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Chapter 1Some general s
attering theory
1.1 Introdu
tionMost of our present knowledge of stable and exoti
 nu
lei stems from the analysis of nu-
lear rea
tions. These pro
esses are traditionally separated into two groups: 
ompoundnu
leus and dire
t rea
tions. In these notes, we will be 
on
erned only with the latter.These refer to 
ollisions in whi
h the nu
lei make �glan
ing� 
onta
t and separate im-mediately. They are said also to be peripheral (surfa
e) pro
esses. The 
olliding nu
leipreserve their �identity� (a+A → a∗+A∗). Thus, these pro
esses involve a small numberof degrees of freedom and 
an be 
hara
terized and studied in terms of the ex
itation ofthese degrees of freedom.The �nal goal of the s
attering theory is to develop appropriate models to whi
h 
om-pare the measured observables, with the aim of extra
ting information on the stru
tureof the 
olliding nu
lei as well as understanding the dynami
s governing these pro
esses.The measured quantities are typi
ally total or partial 
ross se
tions with respe
t to angleand/or energy of the outgoing nu
lei. Therefore, the 
hallenge of rea
tion theory is toobtain these 
ross se
tions by solving the dynami
al equations of the system (at non-relativisti
 energies, the S
hrödinger equation) with a realisti
 but amenable stru
turemodel of the 
olliding nu
lei. By solving the S
hrödinger equation, one obtains the wave-fun
tion of the system. This wavefun
tion will be a fun
tion of the degrees of freedom(eg. internal 
oordinates) of the proje
tile and target, denoted generi
ally as ξp and ξt,as well as on the relative 
oordinate between them (R). Thus, we will express the totalwavefun
tion as Ψ(R, ξp, ξt). The Hamiltonian of the system is written in the form

H = T̂R +Hp(ξp) +Ht(ξt) + V (R, ξp, ξt), (1.1)where T̂R is the kineti
 energy operator (T̂ = − ~
2

2µ
∇2

R
) and Hp(ξp) (Ht(ξt)) denote theproje
tile (target) internal Hamiltonians and V (R, ξp, ξt) is the proje
tile-target intera
-tion. After the 
ollision, the proje
tile and target may ex
hange some nu
leons, or evenbreakup, so the Hamiltonian (1.1) 
orresponds a
tually to the entran
e 
hannel. To de-note the possible mass partitions that may arise in a rea
tion, we will use greek letters,5



6 CHAPTER 1. SOME GENERAL SCATTERING THEORYwith α denoting the initial partition. So, the previous Hamiltonian is rewritten as
H = T̂α +Hα(ξα) + Vα(Rα, ξα) (1.2)where ξα denotes the proje
tile and target internal 
oordinates in partition α. The totalenergy of the system is given by the sum of the kineti
 energy (Eα) and the internalenergy of the proje
tile and target:
E = Eα + εα =

~
2Kα

2

2µα
+ εα , (1.3)where ~Kα is just the linear momentum. The wavefun
tion Ψ(R, ξ) will be a solution ofthe time dependent S
hrödinger equation. For the purpose of extra
ting the s
atteringobservables, one may solve the time-independent S
hrödinger equation for a total energy

E (see Chapter 1 of [6℄ for a dis
ussion on the relation between the time-dependent andtime-independent pi
tures). So, ΨK will be a solution of
[H − E] ΨK = 0 . (1.4)This is a se
ond order di�erential equation that must be solved subje
t to the ap-propriate boundary 
onditions. These boundary 
onditions must re�e
t the nature of as
attering pro
ess. In our time-independent pi
ture, the in
ident beam will be representedby a plane wave1. After the 
ollision with the target, a set of outgoing spheri
al waveswill be formed. The situation is s
hemati
ally depi
ted in Fig. 1.1. So, asymptoti
ally,

Ψ
(+)
K0

(R, ξ) → Φ0(ξ)e
iK0·R + outgoing spheri
al waves, (1.5)with Φ0(ξ) ≡ φ

(0)
p (ξp)φ

(0)
t (ξt) and where the supers
ript �+� indi
ates that we this 
or-responds to the solution with outgoing boundary 
onditions (mathemati
ally, one may
onstru
t also the solution with in
oming boundary 
onditions).During the 
ollision, the in
ident wave will be highly distorted by the proje
tile�target intera
tion but, after the 
ollision, at su�
iently large distan
es (that is, when

V be
omes negligible), the proje
tile and target will energy in any of the (kinemati
allyallowed) eigenstates of system. So, asymptoti
ally, we may write2
Ψ

(+)
Kα

→ Φα(ξα)e
iKα·Rα + Φα(ξα)fα,α(θ)

eiKαRα

Rα

+
∑

α′ 6=α

Φα′(ξα)fα′,α(θ)
eiKα′Rα

Rα

+
∑

β

Φβ(ξβ)fβ,α(θ)
eiKβRβ

Rβ
, (1.6)1This is only true for the 
ase of short-range potentials; in presen
e of the Coulomb potential, thein
ident wavefun
tion is represented by a Coulomb wave2Note that we distinguish between Rα and Rβ sin
e, for a rearrangement pro
ess, the 
oordinates willbe di�erent. We will return to this issue in Chapter 4.



