (Ko, R) —e + fo.0(0) 7 n=0 (elastic)
(+) et :
o (Kn, R) = fr0(6) 7 n #0 (non-elastic) (3.12)

where the superscript “+” indicates that this is the solution which contains outgoing
spherical waves (one can construct also a solution with ingoing spherical waves that behave
as exp(—iKoR)/R. The coefficient of the outgoing wave exp(—iKoR)/R, fn0(f), is just
the scattering amplitude. Once we have determined the scattering amplitude, the cross
section is calculated as (c.f. Chapter 1)

do(0)
ds?

0 m) = L2l na®) (3.13)

Note that:

e There are only incoming waves for the yo component (that is, the elastic component)
but outgoing waves for all components.

e The scattering angle in the c.m. frame, 0, is determinted by the direction of the
momenta Ky and K,,. Defining the momentum transfer as q = K,, — Ky, we have
(see Fig. 3.5):

¢ = K + K? — 2K, K,, cos(6) (3.14)

e The modulus of the momentum K is related to the kinetic energy of the system in
channel n in the CM frame:

hK?
cm = 2M
e Due to energy conservation®,
h2 2 h2K2
E= =&, L
€0+ B £ 2,u

For g, > E, the kinetic energy is negative and the corresponding momentum K,, becomes imaginary.
Consequently, the asymptotic solutions x,, of Eq. (3.12) vanish exponentially and then these channels do
not contribute to the outgoing flux.
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Figure 3.5: Left: incident and scattered waves in a scattering process. Right: incident
and final momenta, and momentum transfer

3.3.2 The DWBA method

If the number of states is large, the solution of the coupled equations can be a difficult
task. In many situations, however, some of the excited states are very weakly coupled to
the ground state and can be treated perturbatively. In this case, the set of equations (3.9)
can be solved iteratively, starting from the elastic channel equation, and setting to zero
the source term (the RHS of the equation). This allows the calculation of the distorted
wave xo(Ko,R). This solution is then inserted into the equation corresponding to an
excited state n, thus providing a first order approximation for x, (Ko, R). If the process
is stopped here, then the method is referred to as distorted wave Born approximation
(DWBA).

We provide here an alternative derivation of the DWBA method, which leads to a
more direct connection with the scattering amplitude. We make use of the exact scattering
amplitude (1.23) derived in Chapter 1 using the Gell-Mann—Goldberger transformation,
and that we reproduce here for completeness:

Toa = Tandap + //X(g)*(K/s,Rﬁ)q)Z(éﬁ)Wﬁ‘I’g:déﬁdRﬁ , (3.15)

where W = V3 — Ug. Let us particularize to our case, assuming that we are to describe
a transition between an initial state ¢ (typically, the g.s.) and a final state f. Since these
states belong to the same partition () we do not need to specify explicitly the subscript
a or 3. Then, the expression above becomes

Tii— / / WK R) 6OV — U Wi dedR, (3.16)

where, within the CC method, \Il%) is given by the expansion (3.8). Recall that, in this
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expression X(f)(Kf, R) is the time reverse of XEﬁ(Kf, R), which is a solution of

[Tr + Uy +e5 — ENV(Kp, R) =0 (3.17)

for some auxiliary potential Us(R). Typically, Uf(R) is chosen as a phenomenological
potential that describes the elastic scattering in the final channel.
In DWBA, the wavefunction of the system in the initial state is approximated by:

VR, €) = (K, R)¢i(6), (3.18)
(+)

where x,; "’ (K, R) is the distorted wave describing the projectile-motion in the entrance

channel,
E—e —Tr—U(R)| x;”(Ki,R) = 0, (3.19)

where U;(R) is the average potential in the initial channel, and is usually taken as the
potential that describes the elastic scattering in this channel. With this choice, one hopes
to include effectively some of the effects of the neglected channels.

In DWBA, the scattering amplitude corresponding to the inelastic excitation of the
projectile from the initial state ¢;(§) and momentum K to a final state ¢¢(£) and mo-
mentum K is given by (for details, see for example Ref. [26])

1 )k
FENRA D) = - 5t [ R (Kf,Rmf(R)xE”(Ki,R)] (3.20)

where W;(R) is the coupling potential

[Wi (R) = (94|Vs = Uslon) = /défb’}(é)(vf - Uf)@(f)] (3.21)

Actual applications of the DWBA amplitude (3.20) require the specification of the
structure model (that will determine the functions {¢;(£)} as well as the projectile-target
interaction V;. We give some examples in the following section.

3.4 Application of the DWBA method to collective ex-
citations

3.4.1 Coulomb excitation

Let us consider the Coulomb potential between a composite projectile of charge Z,e
and a target nucleus of charge Z;e. We ignore the structure of the target but we consider
explicitly the internal structure of the projectile (see Fig. 3.6). Consequently, the Coulomb
potential is the sum of the interaction with all the protons of the projectile, that is,’

V(R,¢) = Z R—1| (3.22)

i

6Tn many textbooks and papers, it is customary to use units in which x = 1.
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Figure 3.6: Coulomb interaction between a particle and a composite system.

with k = 1/47mey and € = {r;}. .
We use the following multipole expansion, which is valid for R > r;:

1 4 ) N rn g R
R — 1y - Z 2\ + 1 RML YAM(TZ')YAM(R) (R>m) (3.23)

A

This allows to express the Coulomb potential in terms of the so-called multipole electric
operator, defined as:

Zp
M(EX p) = e riYa(f), (3.24)
giving rise to
A KZe . A
VIR,E) =3 537 o MIEA Y5, (R), (3.25)

A p

where R = {6, ¢}.
For the application of the DWBA method, we write the interaction as V(R,&) =

Vo(R) + W(R, ) with

KZy Zpe?

V() = 2

(3.26)

and R

47 Yy (R)
M(EX K

o 1 EA )

W(R,E) =rZie Y

A>0,u

(3.27)

The term Vy(R) is just the usual monopole (A = 0) Coulomb potential. This term
does not depend on the internal coordinates of the projectile and hence cannot induce
excitations. We can use the results of the preceding section, and calculate the scattering
amplitude corresponding to the transition from an initial state ¢; to a final state ¢y.
According to Eq. (3.20), we need to calculate matrix elements between initial and final
states (i.e., the transition potentials). It is convenient to express the eigenstates of the
internal Hamiltonian in terms of their angular momentum () and their projection (M),
ie.

|pi) = |45 1; M), o) = |f; I My) (3.28)
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so the transition potentials (3.21) result

Y5, (R)

Wir(R) = kZie y QA (5 I My [ M(EX, )i 1M>W (3.29)
A£0,p
Substituting this expression into the DWBA amplitude (3.20) we get
Ot at, = — 5ok e e T LMy | M(EX, p)liLidi)
' ! 2mh? 2\ +
e Viu(B)
< [ AR (K R) A R (3.30)
(recall that 6 is the angle between K; and Ky)
If we define
e Viu(R)
THI K = [ dRa (K R (K R) (3.31)

we can rewrite the DWBA amplitude as

SOV itsti w1, = =5k Zee(f I M| M(EX, p)li; LM;) T3 (Kp, K) | (3.32)

277?

This result shows that the DWBA scattering amplitude factorizes into a product of
two terms; the amplitude 7;;}(Kf, K;), which contains information on the reaction part,
but does not depend on the specific structure of the projectile or target, and the structure
factor (f; [; M| M(EX, p)|i; I;M;), which contains all the information on the nucleus being
excited. This factorization makes it possible the extraction of structure information by
comparing the angular and energy distributions of the outgoing nuclei with the DWBA
calculation, provided that the approximations that lead to the DWBA result are valid.

The differential cross section will be given by,

dcr) Ky 2
e = == [ (O)inzimpars | - (3.33)
(dQ iM;—fM; Ki ‘ - f‘

This expression corresponds to a process in which the projectile is initially in a state with
spin [; and projection M, and is excited to a state with spin /¢ and projection M;. In
many experiments, the spin projection is not measured in either the initial nor the final
states. In this case, the cross section is obtained averaging over the initial spin orientations
and summing over their final orientations. If the spins are randomly oriented initially,

().,

It can be shown that this result is independent of the azimuthal angle ¢.