1.2. AN INTEGRAL EQUATION FOR Fβ,α(θ) 7
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Figure 1.1: Left: s
hemati
 representation of a s
attering pro
ess. Right: initial, �naland transferred momenta.The �rst, se
ond and third lines 
orrespond to elasti
, inelasti
 and transfer 
hannels,respe
tively. The angle θ is the CM s
attering angle, and 
orresponds to the angle betweenthe in
ident and �nal momenta (Kα and Kβ). The fun
tion eiKβRβ/Rβ is a spheri
aloutgoing wave. The fun
tion multiplying this outgoing wave is the s
attering amplitudefor 
hannel β. Note (Fig. 1.1) that the ve
tors Kβ and Rβ are parallel. The di�erential
ross se
tion for parti
les s
attering in the dire
tion θ in 
hannel β is de�ned as the �uxof s
attered parti
les through the area dA = r2dΩ in the dire
tion θ, per unit in
ident �ux.This quantity is dire
tly related to the s
attering amplitude as (see e.g. Chap. 3, Se
. Gof [11℄)
(
dσ

dΩ

)

α→β

=
vβ
vα

|fβ,α(θ)|2 . (1.7)It is 
ustomary to de�ne the transition matrix (T-matrix):
Tβα(θ) = −2π~2

µβ

fβα(θ) , (1.8)in terms of whi
h (
dσ

dΩ

)

α→β

=
µαµβ

(2π~2)2

∣
∣
∣
∣

Kβ

Kα

Tβα(θ)

∣
∣
∣
∣

2 (1.9)1.2 An integral equation for fβ,α(θ)Consider that we are interested on a parti
ular 
hannel β. The s
attering amplitude
orresponding to this parti
ular 
hannel 
an be obtained from the asymptoti
 form ofthe total wavefun
tion, Eq. (1.6), multiplying on the left by the �internal� wavefun
tion
Φ∗

β(ξβ) 
orresponding the 
hannel of interest, and integrating over the 
oordinates ξβ, i.e.
(Φβ|Ψ(+)

Kα
〉 R≫−−→ δβ,αe

iKα·Rα + fβ,α(θ)
eiKβRβ

Rβ
(1.10)



8 CHAPTER 1. SOME GENERAL SCATTERING THEORYwhere (. . .〉 denotes integration over internal 
oordinates only. Thus, (Φβ |Ψ(+)
Kα

〉 remainsa fun
tion of Rβ, so we may de�ne Xβ(Rβ) ≡ (Φβ|Ψ(+)
Kα

〉. So, if we know Ψ
(+)
Kα

or anapproximation to it, we 
an extra
t the s
attering amplitude from the asymptoti
s of
Xβ(Rβ). Using this result, it is possible to obtain a formal expression for fβ,α(θ). Westart writing the S
hrödinger equation, using the form of the Hamiltonian appropriate forthe 
hannel β, that is,

H = T̂β +Hβ(ξβ) + Vβ(Rβ) (1.11)Using this form of the Hamiltonian in the S
hrödinger equation, Eq. (1.4), multiplying onthe left by Φ∗
β(ξβ) and integrating along the 
oordinates ξβ we get the proje
ted equation:

[T̂β + εβ − E]Xβ(Rβ) = −(Φβ |VβΨ
(+)
Kα

〉 (1.12)were we have used εβ = 〈Φβ(ξβ)|Hβ|Φβ(ξβ)〉 and the fa
t that the kineti
 energy operatordoes not depend on the internal 
oordinates ξβ. This is a se
ond-order inhomogeneousdi�erential equation for the fun
tion Xβ. The most general solution is the sum of thesolution of the 
orresponding homogeneous equation, plus a parti
ular solution of theinhomogeneous equation. The homogeneous equation is trivially solved, sin
e it 
ontainsonly the kineti
 energy operator; its solution is just a plane wave with momentum Kβ,with modulus Kβ =
√
2µβ(E − εβ)/~. The parti
ular solution of the inhomogeneousequation 
an be formally obtained using Green fun
tion te
hniques (see, for example,[21, 11℄) leading to:

Xβ(Rβ) = eiKα·Rαδα,β −
µβ

2π~2

∫

Gβ(Rβ,R
′
β)(Φβ|VβΨ

(+)
α 〉dR′

β (1.13)where Gβ is the Green fun
tion in 
hannel β. Expli
itly:
Gβ(Rβ,R

′
β) =

eiKβ |Rβ−R
′

β
|

|Rβ −R′
β|

(1.14)To extra
t the s
attering amplitude, we must take the asymptoti
 limit, Rβ ≫ R′
β . Inthis limit, the Green fun
tion redu
es to3

Gβ(Rβ,R
′
β) →

eiKβRβ

Rβ
(1.15)and the fun
tion Xβ(Rβ) tends to

Xβ(Rβ)
Rβ≫−−−→ eiKα·Rαδα,β −

µβ

2π~2

eiKβRβ

Rβ
(Φβ |VβΨ

(+)
Kα

〉 (1.16)Comparing with the asymptoti
 form (1.6), and re
alling the de�nition of the s
atter-ing amplitude, we have
fβ,α(θ) = − µβ

2π~2
〈e−iKβRβΦβ |VβΨ

(+)
Kα

〉

= − µβ

2π~2

∫ ∫

e−iKβRβΦ∗
β(ξβ)Vβ(Rβ, ξβ)Ψ

(+)
Kα

dξβdRβ (1.17)3For Rβ ≫ R′
β , |Rβ −R

′
β| ≈ Rβ − R̂β · R̂′

β = K̂β · R̂′
β.



1.3. GELL-MANN�GOLDBERGER TRANSFORMATION (TWO-POTENTIAL FORMULA)9Or, in terms of the T-matrix,
Tβ,α =

∫ ∫

e−iKβRβΦ∗
β(ξβ)Vβ(Rβ, ξβ)Ψ

(+)
Kα

(Rα, ξα)dξβdRβ. (1.18)1.3 Gell-Mann�Goldberger transformation (two-potentialformula)A more general expression for Eq. (1.18) 
an found introdu
ing an auxiliary (and by nowarbitrary) potential Uβ(Rβ) on both sides of Eq. (1.12),
[T̂β + Uβ + εβ − E]Xβ(Rβ) = −(Φβ |Vβ − UβΨ

(+)
Kα

〉 (1.19)where, again, Xβ(Rβ) ≡ (Φβ|Ψ(+)
Kα

〉.The solution of (1.19) is given by a general solution of the homogeneous equation, plusa parti
ular solution of the full equation. The homogeneous equation is given by
[T̂β + Uβ + εβ − E]χ+

β (Rβ) = 0 (1.20)This equation represents the s
attering of the parti
les in 
hannel β under the potential
Uβ . The solution is of the form

χ
(+)
β (Rβ) = eiKβ ·Rβ + outgoing spheri
al waves (1.21)In the next 
hapter, we will dis
uss in more detail how this equation is solved in pra
ti
alsituations, making use of the partial wave expansion.Finally, the full equation (1.19) is solved adding a parti
ular solution of the inhomo-geneous equation. This is done using again Green fun
tion te
hniques. Details are givenin [6℄. The full solution (whi
h generalizes Eq. (1.16)) is written as

Xβ(Rβ) ≡ (Φβ |Ψ(+)
Kα

〉 = χ+
β (Rβ)δαβ +

∫

G
(+)
β (Rβ,R

′
β)(Φβ |Vβ − UβΨ

(+)
Kα

dR′
β (1.22)The s
attering amplitude (or the T-matrix) is extra
ted from the asymptoti
s of theoutgoing waves. Nnote that, we have outgoing waves in both terms of the RHS of theprevious equation, and giving rise also to two 
ontributions to the s
attering amplitude,

Tβ,α = T (0)
β,αδαβ +

∫ ∫

χ
(−)∗
β (Kβ,Rβ)Φβ(ξβ)[Vβ − Uβ ]Ψ

(+)
Kα

dξβdRβ, (1.23)The �rst term is the s
attering amplitude due to the potential Uβ and is present onlyfor the 
hannel β = α. In here, χ(−)
β , is the time-reverse of χ(+) and 
orresponds to thesolution 
onsisting on a plane wave with momentum Kβ and ingoing spheri
al waves. It
an be readily obtained from χ(+) using the relationship χ(−)∗(K,R)= χ(+)(−K,R).The result (1.23) is known as theGell-Mann�Goldberger transformation or two-potential formula. This expression is exa
t but it 
annot be solved as su
h, sin
e it
ontains the exa
t wavefun
tion of the system. However, it provides a very useful startingpoint to derive approximate expressions, as we will see later on.



10 CHAPTER 1. SOME GENERAL SCATTERING THEORY1.4 De�ning the modelspa
eWe have seen that the dynami
s of the system in a s
attering pro
ess is en
oded in thefull wavefun
tion, Ψ(+). Formally, it 
an be obtained by solving the S
hrödinger equationof the system. Asymptoti
ally, this wavefun
tion 
onsists on an in
oming plane plane,and outgoing spheri
al waves in all possible 
hannels. Pra
ti
al 
al
ulations require asa �rst step redu
ing the full spa
e to a tra
table modelspa
e. This is motivated bytwo things: (i) the 
hannels of interest to analyze a parti
ular experiment and (ii) thenumeri
al/
omputational 
omplexity of the problem. For example, if we are interestedin analyzing some inelasti
 s
attering experiment, our model spa
e might 
onsist on theground state of the proje
tile and target, plus the states more strongly populated in theexperiment.The formal pro
edure to redu
e the problem from the full spa
e to a sele
ted mod-elspa
e was developed by Feshba
h [9, 10℄. The idea is to separate the full spa
e intotwo parts, denoted as P and Q. The P spa
e 
omprise the 
hannels of interest and willtherefore be taken into a

ount expli
itly in the model wavefun
tion Ψ(+). The Q spa
e is
omposed by the remaining 
hannels. So, following Feshba
h (see also [6℄ and [11℄, Chap-ter 8G), we may write Ψ(+) = ΨP +ΨQ. The 
omponents ΨP and ΨQ obey a 
ompli
atedsystem 
oupled equations, with the de
eptively simple form
(E −HPP )ΨP = HPQΨQ (1.24)
(E −HQQ)ΨQ = HQPΨP (1.25)where HPP = PHP , HPQ = PHQ, and so on. The proje
ted Hamiltonian HPP 
ontainsthe 
oupling among the states of the P spa
e, and likewise for HQQ. The terms HPQ and

HQP des
ribe 
ouplings between the states of P and those of Q. Sin
e we are interestedonly inΨP , we eliminateΨQ from the RHS of the �rst equation, using the se
ond equation:
[

E −HPP −HPQ
1

E −HQQ + iǫ
HQP

]

ΨP = 0 (1.26)Let us rewrite this equation as
[E −Hα − Tα − V] ΨP = 0 (1.27)with

V = VPP + VPQ
1

E −HQQ + iǫ
VQP (1.28)Dire
t rea
tion theories repla
e the above equation by an approximated one of theform