Z | (0)ing, —>fo} (3.34)
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The matrix elements of the electric multipole operator appearing in Eq. (3.32) can be
expressed, using the Wigner-Eckart theorem, in terms of the reduced matrix elements as

8]
(fs Lp My M(EX, p)li; M) = (L M| Apdi Mi) (F; I || ME) [[6; Li)ms (3.35)

where the quantity (f; I¢||M(EN)||i; I;) is referred to as a reduced matriz element. It does
not depend on the projections M; and M;. In the case of the electric operator, this is
related to the reduced transition probability:’

20 + 1

B(EXi = f) =5/

[(f5 Il [M(EN))3; Liyes|” (3.36)

For a inelastic excitation ¢ — f of multipolarity A the differential cross section is
proportional to the electric reduced probability B(EX; I; — Iy) because

d
=) S W IAIMEN) i 1) o BEX L — 1)
ds2 i—f

So, if the approximations involved in the derivation of the DWBA amplitude are valid,
the transition probabilities B(EX; Iy — If) can be obtained comparing the magnitude
of the inelastic cross sections with DWBA calculations. Note that the Clebsch-Gordan
coefficient in Eq. (3.35) imposes certain restrictions with respect to the allowed transitions
for a multipolarity A, since this coefficient will be zero unless |I; — Ir| < X\ < I; + I;.

3.4.2 Nuclear excitation in the collective model

Within a collective model (e.g. vibrational, rotational,...) nuclear excitations are inter-
preted in terms of the deformation of the charge or mass distribution of the nucleus.
The interaction of a nucleus with a particle is typically characterized by a function of
the distance from the particle to the nuclear surface (see Fig. 3.7). This is the case, for
example, of the popular Woods-Saxon parametrization,
Unic(R) = V(R — Ry) = — Y PR WORR, :
1+ exp (TO> 1 +exp (a—>

For a spherical nucleus, the interaction is of course independent on the orientation of
the nucleus. However, if the nucleus is deformed (rotational nucleus) or can experience

"If the convention of reduced matrix elements of Bohr and Mottelson is used [7], the reduced matrix
elements are defined as

(s I My |M(EX, )]s M) = (215 + )M (L My | M My) (f5 15[ [M(EN)|[3; T e
and hence, for the electric transition probability, we have

. 1 .
B(EX;i — f) = 21,—+1|<f;If||M(E>\)||Z;Iz‘>BM|2
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[r

Figure 3.7: Interaction of a particle with a nucleus.

oscillations with respect to the spherical shape (vibrational nucleus), then the radius will
have a dependence on the angles 6 and ¢ (see appendix A.1):

r(0,0) = Ro+ Y 05.Y5,(0,¢) (3.37)
A

where 5>\u are the so-called deformation length operators and characterize the deviation of
the radius of the surface with respect to the spherical shape. Typically, the quadrupole
(A = 2) and octupole (A = 3) deformations are the most relevant.

If we assume that the interaction with the reference particle is a function of the distance
to the surface, we have:

V(R,§) =V(R=r(0,9)) = V(R— (Ro+ Y _ 0.Y5,(6,))) (3.38)

A

Assuming that the deformation is small compared with the variation of the potential
(eg. the diffuseness), we can perform a Taylor expansion of the potential in ¢y, which, up
to first order, gives

R Ro)

V(R,&) =V(R— Ry Z% Yi,(0,0) + ... (3.39)

To apply the DWBA formalism, we write the full interaction as V = U + (V —U); we
identify the second term with the residual interaction W =V — U, and the first term with

the auxiliary potential U. The coupling potentials of the residual interaction between
states |i; [;M;) and |f; ;M) are [see Eq.(3.21)]:

dVo(R — Ro)

Wir(R) = (f; I My|V|i; I;M;) = — R

> (F5 1My |oxis LM)Y5,(R) - (3.40)

A

Inserting these transition potentials in the general expression for the DWBA amplitude
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one gets:

fr.i(0) = 5 hg (f; IrMy|ox, i I M)
dVv

< [ AR (K R (0,0 K R) (3.41)

As we did for the Coulomb case, this expression can be rewritten in a more compact form
as:

F16) = — 5P £ My Balis LALYTR, (Kf,Ki)] (3.42)

with oV
TAAK K = [ R 0 R

And, for the differential cross section [c.f. (3.33)],:

do(6) poNE By ’ L 2
Q- = LM LM,
( ds )iMi_>fo <27Th2> Kz <f’ f f|5)\u|27 i z>

dVy
dR

Y30, 0P (K, R) (3.43)

2

dRX Ky, R) =25, (6, 0)x " (Ki, R) (3.44)

or, in terms of 72””

) LAY, ‘ y 2
( ds? )iMi%fo <27Th2> Kz <f7 f f| )\“‘Z, >

The matrix elements of the deformation operators can be expressed in terms of a
Clebsch-Gordan coefficient and a reduced matriz element (Wigner-Eckart theorem):

if(KﬁKi)Iz] (3.45)

I Myldnulis TVE) = (F: I Mg LM F: Tl T (3.46)

When inserted into Eq. (3.44), we see that the differential cross section is proportional to
the square of the reduced matrix elements (f; I;]|dx||é; I;) which, in turn, are related to the
structure of the deformed nucleus. Consequently, if the approximations which lead to the
DWBA are fulfilled, the comparison of experimental data on inelastic nuclear excitation
of a nucleus provides information on its structure, for example, on its deviation of its
shape from the spherical one.

In the particular case of the rotational model (see Appendix A.1) the deformation
operator is given by:

aT

= BaRoDiyy(w) = B2 Ry 11

1 Yau(bo, o), (3.47)

where D stands for a rotation matrix and w is the set of Euler angles (a, /3, ) corre-
sponding to the transformation of the symmetry axis of the rotor to the laboratory frame.
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In general, D depends on three indexes but, in the case of a axially symmetric rotor, one
of the indexes is zero. In this case, D is given by a spherical harmonic, as indicated by
the second equality of the previous equation. The rotor states are characterized in the
rotor model by the total angular momentum (I), its projection along the z axis of the
laboratory frame (M) and the projection of I along the symmetry axis (K). State with
the same value of K belong to the same rotational band. A pure rotational excitation
can change the value of I, but conserves K, that is, rotational excitations occur among
states of a given rotational band. Using the results of Appendix A.1, the corresponding
reduced matrix elements of 5>\u between these rotor states are given by®

(f5 Tel1all3; I)ps = (=) =5 (I, K NO| I K ) B\ Ro. (3.49)

3.4.3 Simultaneous Coulomb and nuclear excitations

So far, we have considered separately the Coulomb and nuclear excitations. In some
situations neglecting one of the interactions is justified. For example, we expect Coulomb
excitation to be dominant when

e The projectile and/or target charges are large (i.e. large Z,Z; > 1)

e At energies well below the Coulomb barrier (where nuclear effects are less impor-
tant).

e At very forward angles (large impact parameters).

However, in other cases, both Coulomb and nuclear contributions can be important
and so the scattering amplitudes for both processes should be added coherently:

do Ky 1 112
) = 2L peon e 3.50

Note that, in this situation, interference effects will appear, making more delicate the
extraction of structure information.

3.5 Example: 0 +2% Pb inelastic scattering

As an example, we consider the inelastic scattering of *0O+2Pb at energies around the
Coulomb barrier, populating the low-lying states 3~ and 2% in 2*Pb [27].

8For the Bohr-Mottelson convention of reduced matrix elements:

(F: I8l e = (1)~ /2T + 1 KAO|LK) B Ro (3.48)
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Figure 3.8: Effective (nuclear + Coulomb) potential for the 1°0+2%Pb system.

Using the nuclear potential from Ref. [27] the effective potential is as shown in Fig. 3.8.
The energy of the Coulomb barrier, defined as the maximum of this effective potential, is
slightly above 75 MeV. This is consistent with the simple estimate

ZpZt62

~ 78 MeV
1.44(A)% + A7)

. ~
barrier ™~

So, for incident energies below 78 MeV, we expect that the Coulomb effects dominate,
whereas above this energy nuclear effects will start to contribute too.