(E −Heff)Ψmodel = 0 (1.29)where Heff is an e�e
tive Hamiltonian whi
h aims at representing the 
ompli
ated obje
t
V. Although the Feshba
h formalism provides a expression for su
h operator, it 
annotbe evaluated in pra
ti
e. Yet, this formal solution provides an useful guidan
e on how to



1.4. DEFINING THE MODELSPACE 11repla
e su
h a 
ompli
ated obje
t by some approximate one. In parti
ular, the e�e
tiveHamiltonian is found to be 
omplex, energy-dependent and non-lo
al. Furthermore, sin
ethe e�e
tive Hamiltonian involves the 
oupling to all the possible 
hannels, it 
annot beevaluated in pra
ti
e. For all these reasons, the intera
tions entering Heff are usuallydetermined phenomenologi
ally, and represented by simple (
ommonly lo
al) forms.On
e the model spa
e and the e�e
tive intera
tions have been de�ned, the modelwavefun
tion is expanded in the set of internal states expli
itly in
luded (that is, those ofthe P-spa
e),
Ψ

(+)model = ∑

α

Φα(ξα)χ
(+)
α (Rα) (1.30)where χ

(+)
α (Rα) obey the usual outgoing boundary 
onditions [
.f. Eq. (1.6)℄.
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Chapter 2Single-
hannel s
attering: the opti
almodelDire
t rea
tion theories try to redu
e the 
ompli
ated many-body s
attering problem toa tra
table problem of the form
(E −Heff)Ψmodel = 0 (2.1)where Heff is an e�e
tive Hamiltonian de�ned in the model spa
e, that is, the set of
hannels of interest (in the Feshba
k language, the P spa
e). The Ψmodel will be ingeneral an expansion in the states of the P spa
e.The 
rudest approximation to the P spa
e is to redu
e the physi
al spa
e to just theground state of the proje
tile and target. This gives rise to the opti
al model formalism.In this 
ase, the model wavefun
tion (1.30) is approximated by a single term,1

Ψ
(+)model(ξ,R) = Φ0(ξ)χ

(+)
0 (R) (2.2)and the e�e
tive Hamiltonian is expressed as

Heff = Hα + Uα (2.3)The model wavefun
tion is a solution of
[Tα +Hα + Uα(R)− E]Ψ

(+)model = 0 (2.4)Using the fa
t that, by 
onstru
tion, HαΦ0(ξ) = ε0Φ0(ξ), we get
[Tα + Uα(R)− E0]χ

(+)
0 (R) = 0 (2.5)where E0 = E − ε0, i.e., the kineti
 energy asso
iated with the relative motion betweenthe proje
tile and target.1The subs
ript α is omitted here when impli
itly understood.13



14 CHAPTER 2. SINGLE-CHANNEL SCATTERING: THE OPTICAL MODELIf the e�e
tive Hamiltonian, Heff , is to represent the 
ompli
ated Feshba
h operator,des
ribing not only the intera
tion in the P spa
e, but also the 
ouplings between the Pand Q spa
es (all non-elasti
 
hannels in this 
ase), then the e�e
tive intera
tion Uα(R)will be 
omplex, non-lo
al and energy-dependent. The imaginary part a

ounts for the�ux leaving the elasti
 
hannel (P spa
e) to the 
hannels not expli
itly in
luded (theQ spa
e). The energy dependen
e is usually taken into a

ount phenomenologi
ally, byparametrizing U with some suitable form and adjusting the parameters to the experimen-tal data over some energy region. Finally, non-lo
ality is rarely taken into a

ount. Thee�e
tive intera
tion Uα is referred to as opti
al potential.2.1 Partial wave expansionAs an additional simpli�
ation, we 
onsider the 
ase in whi
h the spins of the 
ollidingparti
les are ignored and the opti
al potential is assumed to be a fun
tion only of theproje
tile-target separation, R = |R|. In this 
ase, the wave fun
tion 
an expanded inspheri
al harmoni
s,
χ
(+)
0 (K,R) =

∑

ℓm

Cℓ,m
χℓ(K,R)

R
Yℓm(R̂) (2.6)where the radial fun
tions are a solution of

[

− ~
2

2µ

d2

dR2
+

~
2

2µ

ℓ(ℓ+ 1)

R2
+ U(R)− E0

]

χℓ(K,R) = 0. (2.7)The 
oe�
ients Cℓ,m are determined imposing that, in the 
ase of zero potential, thesolution must be a plane wave, that is
Uα = 0 ⇒ χ

(+)
0 (K,R) = eiK·R (2.8)whose expansion in terms of spheri
al harmoni
s is given by

eiK·R =
4π

KR

∑

ℓ,m

iℓFℓ(KR)Yℓm(R̂)Y ∗
ℓm(K̂) (2.9)

=
1

KR

∑

ℓ

iℓ(2ℓ+ 1)Fℓ(KR)Pℓ(cos θ) (2.10)where Fℓ(KR) = (KR)jℓ(K,R) with jℓ(K,R) a spheri
al Bessel fun
tion. Comparingthis expression with (2.6), it is 
onvenient to use the 
oe�
ients Cℓ,m su
h that in thelimit U → 0, the expansion (2.6) redu
es to (2.9),
χ
(+)
0 (K,R) =

1

KR

∑

ℓ

iℓ(2ℓ+ 1)χℓ(K,R)Pℓ(cos θ) (2.11)In the 
ase in whi
h the potential is non-zero, we 
an still say that χ(+)
0 (K,R) mustverify the following equation at large distan
es,

[

− ~
2

2µ

d2

dR2
+

~
2

2µ

ℓ(ℓ+ 1)

R2
−E0

]

χℓ(K,R) = 0 (for large R) (2.12)



2.1. PARTIAL WAVE EXPANSION 15and the most general solution will be 
ombination of two independent solutions for thisequation. One of them 
an be taken as the regular solution Fℓ(KR). The other 
an bethe irregular solution,
Gℓ(KR) = −(KR)nℓ(KR) (2.13)or any 
ombination of G and F , that is,

χℓ(K,R)
R≫−−→ AFℓ(KR) +BGℓ(KR) (2.14)The 
ombination appropriate for our purposes is suggested by the known asymptoti
behavior of our physi
al s
attering wavefun
tion, i.e.