In Fig. 3.9 we show the experimental elastic and inelastic cross section angular dis-
tributions, taken from Ref. [27]. The elastic angular distribution (left panel) has been
divided by the Rutherford cross section to make more clear the effect of the nuclear inter-
action and higher order (A > 0) Coulomb effects. We see that, for energies well below the
barrier, this relative angular distribution is one at all angles, meaning that the scattering
is governed by the monopole Coulomb interaction (Vo (r) = ke*Z,Z;/r). As the incident
energy approaches the barrier, a reduction of the cross section is observed at the largest
scattering angles, whereas at small angles it remains close to one. This can be understood
in a classical picture. Classically, the smaller angles correspond to large impact param-
eters and hence to distant collisions. For these trajectories, the projectile feels only the
Coulomb interaction, due to the short-range nuclear interaction. At large angles (small
impact parameters) the classical turning point occurs at a small distance, and there is
more chance to probe the nuclear interaction. As the bombarding energy increases above
the barrier, these nuclear effects become more and more important, and the deviation
from the Rutherford formula is more evident.

For the inelastic angular distributions we see also a evolution as the incident energy
increases from the sub-barrier to the above-barrier regime. For energies below the barrier,
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Figure 3.9: Experimental angular distribution for the elastic (left) and inelastic (right)
cross section for the **O-+2%Pb reaction for several incident energies. Quoted from [27].

the angular distribution is relatively featureless (at least for the angles displayed). Around
and above the barrier, the distributions start to develop a deep minimum, and a more
complicate pattern arises.

We try now to understand this behavior comparing the data with theoretical calcu-
lations, using the DWBA formalism discussed above. We assume that the DWBA is
valid, and that the population of the 3= state of the 2°®Pb nucleus can be treated as an
octupole collective excitation. We include both nuclear and Coulomb excitations. The
corresponding DWBA amplitudes are given by Eqgs. (3.30) and (3.41), respectively. The
required physical ingredients are the reduced matrix elements (f; I||M(E3)||i; I;) (for the
Coulomb part) and (f; I£||ds]|¢; I;) (for the nuclear part). The former can be obtained from
the experimental value of the electric transition probability B(E3; 0" — 37) = 0.595 %b3.
The reduced matrix element for the nuclear part was taken from the DWBA analysis of
Ref. [27].

The calculated angular distributions are shown in Fig. 3.10 for Ey,, = 69 MeV and
82 MeV. The dashed and dot-dashed lines are the DWBA calculations for pure Coulomb
and nuclear excitations, whereas the solid line is the coherent superposition of nuclear
and Coulomb excitation. We see that at Fj,, = 69 MeV (below the barrier) the data
can be mostly explained in terms of the Coulomb excitation. Nuclear excitation is very
small at all angles, except at the largest angles, where it interferes destructively with the
Coulomb amplitude. At E, = 82 MeV, Coulomb couplings still dominate the smaller
angles, but nuclear couplings are of the same order and even larger close to 6., = 180°.
At 0., ~ 140°, there is a strong interference between both mechanisms, producing the
minimum observed in the data.
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Figure 3.10: Experimental angular distribution for the population of the 37 excited state

in 2%Pb in the the °O-+2%Pb reaction at an incident energy of 69 MeV (left) and 78 MeV
(right) compared with DWBA calculations.

We see that a comparison of the data with the appropriate theory can provide useful

information about the structure of the colliding nuclei and the mechanisms that take place
in the reaction.



Chapter 4

Transfer reactions: the DWBA method

4.1 Introduction

A transfer reaction is another example of direct process. In this case, one or more nucleons
of one of the colliding nuclei are transferred to the other nucleus. Historically, one uses the
term stripping when nucleons are transferred from the projectile to the target, and pick-up
when the nucleons are transferred from the target to the projectile. The prototypes of
these reactions are the deuteron stripping reactions — denoted (d, p) and (d, n) — and their
pick-up counter-parts (p,d) and (n,d).

4.2 Emergy balance considerations
Let us denote generically a (binary) transfer reaction as:
a+A—b+DB
In the CM frame, the energy balance for this reaction is
Bl + M,® + Myc* = Ef + Myc® + Mpc? (4.1)

Introducing the )y value, defined in the same way as we did in the case of inelastic
scattering (section 3.2),

Qo = Myc? + Mac®> — Myc> — Mpc?,

the energy balance is rewritten as
Depending on the sign of )y, we have two distinct situations:

e (o > 0: the system gains kinetic energy (exothermic reaction)

41
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Figure 4.1: Tllustration of the Q-value in the 2°Pb(d,p)?**Pb stripping reaction for a
transfer to the ground state (left) and to an excited state (right) of the residual nucleus.

e (Qo < 0: the system loses kinetic energy (endothermic reaction)

As an example, we consider the deuteron stripping reaction:
d+*"Pb — p+**Pb
In this case:
Qo = Myc® + M(*®Pb)c* — M,c® — M(**Pb)c* = +1.7MeV

so this corresponds to an exothermic reaction. This means that the outgoing proton will
gain energy with respect to the incident deuteron. The energy balance is schematically
depicted in Fig. 4.1(left).

Note that the difference M (?%Pb)c? + M (1n)c? — M (*“Pb)c? is just the one-neutron
separation energy of 2?Pb. Analogously, M, + M, — M, is just the deuteron separation
energy. Consequently, the Q-value can be interpreted (and calculated) also as the differ-
ence between the separation energy of the transferred particle(s) in the final and initial
nuclei. In the previous example:

Qo = Su(f) — Sn(i) = 3.936 — 2.224 = +1.7 MeV

So far, we have considered that the outgoing nuclei are left in their ground-state.
Indeed, this is not necessarily the case and both the ejectile (that is, the fragment coming
from the projectile) and the residual nucleus (the one coming from the target) can be
left in an excited state. In this case, the energy balance should take into account the
excitation energy of the final nuclei.

where E, denotes the excitation energy of the excited nucleus. In Fig. 4.1 (right) we
illustrate the energy balance in the 2°®Pb(d,p)?**Pb reaction, in which the transferred
neutron populates an excited state of the residual nucleus 2%Pb.

In general, the residual nucleus will contain a number of bound excited states, which
can be populated during the transfer reaction. According to Eq. (4.3), the excitation en-
ergy of the outgoing nuclei is directly related to their kinetic energy. So, for example, in
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Figure 4.2: Proton energy in the reaction 2*Pb(d,p)?**Pb measured with a deuteron beam
at 18.7 MeV and for a fixed proton scattering angle of 33°.

the 2%Pb(d,p)**?Pb example, the kinetic energy of the outgoing proton gives information
about the energy spectrum of the 2*Pb nucleus'. This is shown in Fig. 4.2, which corre-
sponds to the number of protons detected in a real 2*Ph(d,p)***Pb reaction, as a function
of its kinetic energy, for a given scattering angle. The peaks correspond to excited states
of the 2Pb nucleus. The labels accompanying each peak are single-particle quantum
numbers assigned according to a simple independent particle model.

In the spectrum shown in Fig. 4.2, we see also that not all states are populated with
the same intensity. The population probability will depend on the reaction dynamics as
well as and on the structure properties of these states. Furthermore, transfer reactions
can be used to infer spectroscopic information of the colliding nuclei, such as the intrinsic
spin and parity of the populated states. The excitation spectrum by itself does not
provide in general enough information to extract these properties. This information is
usually obtained from the angular distribution of the outgoing ejectile. In order to extract
useful physical information, these angular distributions must be compared with a suitable
reaction theory, as we will see below.

4.3 The DWBA method

We want to derive a formal expression for the differential cross section corresponding to
the transfer process (see Fig. 4.3)

(a+v)+b—a+ (b+v).
A B

Under the assumption that the transfer coupling is small with respect to the elastic

!Note that, in this particular example, the target is much more massive than the projectile and hence
the laboratory energy of the proton will not differ much from its energy in the CM frame.
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Figure 4.3: Post and prior representations for a transfer reaction

channel, we will describe this process using DWBA approximation, which was derived in
Chapter 1 and was applied in Chapter 3 to the case of inelastic scattering.

In the case of transfer reactions, a similar expression can be derived, but the following
differences need to be taken into account:

1. The projectile-target coordinate (R) is different now in the initial and final channels,
because they refer to different mass partitions. To distinguish between them we will
use the notation R and R’ (see Fig. 4.3).

2. The effective Hamiltonian is also different in the initial and final channels. Depend-
ing on whether we use the interactions for the initial or final channels we will use
the names prior and post.

We start from the exact scattering amplitude derived in Chapter 1 using the Gell-
Mann-Goldberger formula. The projectile-target interaction in the final partition (Vj)
is expressed as Uz + (V3 — Ug), where Ug(Rp) is some arbitrary potential. The exact
scattering amplitude can be written as [c.f. Eq. (1.23)]:

Toa = Thadas + //ng_)*(Kﬁa Rs)®5(65) (Vs — Up) Ui (R, £a)d€sdRs | (4.4)

Remember that the term ’Tﬁ(?a) corresponds to the scattering amplitude for an arbitrary
potential Ug. By assumption, this potential does not depend on the internal coordinates of
the projectile or target and, therefore, cannot contribute to inelastic scattering or transfer.
Since we are interested in a transfer process, it can be dropped out. The distorted wave
X(Bi)<K5,R5) is the time-reverse of x(*)(Kpz, Rs), which describes the elastic scattering
by the potential Ug.

The DWBA approximation is obtained approximating the total wavefunction \Ifga) by

T (Ra, o) & xS (Ko, Ra)Pa(Ea) (4.5)

where ®,(&,) is just the product of the internal states of the projectile and target ground-
state wavefunctions. This gives rise to the DWBA approximation:
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/ / V5 (K Ro)®5(€5) (Vs — Up) XD (Ko Ro) Do (E0)dEsdRs . (4.6)

The expressions (4.4) and (4.6) are known as post forms of the scattering amplitude,
because they contain a matrix element of the residual interaction Vg — Up in the final
channel. An analogous (and equivalent) prior form ezact amplitude is given by (5 # «)

prior _ //\I/%B (Rp,15) (Vo — Ua)xXP (Ko, Ro) @a(E0)déndR, (4.7)

where V,, is the projectile-target interaction i 1n the initial partition, U, (R,) some arbitrary
potential defined in the coordinate and & (Ka,R ) a distorted wave describing the
projectile-target motion under the potential U,(R,).

The prior DWBA approximation is obtained making the approximation

Wi (Rs.65) ~ x5 (Kg, Ry)Da (o) (4.8)

In the remaining of this chapter, we relax the notation by taking: R, — R and
Rs — R’. With this new notation, the relevant coordinates are shown in Fig. 4.3.

Even within the DWBA approximation, Egs. (4.6) or (4.8) are difficult to solve, be-
cause they involve many-body wavefunctions of the initial and final nuclei (®,(&,) and
Ps(€5)) and the projectile-target interactions (V, and V). With some further approx-
imations, we can reduce this complicate many-body problem to an effective three-body
problem. First, we write the wavefunction ®,(&,) as (see Fig. 4.3):

(I)a(goz) = (I)A(ga r)¢b(€/) (49)
and the quantum mechanical state of the composite nucleus A is further expanded as
D4(E,1) = Cp0al) dupan(r) + P (4.10)

In this simplified notation, ¢, and ¢, represent the internal wavefunctions of clusters
a and v, C4 ., (r) represents the overlap function, which can be written in terms of a
normalized relative wavefunction o, (r) and a spectroscopic amplitude C4. The product
of these three terms is implicitly coupled to the angular momentum of nucleus A.

Notice that not all the state &4 can be described as two clusters b,v with a certain
state of relative motion. ®Y represents the part of the state that has a more complicated
configuration.

Similarly, for the final partition, we may write

D3(¢5) = P&, 1) ¢a(§) (4.11)
and the state of the composite nucleus B is expanded as
Op(E 1) = CRon(€)dupn (') + OF. (4.12)

The following approximations allow us to reduce the many-body problem to a three-
body problem:
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e The terms ®4 and ®%, corresponding to complex configurations of A and B, do not
contribute significantly to transfer and are therefore neglected.

e The normalized overlap functions ¢y, (r’) and ¢, (r) can be approximated by the
eigenstates of two-body Hamiltonians with interactions V;, and V,,, respectively.
They will be represented by some real mean-field interactions.

e During the collision process the interactions between the clusters a,b, and v are
completely described by two-body interactions V,, V,, and Uy, that cannot alter
the internal states of the clusters. In our description of transfer, we do not consider
explicitly processes that lead to the excitations of the clusters b and a, so the in-
teraction between them is represented by an effective optical potential, complex in
general, that we denote by Ug,. So we will write:

Va - Uoz — ‘/bv + Uab - UbA = Viarior (413)
Vﬁ - Uﬁ — ‘/(M) + Uab - UaB = ‘/post . (414)

The differences Uy, — Upa (in prior form) and Uy, — U,p (in post form) are called
remnant terms. For a suitable choice of Uy (prior) or Uy (post) we can achieve
some cancellation of these remnant terms and hence the transfer will be dominated
by the valence—core interaction Vj, (prior) or V,, (post).

The corresponding transition amplitudes result:

T G CATE, (119
T Gl CATER (119

with?
T = / / K R g () Vior &) (K, R) g ()R (4.17)

and
T, = / / (KR g (1) Voo X (K R () IR (4.18)

It can be formally demonstrated that the prior and post DWBA expressions give ex-
actly the same result. Hence, the choice of one of another representation is done by
computational convenience, determined by the range of the interactions. In many situa-
tions, an appropriate choice of the auxiliary potential produces a certain cancellation of
the remnant term. In those situations, the transition amplitude is mostly determined by

*Note that, d¢s = d€d¢'dr. To evaluate the T-matrix, we have to perform integrals of the form

/ B3 ) By (€)dE = CL o (r').

where we have used the parentage decomposition of ®% in terms of b state (likewise for A).
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the interaction V,, (post) or Vj, (prior) and it results numerically advantageous to choose
the representation for which this interaction is of shorter range.

The accuracy of DWBA depends on the choice of the auxiliary potentials for the
incident (Uyp) and final (U,p) channels. These could be, in principle, any function of the
co-ordinate R and R/, respectively. Two approaches are usually taken:

e The microscopic approach. The auxiliary potential in the outgoing channel U,p is
taken as the expectation value, in the final bound state ¢y, (r"), of the sum of the
interactions U,, + V,,. Explicitly,

UaB(R/) = /d?’r’ |g0bv(r')|2 (Uab + ‘/av)- (419)

Similarly, Uy, is taken as the expectation value, in the initial bound state, of the
sum of the interactions U, + Vi,

Ua(R) = /dgr [Pan(0)]* (Ua + Vi)- (4.20)

In practical applications of DWBA, it is very convenient that the auxiliary po-
tentials are central, so that they depend on the value of the radial co-ordinate
Uap(R),U,p(R') and not in its direction. This is achieved considering only the
monopole part of the folding interaction, or, equivalently, averaging the folding po-
tential over all the magnetic substates.

The microscopic approach has the advantage of being completely determined by the
two-body interactions between the fragments. From the formal point of view, this
would be the natural choice for Uy, in order to make the residual term U, + Vi, —U 43
minimal, for the bound state ¢, .