χ
(+)
0 (K,R)

R≫−−→ eiK·R + f(θ)
eiKR

R
(2.15)The exponential part of the outgoing wave, eiKR, turns out to be just a suitable 
ombi-nation of the F and G fun
tions, be
ause

Gℓ(ρ) + iFℓ(ρ) ≡ H
(+)
ℓ (ρ) → ei(ρ−ℓπ/2) (2.16)So, returning to the partial wave expansion, the appropriate boundary 
ondition 
on-sistent with the behavior (2.15) is given by

χℓ(K,R) → Fℓ(KR) + TℓH
(+)
ℓ (KR) (2.17)where the (yet undetermined) 
oe�
ient Tℓ is known as transmission 
oe�
ient. It isusual to write Tℓ in terms of the so-
alled phase-shifts,

Tℓ = eiδℓ sin(δℓ) (2.18)or, in terms of the re�e
tion 
oe�
ient, Sℓ, or S-matrix,2
Sℓ = 1 + 2iTℓ = e2iδℓ (2.19)The 
ondition (2.17) 
an be also written as,

χℓ(K,R) → i

2

[

H
(−)
ℓ (KR)− SℓH

(+)
ℓ (KR)

] (2.20)where
H

(−)
ℓ (ρ) = Gℓ(ρ)− iFℓ(ρ) → e−i(ρ−ℓπ/2) (2.21)The S-matrix Sℓ is therefore the 
oe�
ient of the outgoing wave (H(+)) for the partialwave ℓ. It re�e
ts the e�e
t of the potential on this parti
ular wave in the sense that,2When these expressions are generalized to the multiple 
hannel 
ase, the quantity Sℓ be
omes amatrix and is referred to as s
attering or 
ollision matrix (the name is also used in single-
hannel 
ase,but the terminology is less obvious).
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• If no potential is present, there is no outgoing wave. Then, Tℓ = 0 or, equivalently,
Sℓ = 1 and δℓ = 0.

• As a 
onsequen
e of the previous item, for large values of ℓ the 
entrifugal barrierkeeps the proje
tile well apart from the target, and thus the e�e
t of the (short-ranged) potential Uα will be negligible. Consequently, for ℓ → ∞ ⇒ Sℓ → 1.
• If the s
attered potential is real, the overall outgoing �ux for a given partial wavemust be 
onserved, and hen
e |Sℓ| = 1.
• On the other hand, for a 
omplex potential (with negative imaginary part), we have
|Sℓ| < 1, thus re�e
ting that part of the in
ident �ux has left the elasti
 
hannel infavor of other 
hannels.2.2 S
attering amplitudeTo get the s
attering amplitude, we substitute the asymptoti
 radial fun
tion χℓ(K,R)from (2.20) into the full expansion (2.11):

χ
(+)
0 (K,R) → 1

KR

∑

ℓ

iℓ(2ℓ+ 1)
{

Fℓ(KR) + TℓH
(+)
ℓ (KR)

}

Pℓ(cos θ)

=
1

KR

∑

ℓ

iℓ(2ℓ+ 1)Fℓ(KR)Pℓ(cos θ) +
1

K

∑

ℓ

iℓ(2ℓ+ 1)Tℓ
ei(KR−ℓπ/2)

R
Pℓ(cos θ)

= eiK·R +
1

K

∑

ℓ

(2ℓ+ 1)eiδℓ sin δℓPℓ(cos θ)
eiKR

R
(2.22)The elasti
 s
attering amplitude is the 
oe�
ient of eiKR/R in the last line,i.e.,

f(θ) =
1

K

∑

ℓ

(2ℓ+ 1)eiδℓ sin δℓPℓ(cos θ)

=
1

2iK

∑

ℓ

(2ℓ+ 1)(Sℓ − 1)Pℓ(cos θ). (2.23)The di�erential elasti
 
ross se
tion will be given by
dσ

dΩ
= |f(θ)|2. (2.24)In prin
iple, the sum in (2.23) runs from ℓ = 0 to in�nity. However, remember that, forlarge values of ℓ, the S-matrix tends to 1 so, in pra
ti
e, the sum 
an be safely trun
atedat a maximum value ℓmax, determined by some 
onvergen
e 
riterion of the 
ross se
tion.
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aseThe Coulomb 
ase deserves a spe
ial 
onsideration be
ause the expressions derived in theprevious se
tion are stri
tly appli
able to the 
ase of short-range potentials, for whi
h theasymptoti
 form (2.15) is appropriate. For a pure Coulomb 
ase, we 
an perform a partialwave expansion of the s
attering wavefun
tion χC(K,R) of the form
χC(K,R) =