On the negative side, it is not trivial that the interaction U 43, so obtained, would re-
produce accurately the A+ b elastic scattering. The interactions Uy, Vi, Vi, would
have to be taken as complex interactions, in order to reproduce elastic scattering or
transfer, but in this case V,,, V4, can not be used to obtain bound states, unless the
interactions are explicitly energy dependent. Finally, this approach excludes com-
pletely any effect of break-up channels on the three-body wavefunction. Hence, this
approach would be valid when the three-body scattering wavefunctions is dominated
by the elastic component, either in the incident or in the exit channels.

e The phenomenological approach. The auxiliary potential in the incident channel
Uap is obtained by fitting the elastic scattering data on the oo (=A + b) channel.
The auxiliary potential in the exit channel, U,p, is obtained by fitting the elastic
scattering on the 5 (= a+ B) channel. This approach has the advantage of allowing
for a consistent description of transfer reactions, as well as of elastic scattering
in the incident and outgoing channels. It takes into account, through the use of
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optical potentials, the effect of complex reaction processes, such as fusion, that can
remove flux from the elastic and from the transfer channels. Furthermore, the effect
of some three-body reactions, such as break-up, which remove flux from elastic
and transfer channels, are approximately taken into account because the optical
potentials fit the experimental elastic cross sections, which are affected by all these
dynamic processes. On the negative side, it is not always possible to find the elastic
data for the outgoing channel. If the final state of nucleus B is not in its ground
state, but on an excited state, it will not be possible to measure the corresponding
elastic scattering. This is particularly true if the final state is in the continuum.
Besides, the optical potentials reproduce typically the asymptotic wavefunctions,
which determines the S-matrix and the scattering amplitudes leading to differential
cross sections. It does not necessarily reproduce the wavefunctions in the internal
radial range that is relevant for the transfer matrix elements.

Recalling the relation between the T-matrix and the scattering amplitude we have
(prior form, likewise for post form)

o) = —L0_cprod / / X (KR 050 () Vision (R, 1) e 5 (K, R)dRdr

2mh?
(4.21)
and the corresponding differential cross section
doag priet fatts Ks o a2
5) 28108 12|c
( A0 ) (27Th2)2Ka| bv| | v|
2

<[ 0 R 0 Voo (R ) (60 (KRR (122
The factors S5, = |CE|* and S = |CE|* are called spectroscopic factors. The

spectroscopic factor S can be regarded as the probability of finding the valence particle
v in a given state ¢, (r) coupled to the core in the state a. According to this result, in
DWBA, the transfer cross section is proportional to the product of spectroscopic factors
SB S4 . This is a very important and useful result because, whenever the approximations
which lead to Eq. (4.22) are justified, we can extract information on the spectroscopic
factors of the colliding nuclei by comparing the experimental data with the DWBA pre-
diction.

Let us finish by summarizing the approximations and assumptions inherent to the
DWBA method:

1. Only the transferred particle (or particles) is treated explicitly, while all the others,
which we refer generically as the core, are regarded as passive or inert (the core is
assumed to remain unchanged during the collision9

2. Assumes that the elastic optical potential U, provides waves functions for the rela-
tive motion which are good within the range of the potential V' — U. For example,
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Figure 4.4: Comparison of different coupling schemes discussed in this work for the reac-
tion 1“Be(d,p)'Be: (a) DWBA, (b) CDCC-BA, (¢) ADWA and (¢) CRC.

for a (d,p) reaction in post form, Vo = Vs — Uz = V,, and so the distorting
potentials must be accurate for small p — n separations.

3. Assumes that the transfer process is weak so that it can be treated in first order.

The coupling scheme assumed in the DWBA method is schematically depicted in
Fig. 4.4(a) for the 1°Be(d,p)!'Be case. The solid arrow indicates that only transfer from
the ground state of the deuteron to the proton channel is explicitly included. The effect
of breakup channels of the deuteron (shaded area in this plot) is completely neglected in
the afore-mentioned microscopic approach, and only partially taken into account in the
phenomenological approach, through its effect on the elastic wavefunction.
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Spins and antisymmetrization: spectroscopic factors

The quantities |CE|? and |C4 |? are called spectroscopic factors. Recalling (4.12)

r (4.10), they give information on finding a given single-particle configuration in
the composite system. So, for example, |C4 |2, tell us the probability of finding the
valence particle in the single-particle state ¢,,(r), coupled to the core a in some
given state, to give the composite state A. We note here that our description is
somewhat schematic, because (i) we have not introduced the spins explicitly and
(ii) we have not considered antisymetrization, that is, the fact that the composite
and core wavefunctions are described by antisymmetrized wavefunctions and that the
transferred particle is indistinguishable from those of the same orbital in the donor or
receptor nuclei. So, for example, the composite nucleus A would be characterized by
some total angular momentum .J and projection M. Its state should be described by a
fully antisymmetrized wavefunction, ®4™ (¢, r). Analogously, the core nucleus B, will
be characterized by a fully antisymmetrized wavefunction with angular momentum
and projection I, M;. Tt is possible to expand the wavefunction ®J (¢, r) in terms
of products of valence and core configurations, i.e.,

oM (& e

Tt (r] JM

Iﬁ]

\/_ Z IMpjm|JM)Cy @, (€)™ (x) (4.23)
105

where n,4 is the number of equivalent nucleons. This factor accounts for the anti-
symmetrization of the wavefunction since these n4 nucleons are indistinguishable It
the overlaps functions ¢//™(r) are normalized to unity, the coefficients C'(Ala);; are
the spectroscopic amplitudes or coefficients of fractional parentage. Their
square are the spectroscopic factors:

ZS] | ng|2 (424)
The overlap wave functions @™ (r) and ¢i/™(r') are not easy to calculate from
microscopic structure models. For that reason, the standard procedure is to approxi-
mate these functions by the solutions of a one-body Schrédinger equation assuming a
simple potential shape (typically, a Woods-Saxon shape), for the apropriate quantum
numbers {n, [, s, j}, and the experimental separation energy

hZ
[— o V2 4+ Viu(r) — am] e¥i(r) =0, (4.25)
and
hQ 2 lsj
——V2 4+ Viu(r) —ew| 0.0 (r) =0, (4.26)
2,U/vb

where ¢,, and €., are the binding energy of the valence particle in the nuclei A and
B, respectively.
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4.4 Examples and applications of the DWBA method

Dependence with the quantum numbers of the transferred particle

The DWBA does not only provide information on spectroscopic factors. The shape of the
angular distribution obtained with Eq. (4.22) is found to depend critically on the internal
wavefunctions @z, (r) and @y, (r'). If we have an accurate model for either the projectile
or target (this is the case of a (d, p) reaction) then we can infer information on the other
nucleus.

As an example we show in Fig. 4.5 several calculations for the *Fe(d,p)®"Fe reaction,
each of them using a different choice for the orbital angular momentum of the transferred
neutron in the final state.

50; ‘ )
56 7 |
A — IfclJ Fe(d,pf Fe ]
401 — - |=2 -
— i —-|=3 ]
w1 i
O L |
530: |
o L ]
B 200 ]
S I :
®) K |
10F .
O 20 40 60 80 100
6. m. (deg)

Figure 4.5: DWBA calculations for the differential cross section of the reaction
5Fe(d,p)® Fe, showing several assumptions for the wavefunction of the transferred neutron
in the 5"Fe residual nucleus.

Dependence with the binding energy

In addition to the quantum numbers, the wavefunctions goﬁgj(r) will depend on the binding
energy of the transferred particle. This is illustrated in Fig. 4.6, where we show several
DWBA calculations for a given single-particle configuration, and varying the binding
energy of the transferred neutron in the final nucleus. The larger the separation energy,
the smaller the cross section. This is expected since a more bound nucleon will be more
difficult to remove than a weakly bound nucleon.
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Figure 4.6: DWBA calculations for the differential cross section of the reaction

5Fe(d,p)® Fe, for a fixed configuration of the transferred neutron, and several values
of its separation energy in the *Fe residual nucleus.

Dependence with the incident energy

In inelastic scattering, the excitation probability increases with the incident energy; the
larger the incident energy, the larger the transferred momentum to the projectile or target.
On the other hand, for transfer reactions there is an optimal energy for which the transfer
occurs. This is shown in Fig. 4.7 for our working example, *°Fe(d,p)*"Fe. In this case, the
optimum energy is about 9 MeV (that is, about 4.5 MeV per nucleon).

4.5 Beyond DWBA: ADWA and CCBA methods

In general, DWBA has been, and still is, a key approach to describe transfer reactions, and
it has been used extensively to extract spectroscopic information on nuclear structure, in
particular spectroscopic amplitudes. However, DWBA is based on a rather crude approach
to the three-body problem, and is expected to be accurate only when the elastic scattering,
in the incident and outgoing channels, is dominant. For the case of exotic nuclei, which
are frequently weakly bound, break-up channels can play a very important role in the
three-body dynamics. Hence, it is important, in order to extract reliable spectroscopic
information from transfer reactions with exotic nuclei, to check the validity of the DWBA
method by comparing it with other approaches that take into account the role of break-up
channels.