1

KR

∑

ℓ

(2ℓ+ 1)iℓχC
ℓ (KR)Pℓ(cos(θ)) (2.25)with the radial fun
tions χC

ℓ (KR) obeying the equation
[

d2

dR2
+K2 − 2ηK

R
+

ℓ(ℓ+ 1)

R2

]

χC
ℓ (KR) = 0 (2.26)where

η =
ZpZte

2

~v
=

ZpZte
2µ

~2K
(2.27)the so-
alled Coulomb or Sommerfeld parameter.The solution of (2.26) must be regular at the origin. Asymptoti
ally, it behaves as

χC
ℓ (KR)

R≫−−→ eiσℓFℓ(η,KR) (2.28)where Fℓ(η,KR) is the regular Coulomb fun
tion and σℓ is the Coulomb phase-shift fora partial wave ℓ,
σℓ = arg Γ(ℓ+ 1 + iη) (2.29)The Coulomb fun
tion behaves asymptoti
ally as

Fℓ(η, ρ) → sin(ρ− η ln(2ρ)− ℓπ/2 + σℓ) (2.30)whi
h in the 
ase η = 0 (σℓ = 0) redu
es to the regular Fℓ(KR) fun
tion introdu
ed inthe 
ase of short-range potentials
Fℓ(η = 0, ρ) = Fℓ(ρ) = ρjℓ(ρ) (2.31)Analogously, an irregular solution of (2.26) 
an be found, whi
h redu
es to Gℓ(ρ) in theno Coulomb 
ase

Gℓ(η, ρ) → cos(ρ− η ln(2ρ)− ℓπ/2 + σℓ)
η=0−−→ Gℓ(ρ) = −ρnℓ(ρ) (2.32)as well as the ingoing and outgoing fun
tions,

H(+)(η, ρ) = Gℓ(η, ρ) + iFℓ(η, ρ) (2.33)
H(−)(η, ρ) = Gℓ(η, ρ)− iFℓ(η, ρ) (2.34)
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ase, the s
attering amplitude will be given by
fC(θ) =

1

2K

∑

ℓ

(2ℓ+ 1)(e2iσℓ − 1)Pℓ(cos θ) (2.35)This integral is not 
onvergent (
annot be trun
ated at a �nite ℓ) but the full result isknown analyti
ally and is given by
fC(θ) = − η

2K sin2(1
2
θ)
e−iη ln(sin2( 1

2
θ)+2iσ0) (2.36)The di�erential 
ross se
tion yields the well-known Rutherford formula

dσR

dΩ
= |fC(θ)|2 =

η2

4K2 sin4(1
2
θ)

=

(
ZpZte

2

4E

)2
1

sin4(1
2
θ)

(2.37)2.4 Coulomb plus nu
lear 
aseIf both Coulomb and nu
lear potentials are present, the s
attering fun
tion χ
(+)
0 (K,R)will never rea
h the asymptoti
 form of a plane wave plus outgoing waves, due to thepresen
e of the 1/R term in S
hrödinger equation. Nevertheless, it 
an be written as

χ
(+)
0 (K,R) → χ

(+)
C (K,R) + outgoing spheri
al waves (2.38)where the outgoing waves part are now proportional to the fun
tions H

(+)
ℓ (η,KR). Of
ourse, when only the Coulomb potential is present, this term vanishes, and the s
atteringwavefun
tion redu
es to χ

(+)
C (K,R).If we write, as usual, the χ

(+)
0 (K,R) as a partial wave expansion, the 
orrespondingradial 
oe�
ients χℓ(K,R) verify the asymptoti
 
ondition

χℓ(K,R) → eiσℓ

[

Fℓ(η,KR) + TℓH
(+)
ℓ (η,KR)

] (2.39)
= eiσℓ

i

2

[

H
(−)
ℓ (η,KR)− SℓH

(+)
ℓ (η,KR)

] (2.40)whi
h is very similar to (2.17) and (2.20), expe
t for additional Coulomb phase eiσℓ andrepla
ement of the fun
tions F (KR), H(+), et
 by their Coulomb generalizations.The s
attering amplitude results
f(θ) = fC(θ) +

1

2iK

∑

ℓ

(2ℓ+ 1)e2iσℓ(Sℓ − 1)Pℓ(cos θ) (2.41)where the �rst term 
orresponds to the pure-Coulomb amplitude, and arises from theoutgoing waves in the �rst term of (2.38).
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al 
al
ulation of the s
attering wavefun
tion and phase-shiftsIn pra
ti
e, the 
al
ulations of the s
attering wave fun
tion and the 
orrespondingre�e
tion 
oe�
ients (or phase-shifts) are usually 
omputed as follows:1. Integrate the radial di�erential equation from the origin outwards, with theinitial value χℓ(K, 0) = 0 and some �nite (arbitrary) slope.2. At a su�
iently large distan
e, Rmax, beyond whi
h the nu
lear potentials havebe
ome negligible, the numeri
ally obtained solution is mat
hed to the asymp-toti
 form
Nχℓ(K,Rmax) → Fℓ(η,KRmax) + TℓH

(+)
ℓ (η,KRmax) (2.42)3. This equation 
ontains two unknowns, Tℓ and the normalization N . Thus, it issupplemented with the 
ondition of 
ontinuity of the derivative

Nχ′
ℓ(K,Rmax) → F ′

ℓ(η,KRmax) + Tℓ(H
(+)
ℓ (η,KRmax))