The DWBA approach, as mentioned previously, relies strongly on the assumption that
the elastic channel dominates the reaction. This does not only imply that the dominant
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Figure 4.7: DWBA calculations for the differential cross section of the reaction
5Fe(d,p)®"Fe as a function of the incident energy.

cross sections is elastic, but also that, during the collision process, the three-body wave-
function can be approximated by the elastic component. Note that these two facts are
not equivalent. There can be dynamic situations in which elastic cross section dominates,
meaning that the asymptotic three-body wavefunction, at large distances, is dominated
by the elastic component. However, this does not mean that at short projectile-target
distances, which give the main contribution to the transfer matrix element, the elastic
component should be dominant. Dynamic polarization effects make that the compos-
ite projectile can be strongly distorted at short distances, even when asymptotically the
energy matching conditions make the elastic channel dominant.

Moreover, the phenomenological DWBA approach relies on the use of optical poten-
tials, usually taken as local, L-independent potentials, chosen to reproduce elastic scat-
tering. This means that the optical potentials will reasonably reproduce the phase shifts,
for all L-values, in the elastic channel. In other words, the phenomenological DWBA
approach reproduces the elastic wavefunction asymptotically, at large projectile-target
distances. It is not trivial that the elastic wavefunction used in the phenomenological
DWBA approach reproduce correctly the elastic component of the wavefunction, in the
radial range relevant for the transfer T-matrix elements.

We discuss in the next subsections some approaches that go beyond the DWBA
method.

4.5.1 The adiabatic (ADWA) method

Indeed, this criticism of the DWBA approach is not very useful if an alternative for-
mulation is available, which maintains the relative simplicity of DWBA, and provides
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ingredients of the reaction calculation that can be completely determined from experi-
ment. This is achieved by the Adiabatic Distorted Wave Approximation (ADWA), which
was initially formulated by Johnson and Soper [16]. This approach is formulated in prin-
ciple for (d,p), or (d,p) reactions, although it could be applied to other weakly bound
composite systems. It relies on the fact that the composite projectile has a relatively low
binding energy (2.22 MeV in the case of the deuteron), and so, if the collision energy
is relatively high, we can expect that, during the collision process, the relative proton-
neutron co-ordinate does not change significantly; it is “frozen”. Under this situation, the
relevant interaction that determines accurately the projectile-target wavefunction is not
the phenomenological deuteron-target interaction that would reproduce elastic scattering,
but the sum of the interactions of each one of the fragments of the projectile (proton and
neutron in the deuteron case) with the target.

In the adiabatic approzimation [16] (also called sudden approzimation by some authors)
the three-body wavefunction can be written as

(R, 1) = (7 (K R 1) pa (1), (4.27)

where X&”(R, r) is the solution of a two-body scattering problem, on the co-ordinate R,
in which the interaction is given by

Ua(R, 1) = Ugp(Rap) + Vi (7). (4.28)

Indeed, the potential that describes the scattering wavefunction, although two-body, is
not central and so the calculation of the adiabatic wavefunction, for each value of the
a-v separation r is very complicated, but it has been done [3, 4]. Besides, the adiabatic
approximation to the three-body wavefunction is not accurate for large values of r, where
one would expect to see outgoing waves, instead of the exponential decay given by the
bound two-body wavefunction ¢, (r).

Fortunately, these shortcomings of the adiabatic wavefunctions are not important, if
one is only interested in evaluating the matrix element involved in transfer. These are
dominated by the V,,(r) interaction (the proton-neutron interaction, in the deuteron case)
which has a short range. Note that, even if the a-v wavefunction ¢,,(r) has a relatively
long range, which is the case for weakly bound halo systems, the V,,(r) has a much shorter
range. Hence, for the purpose of evaluating the transfer matrix element, one can evaluate
the adiabatic wavefunction using the potential evaluated at r = 0. This leads to the
Johnson and Soper approximation [16], in which

THR, 1) ~ (D (K, R (r), (4.29)
where XSF)(K, R) is the solution of a two-body scattering problem, on the co-ordinate R,
in which the interaction is given by

U4y (R) = Uap(R) + Un(R). (4.30)

Note that, in this expression, the v — b interaction V,;, which would in general be energy
dependent, and would generate the bound state ¢y, (r’), is replaced by the optical potential
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U,, that describes the v — b interaction at the same energy per nucleon in the incident
beam. This is justified by the adiabatic approximation; the transfer process dynamics is
consistent with freezing the a-v co-ordinate, that then scatters from the b target with an
interaction that is the sum of U, and U,, interactions at the same energy per nucleon.

Several refinements and corrections have been performed to the ADWA formalism.
For example, a finite-range version of the adiabatic potential was proposed by Johnson
and Tandy [17]:

<90av(r) | ‘/av(Uab + Uvb) | Soav(r»
<¢av(r)|v;w|¢av(r)> .

However, for the purpose of the analysis of (d, p) and (p, d) reactions, the simplest Johnson-
Soper expression given by Eq. (4.30) is by far the most widely used. Here, we will outline
its advantages and disadvantages. On the positive side, the ADWA approach ingredients
are completely determined by experiments. These ingredients are the proton-target and
neutron-target optical potentials, evaluated at half of the deuteron scattering energy, as
well as the well known proton-neutron interaction.

The adiabatic approximation is equivalent to neglect the excitation energy of the
states of the projectile [16]. The adiabatic wavefunction takes into account the excitation
to breakup channels, but assuming that these states are degenerate in energy with the
projectile ground state, as illustrated in Fig. 4.4(c). Therefore, the ADWA approach
takes into account, approximately, the effect of deuteron break-up on the transfer cross
section, within the adiabatic approximation. So, it should be well suited to describe
deuteron scattering at high energies, around 100 MeV per nucleon. Systematic studies
[13, 25, 30| have shown that ADWA is superior to standard DWBA for (d, p) scattering
at high energies.

On the negative side, the ADWA approach does not consistently describe elastic scat-
tering and transfer. Although physically one considers that elastic scattering, transfer
and break-up should be closely related, so that the increase of flux in one channel should
reduce the flux in the others, this connection is not present in ADWA. On the other hand,
the arguments leading to ADWA are strongly associated with the assumption that the
transfer is governed by a short range operator. So, it is not obvious that the method
remains valid for other weakly bound systems, like ' Be. Even in the case of (d,p) scat-
tering, the transfer matrix element is determined not only by the n — p interaction, but
also by the proton-target and neutron target interactions, that define the remnant term.
It is not clear a-priori the role of these terms, that would have contributions of three-body
configurations in which proton and neutron are not so close together.

Uil (R) = 431

4.5.2 Continuum Discretized Coupled Channels Born Approxi-
mation (CDCC-BA)

In scattering of weakly bound nuclei, coupling to break-up channels can play an important
role. DWBA may not be sufficiently accurate, as the three-body wavefunction is not
dominated by the elastic channels. ADWA requires to assume the adiabatic approximation
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for the composite projectile, which may not be accurate if the collision energy is not
sufficiently high. Besides, the simple Johnson-Soper expression requires to assume a short
range in the transfer interaction, which may not be accurate beyond (d, p) reactions.

A more accurate approach for transfer is obtained if the three-body wavefunction is
approximated in terms of a basis of the states of the relative motion of the a+wv sub-system,
ie.

v (R, r) ~ TPC(R, 1) ZX (K, R)0aps (1) (4.32)

Here, the index ¢ indicates all states explicitly 1ncluded in a coupled channels calculation
©av.i(r), which would correspond in general to a given spin and spin projection (i =
0 denotes the ground state of the a + v system). This basis of states should include
other possible bound states of the a 4+ v system, if present, as well as a suitable discrete
representation of the two-body continuum states. In actual calculations, this continuum
must be truncated in excitation energy and limited to a finite number of partial waves ¢
associated to the relative co-ordinate r. Normalizable states representing the continuum
should be obtained for each ¢ value. This can be achieved making use of a pseudo-state
basis and diagonalizing the a+v Hamiltonian [18]. Alternatively, continuum states of the
a + v Hamiltonian can be obtained, and normalizable states (bins) can be obtained by
averaging these continuum states over a certain energy interval [5].

Once a suitable basis on the a + v co-ordinate is defined, the radial coefficients
X((” (K;,R) appearing in the expansion (4.32) are obtained as a solution of the set of
coupled differential equations:

[E - gfw - TCV - UZb<R)]Xaz KZ? R Z Xa] K R) (433)
JF#i

where Ui{b are the transition potentials defined as
URR) = [ dr i (6) U+ U 0). (131

The coupled channels solution X(+ (K, R) corresponds to the outgoing waves in all differ-
ent channels i, for boundary conditions given by a plane wave in the initial bound state
i = 0. The potentials Uy, and U, are to be understood as effective interactions (complex
in general) describing the elastic scattering of the corresponding sub-systems, at the same
energy per nucleon as in the incident projectile. In particular, U,, will be described in
general by a complex optical potential, and will differ from the interaction V,; used to
generate the bound state wavefunction of the vb system.

Note that, without any loss of generality, we can introduce an arbitrary auxiliary
potential Ugap(R), so that eq.(4.33) can ve written as

B — by — To — Usn(R)XS) (Ko R) = Vi (RN (K, R), (4.35)

[e'R) prior

J



4.5. BEYOND DWBA: ADWA AND CCBA METHODS 57

where Vgﬁior(R) are the matrix elements of Viior = Ugp + Uppy — U,
Once the CDCC wavefunction (4.32) is obtained, it can be inserted into Eq. (4.4) to
give:

TP = (47 (K R (1) V| 9P (R, ). (4:36)

with Voot = Vi + Uy — Usp. To clarify the link between the CDCC-BA and DWBA

methods it is convenient to rewrite this expression as:

TEPCE) = (xS (K, R (1) | Vipost X g (R) Pavo (1))
N

+ 3 0GR 0n () Voose X5 (R)au (1)) (4.37)

i=1

The fist term in this expression corresponds to the direct transfer, that is, the transfer
proceeding directly from the ground state of the projectile (eg. the deuteron, in a (d,p)
reaction), whereas the second term accounts for the multi-step transfer occurring via the
excited states of the projectile (p — n continuum states in the case of the deuteron).
These two types of processes correspond, respectively, to the solid and dashed lines in
Fig. 4.4(b) for the 1°Be(d,p)"'Be case. Clearly, the multi-step process going through the
breakup channels are omitted in the DWBA calculation. At most, the DWBA considers
the effect of these channels on the elastic scattering if a suitable choice of the entrance
optical potential is made. The adiabatic approximation includes in principle both mecha-
nisms, but under the assumption that the excited (breakup) channels of the projectile are
degenerate with the ground state [Fig. 4.4(c)|. The advantage of the CDCC-BA approach
is that all relevant bound and continuum states in the a4+ v system are explicitly included
in the calculation.

Some early comparisons between these three methods can be found in Refs. [24, 15,
2, 18| and the main results are also summarized in Ref. [5]. Due to numerical limitations,
these first studies where done using a zero-range approximation of the V,, potential. Over-
all, they find that the ADWA model describes well the direct transfer contribution. How-
ever, the multi-step contribution, which are completely absent in DWBA, are described
very inaccurately by the adiabatic approximation. At low energies (E; < 20 MeV) the
discrepancy between the ADWA and CDCC-BA calculation can be understood because
at these energies the adiabatic approximation is questionable. However, even at medium
energies (E; ~ 80 MeV) there are situations in which transfer through breakup channels
is found to be very significant, and therefore the ADWA method did not work well either.
In these situations, the CDCC-BA should be better used instead. The disadvantage of
the calculations is that, in principle, a large basis of internal states has to be included,
making this approach much more demanding numerically.

Finite-range effects have been studied within the adiabatic approximation in Ref. |20,
22] and were found to be small ( < 10%) at energies below 20-30 MeV /u but become
more and more important as the incident energy increases. This limitation should be also
taken into account in the analysis of experimental data.
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4.5.3 The CRC method

It was stated that Eqgs. (4.4) and (4.7) provide the exact solution to the 3-body scat-
tering problem, provided that \I’g)(R, r) (in the post form) or \Ifg)(R’, r’) (in the prior
form) correspond to the exact three-body wavefunctions with the appropriate boundary
conditions. However, in practical calculations, these exact solutions are not available and
thus they need to be replaced by approximated ones, such as the factorized form used
in the DWBA method, the adiabatic wavefunction or the CDCC expansion. In all these
approximations, the three-body wavefunction is restricted to configurations correspond-
ing to either the initial or the final channel. For example, in the post representation, the
initial state is a solution solution of the three-body Schrodinger equation

T+WWH%+U@—ﬂWHMﬁU:Q (4.38)
Asymptotically, the solution of this equation is of the form
TH (e, R) = @q(r)e®R 4 outgoing waves (4.39)

where the “outgoing waves” contain contributions from all open channels. This includes
elastic and breakup channels, but also rearrangement channels of the a+b and v+b pairs, if
they are present. In principle, the eigenstates of the a+v Hamiltonian form a complete set
and hence the expansion Eq. (4.32) should contain all the relevant channels. In particular,
the asymptotic part of (4.32) should contain information from all open channels, including
rearrangement channels. However, rearrangement channels corresponding to the v + b
system would behave asymptotically as a product of the bound wavefunction ¢.,(r;)
times a plane wave in the aB co-ordinate. Although these states could be in principle
expressed in the g, (r,,) basis, this would require require a very large number of energies
and angular momenta [5]. In other words, any finite CDCC approximation will describe
poorly the contribution from rearrangement channels.

A heuristic way of incorporating rearrangement channels is provided by the Coupled-
Reaction-Channels (CRC) framework [23, 19, 26, 29, 12]. We just give a brief outline
of the method here, and refer the reader to the referred works for details (see also [1]
for a recent review). The idea of the CRC method is to propose a model wavefunction
which incorporates explicitly contributions from several mass partitions. For simplicity,
let us assume that we wish to consider explicitly excited states (bound or unbound) of
the incoming partition plus some excited states of the aB partition. Then, we use the
following ansatz:

VH(R,r) = UOR,T) = Zx R)ani (T +Zx (R)@uu(r').  (4.40)

This wavefunction can be interpreted as a generalization of the CDCC expansion of
Eq. (4.32). The radial functions X(+)(R) and X(ﬁj;)(R’) are obtained by substituting the
model wavefunction (4.40) into the Schrodinger equation:

[H — E]OHCRC — ¢, (4.41)
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To get the equations satisfied by X((;;) (R) we replace in this equation WCRC by the ansatz
(4.40), multiply on the left by each of the functions ¢}, ;(r) and integrate along r we get
the system of equations:

> (avil H = B pavir) + > (panl H = EIX) 1) = 0. (4.42)

4 J

A complication that arises when solving these equations, is that one have to deal with
coupling potentials between internal states ¢y, ; and ¢, ; that belong to different Hamil-
tonians and, therefore, are not mutually orthogonal. These gives rise to the appearance
of the so-called non-orthogonality terms in the coupled equations. Furthermore, the cou-
pling potentials are found to be non-local. For all these reasons, the solution of the CRC
equations is much more involved than the conventional CC or CDCC equations.

The great advantage of the CRC method is that it can treat transfer couplings beyond
the first order (in addition to the inelastic couplings). For example, a possible CRC
coupling scheme for our °Be(d,p)'' Be reaction is shown in Fig. 4.4(d).
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Appendix A

Rotor and vibrator models

A.1 Axially symmetric particle-rotor model (PRM)

The particle-rotor model (PRM) [7] assumes that the nucleus has a permanent deforma-
tion, and hence its radius will not be longer a constant. Instead, the distance from the
center to an arbitrary point in the surface characterized by a function of the angles #’ and
¢'), defined with respect to intrinsic, i.e., body-fized, frame (see Box),

7“(0/, gbl) = Ro[l + Z BAYM)(QI, ng’)] = Ro + Z 5>\Y)\0(9,, gb/)] = RO + A(f’) (Al)

where Ry is an average radius of the nucleus and hence the remaining term (denoted
A(#', ¢')) represents the deviation of the radius for a particular point on the surface from
this average radius. The quantities 6, = S\Ry are the deformation lengths. The function
A(#) is sometimes referred to as shift-function.