′ (2.43)4. The pro
edure is repeated for ea
h ℓ, from ℓ = 0 to ℓmax, su
h that Sℓmax
≈ 1.2.5 Parametrization of the phenomenologi
al opti
alpotentialThe e�e
tive opti
al opti
al potential is usually taken as the sum of Coulomb and nu-
lear 
entral potentials U(R) = Unuc(R) + Ucoul(R), with the Coulomb part taken as thepotential 
orresponding to a uniform distribution of 
harge of radius Rc:

Uc(R) =

{
Z1Z2e2

2Rc

(

3− R2

R2
c

) if R ≤ Rc

Z1Z2e2

R
if R ≥ Rc

(2.44)As for the nu
lear part, it 
ontains in general real and imaginary parts. The moststandard parametrization is that of Woods-Saxon
Unuc(R) = V (R) + iW (R) = − V0

1 + exp
(

R−R0

a0

) − i
W0

1 + exp
(

R−Ri

ai

) (2.45)The parameters V0, R0 and a0 are the depth, radius and di�useness (likewise for theimaginary part). They are usually determined from the analysis of elasti
 s
attering data.If the spin-of the proje
tile (or target) is 
onsidered, the potential will 
ontain alsospin-dependent term. The most 
ommon one is the spin-orbit term, whi
h is usually
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Uso(R) = (Vso + iWso)

(
~

mπc

)2
1

R

df(R,Rso, aso)

dR
(2ℓ · s) (2.46)where the radial fun
tion f(R,Rso, aso) is again a Woods-Saxon form, and (~/mπc)

2 =
2 fm2, is just introdu
ed in order Uso have dimensions of energy.



Chapter 3Inelasti
 s
atteringNu
lei are not inert or frozen obje
ts; they do have an internal stru
ture of protons andneutrons that 
an be modi�ed (ex
ited), for example, in 
ollisions with other nu
lei. Infa
t, a important and 
ommon pro
ess that may o

ur in a 
ollision between two nu
leiis the ex
itation of one (or both) of the nu
lei.Inelasti
 s
attering is an example of dire
t rea
tion (see Chapter 1) and, as su
h, the
olliding nu
lei preserve their 
ollision after the 
ollision.The energy required to ex
ite a nu
leus is taken from the kineti
 energy asso
iated withproje
tile-target relative motion. This means that, if one of the 
olliding nu
lei is ex
ited,the �nal kineti
 energy of the system is redu
ed by an amount equal to the ex
itationenergy of the ex
ited state populated in the rea
tion. So, by measuring the kineti
 energyof the outgoing fragments, one 
an infer the ex
itation energy of the proje
tile and target.This has been indeed a 
ommon te
hnique to identify su
h ex
ited states.The information provided by the analysis of inelasti
 rea
tions is not restri
ted to thelevel spe
trum of nu
lei. By 
omparing the energy and angular distribution of the eje
tilewith an appropriate rea
tion theory, we 
an infer also useful stru
ture information, su
h asthe spin and parity of the populated states, the ele
tri
 transition probabilities 
onne
tingthese states, the deviation from the spheri
al shape in deformed systems, et
3.1 Colle
tive versus single-parti
le ex
itationsNu
lei, like atoms, tend to be in their state of minimal energy (the so-
alled ground state)whi
h 
orresponds to a 
ertain arrangement of protons and neutrons inside the nu
leus.The ex
itation of the nu
leus 
orresponds mi
ros
opi
ally to a rearrangement of protonsand neutrons. This is a many-body quantum-me
hani
al problem, whi
h 
an be verydi�
ult to treat in a general situation. However, in many 
ases, it is possible to rely on asimpler pi
ture, whi
h emphasize some parti
ular degree of freedom of the system. This isthe 
ase of the single-parti
le ex
itations observed in even-odd nu
lei, or that of 
olle
tiveex
itations due to the rotation or vibration of the nu
leus.21
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Figure 3.1: Energy levels of 209Bi and 11Be, interpreted as single-parti
le ex
itations.
• Single-parti
le ex
itations: If we have a nu
leus with one �valen
e� nu
leon out-side a 
losed shell, there will be low ex
ited states whi
h 
orresponds to promotingthis odd nu
leon into higher shell-model orbits without disturbing the inner 
losedshells. Two examples are shown in Fig. 3.1. In the 209Bi 
ase, the �rst 82 protons
onstitute a relatively inert 
ore and the remaining proton moves in the averagepotential 
reated by this 
ore.The se
ond example shown in Fig. 3.1 is 11Be, whi
h is an example of �exoti
�nu
leus. The ex
ess of neutrons (N = 7 versus Z = 4) makes this system veryunstable, de
aying into 11B by β− emission (T1/2 = 13.76 s). The ground state(1/2+) 
an be interpreted in a single-parti
le pi
ture as a neutron moving around a

10Be 
ore in a 2s1/2 orbital. Very 
lose to the ground state, at Ex = 320 keV, thereis a 1/2− ex
ited state, whi
h 
an be obtained promoting the last neutron the 1p1/2orbital1.
• Colle
tive ex
itations: Some ex
ited states are not easily interpreted in terms ofsingle-parti
le ex
itations, even 
onsidering more than one a
tive nu
leon. However,in many 
ases they 
an be interpreted as 
olle
tive ex
itations of the nu
leus as a1Note that this is not the expe
ted sequen
e of stable nu
lei, for whi
h one would expe
t the 1p1/2orbital to be below the 2s1/2 orbital. This parity inversion is a 
onsequen
e of the proton/neutronasymmetry and is subje
t nowadays of many studies.
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Figure 3.2: Energy levels of a typi
al rotational (left) and a typi
al vibrational (right)nu
leus.whole. This is the 
ase of nu
lei with a permanent deformation in whi
h ex
itedstates 
orrespond to the rotational motion of the nu
leus, slowly rotating as a whole.In the pure rotational model, the energy spe
trum is of the form
E(I) =