The angular variables in these expressions are referred to the reference frame aligned
with the symmetry axis, but can be converted to the laboratory frame (characterized by
the variables 0, ¢) by means of the transformation [see eg. Ref. [8], Eq. (2.24)]:

Yio(#',0 ZD w)Yxu(0, 0) (A2)

where D is the so called rotation matrix (or D-matrix) and with w = {a, 3,7} are the
Euler angles describing the transformation from the body-fixed frame to the laboratory
frame. In this particular case (on the three-indexes equal to zero) the D-matrix is just

47

T Youlbo: ) (A3)

Dio(aa 57 /Y) =

where {6y, ¢o} are the angles defining the orientation of the symmetry axis with respect
to the laboratory frame.
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The deformation parameter

The deformation parameter, 3, measures the departure of a nucleus from the spherical

shape. For a spherical nucleus, we have § = 0. For a nucleus with a quadrupole
permanent deformation, we have 5, # 0. If 5 > 0, the nucleus is said to be prolate
(“rugby ball” shape), whereas for 5 < 0 it is said to be oblate (“discus-shaped”).

Spherical nucleus (5 = 0) Deformed nucleus (§ # 0)

It is convenient to introduce the deformation length operator, defined as

R 4
Oau = BrRo D)y (w) = PaRy ﬁ}ﬁu(%, o). (A.4)

In terms of this operator, the radius of the nucleus is written in the laboratory frame
as

r(0,¢) = Ry + Z 5>\MY)\M(9> b). (A.5)

I

If one assumes that the projectile-target potential is still a function of the distance
between the valence particle and the surface of the nucleus, the interaction potential
will follow the same functional dependence as V(r — Ry), but replacing Ry by (6, ¢).
Choosing a reference frame with the z axis along the symmetry axis:

VIO, ¢) = V(e —r(0, ). (A.6)
This expression is expanded in multipoles as:

VU r i) = Vi (r)Yao(#) (A7)
A

with
Viot(r) = 27?/ V(r — A(#))Yxo(#,0)d(cos 0) (A.8)

1
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Figure A.1: Angular momenta of a rotor. I is the total angular momentum and K its
projection along the symmetry axis.

For small deformations, one can perform a Taylor series of the potential (A.6) in
powers of A:
A/ coup
dr

VrOt(’I", TA',) ~ VrOt(T' _ RO) — Z 5)\Y)\O(fl) (Ag)

Inserting this expansion into Eq. (A.8) gives for a multipole A > 0

dvrot
dr

Viot(r) = —dy (A.10)

Inserting (A.2) into (A.7):

Vrot Al Z rot Y)\u( ) (A].].)

In the derivation of the DWBA formula for inelastic scattering, we had to evaluate the
matrix elements of the deformation length operator between different states of the rotor.
These states are also defined in the intrinsic frame and can be characterized by the total
angular momentum [ and its projection on the symmetry axis, K (see Fig. A.1). These
states, denoted |IK'), can be transformed to the laboratory frame as'

21 +1
|G IM) = 4 WD&K(WNUQ (A.12)

The matrix elements thus involve an integral of three D matrices. These are given by (see

! This expression is valid for a symmetric rotor. For an asymmetric rigid rotor, there is in general a
sum in K, [c.f. Ref. [8], discussion following Eq. (2.21)].
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e.g. [8], Appendix V)?,

2
/D (aBy)Di, (By)DE,(aBy) sin(B)dBdody = (_)2B—2A+c+cl%ﬂ'+1

X (AaBb|C — ¢)(Ad' BV |C — ') (A.15)

Using this formula, the matrix elements of the transition operator result (I is assumed to
be integer here)

V2I'+1
V2l +1

Using the Wigner-Eckart theorem (Brink and Satchler convention), the reduced matrix
element is

(K; IM|D)| K I'M") = Y (I'M' A IM) ('K MO T K). (A.16)

\/2[’ 1
V2I+1

where, in the second equality, we have used the properties of the Clebsch-Gordan coeffi-
cients.

(K I|DM|K; I gs = ~o——e (I'KMNO|TK) = (—1)! "I (TKXO|I'K). (A.17)

A.2 Particle-vibrator model (PVM)

In the PVM model [28|, the nucleus is assumed to be spherical, but it can undergo
vibrations around the spherical shape. The surface is parametrized as

r= Ry[l + Za You(7)] = Ry + A7) (A.18)

with A(7) = 37, , al ,Yau(7) and where ay, are to be understood as dynamlcal variables,

given in terms of phonon creation (b:r\ﬂ) and annihilation (by,) operators as:*

oz,\ﬂ:\/%[bxu (—1 )“bT ﬂ] (A.19)

2In [8] this expressions is actually given in terms of the 3j symbols

. A B C\(A B C
| PScaB) Db (5 DE () sin(3)dBdady s < - ) ( 5 ) (A.13)
Both expressions are simply related taken into account the relation between 3j-symbols and Clebsch-
Gordan coefficientes

(AaBb|C — ¢) = (1)ABC\/20+1<21 K C) (A.14)

c

3Different authors use slightly different definitions of these operators. In any case, for 7 to be real o, L
must have the same transformation properties as Y}, namely, ajl# = (—1)*aq,—p-
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where (3, is the so-called zero-point amplitude, defined as the root mean square of « in
the ground state (no phonons) of the system (denote |0)):

By = (0> anad,|0) (A.20)
w

As in the rotational case, one assumes that the projectile—target potential is depen-
dent on the distance of the valence particle to the surface of the deformed nucleus,
V(r,0,0) = VY(r — (Ry + A(#)). We can expand this interaction in a Taylor series
about the equilibrium position of the surface (R = Ry)

dVVib

r

Vvib(,r — (Ro + A(#)) = V(r — Ry) — Ro

INGESS (A.21)

The states of the nucleus being excited are expressed as |N;IM), where N is the
number of phonons of a given multipolarity®. The first term in (A.21) cannot alter the
number of phonons and hence it has only diagonal matrix elements between nuclear states.
The second term, being linear in the amplitude, can connect vibrational states differing
by one unit in the number of phonons. For example, for the transition between the ground
state of the system for an even nucleus (N = I = M = 0) to a one-phonon state of angular
momentum / and projection M, we have to evaluate the matrix element

51A5M
1; IM |l |0;00) = —2 2000 A.22
( |a},[0; 00) ST (A.22)

And, for the inverse transition
(0; 0l |11 M) = (=1) 67,7001, (A.23)
Of course, for the diagonal terms we have

(1;1)lad, II1; T) = (0; 0]} ,[|0; 0) = 0. (A.24)

4A generic vibrational mode might contain phonons of different multipolarities. However, we will
consider only states containing phonons of a given multipolarity.
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Appendix B

Wigner-Eckart theorem and reduced
matrix elements

The Wigner-Eckart theorem establishes that the matrix element of a tensor operator OA,\;L
can be expressed as

(I My Orl IiMi) = O(Li, 1, N My IMaTiM) (I | OAl 1) (B.1)

where the object (I;]|Ox||1;) is the so called reduced matriz element, and is independent
onf the value of the z projections. The coefficient C'(1;, I, A) is an arbitrary function of I;,
It, and A, but is independent of the projections. Several conventions are encountered in
the literature, giving rise to different definitions for the reduced matrix elements (and to
the unavoidable confusion when works using different conventions are to be compared!).
Here, we cite two popular conventions followed in Nuclear Physics:

1. Bohr-Mottelson (BM) convention: C(I;, Iy, \) = (2I; + 1)~%/2. Hence,
LMy Oz M) = (20 + 1) LMy ML M I | O Tt (B.2)
2. Brink-Satchler (BS) convention: C(I;, I;,\) = (—1)%*

(L My Ozl M) = (=1 (L My | MuLiM3) (Ll OAl| L) s (B.3)

So, these reduced matrix elements will be related by:

(Ll OAl e = /215 + LI ]| Oall L) es (B.4)

67
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