~
2

2I [I(I + 1)−K(K + 1)] , (3.1)where I is spin of the level with ex
itation energy E(I), K is the proje
tion of theangular momentum along the symmetry axis of the deformed system and I is themoment of inertia of the nu
leus. For even-even nu
lei, the ground state has I = 0and hen
e the rotational band built on top of the ground state has K = 0 too.Physi
ally, this means that the rotation o

urs about an axis perpendi
ular to thenu
lear symmetry axis. It 
an be shown that in this 
ase only even values of Iappear. An example of rotational spe
trum for an even-even nu
leus is shown inthe left-hand-side of Fig. 3.2.Another example of 
olle
tive ex
itations are the vibrations experien
ed by an spher-i
al nu
leus. These 
an be visualized as harmoni
 os
illations of the surfa
e about
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Figure 3.3: Energy levels of samarium isotopes showing the evolution from a typi
alvibrational spe
trum in 148Sm to a rotational spe
trum fully developed in 152Sm and
154Sm. Quoted from Ref. [11℄, p. 229.the spheri
al shape. In an even-even nu
leus, the 
orresponding energy spe
trumfor a multipolarity λ 
onsists of evenly spa
ed levels with

En = n~ωλwhere n = 0, 1, . . . is the number of phonons, ea
h 
arrying an energy of ~ωλ andangular momentum λ~. For example, for quadrupole phonons (λ=2), n = 0 
orre-sponds to the state with no phonons, and has I = 0. This is the ground state of thesystem. For n = 1 phonon, we have a (ex
ited) state with I = 2 angular momentumand energy ~ωλ. With two quadrupole phonons (n = 2), we get an ex
ited statewith energy 2~ωλ. Sin
e ea
h phonon 
arries an angular momentum of 2~, they 
an
ouple to angular momenta I=0, 2 and 4, so we a
tually have 3 degenerated levels.An example of vibrational spe
trum is shown in the right-hand-side of Fig. 3.2,
orresponding to the 114Cd nu
leus. The 0+, 2+ and 4+ triplet of states around Ex ≈
1 MeV 
orresponds to the ex
itation of two quadrupole phonons. The additional 0+and 2+ states observed nearby are due to a di�erent kind of ex
itation.It is worth noting that the vibrational or rotational 
hara
ter 
an 
hange froman isotope to another within the same isotopi
 
hain. An example is shown inFig. 3.3, for the �rst levels of the samarium isotopes, exhibiting the 
hara
teristi
level spa
ing of vibrator and rotor at the extremes.



3.2. ENERGY BALANCE CONSIDERATIONS 25There are other kinds of 
olle
tive ex
itations (monopole, giant resonan
es, et
) butthey will not be 
onsidered here.3.2 Energy balan
e 
onsiderationsWe start by re
alling the 
on
ept of Q-value. Consider the binary dire
t rea
tion a+A →
b + B, where a proje
tile a 
ollides with a target A giving rise to an eje
tile b and aresidual nu
leus B. Due to energy 
onservation in the CM frame,

Ei
cm +Mac

2 +MAc
2 = Ef

cm +Mbc
2 +MBc

2, (3.2)where Ei
cm (Ef

cm) is the total kineti
 energy in the initial (�nal) 
hannels. It is 
ustomaryto introdu
e the Q-value, de�ned as
Q = Mac

2 +MAc
2 −Mbc

2 −MBc
2. (3.3)In terms of Q, the energy balan
e 
an be expressed as

Ef
cm = Ei

cm +Q. (3.4)For Q > 0 we have Ef
cm > Ei

cm and the rea
tion is said to be exothermi
. Conversely,for Q < 0 we have Ef
cm < Ei

cm and the rea
tion is said to be endothermi
.For an inelasti
 pro
ess, the nu
lei are the same in the initial and �nal 
hannels. Letus assume, for de�niteness, that the proje
tile is ex
ited to an ex
ited state Ex. Then,the energy balan
e be
omes in this 
ase
Ei

cm +Mac
2 +MAc

2 = Ef
cm +M∗

ac
2 +MAc

2, (3.5)where M∗
a = Ma + Ex.In this 
ase, the Q-value is simply given by

Q = Mac
2 +MAc

2 −M∗
ac

2 −M2
A = −Ex,that is, Q = −Ex < 0. Consequently, an inelasti
 rea
tion is always endothermi
. This isnot unexpe
ted, sin
e part of the kineti
 energy is used to ex
ite one of the nu
lei.From these 
onsiderations, we see that the ex
itation energy of the states populatedin a inelasti
 pro
ess 
an be inferred by just measuring the kineti
 energy of the outgoingfragments. In fa
t, this is a powerful te
hnique to obtain the energy spe
trum of a nu
leus.Example: the p+7Li rea
tionAs an example, let us 
onsider the s
attering of a proton beam by a 7Li target. InFig. 3.4, we see the experimental ex
itation energy spe
trum inferred from the energyof the outgoing protons dete
ted at an s
attering angle of 25◦. We have superimposedthe known energy spe
trum of 7Li to emphasize the 
orresponden
e between the observed
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Figure 3.4: Energy spe
trum of dete
ted outgoing protons s
attered from a 7Li target(quoted from Ref. [14℄).peaks and these states. The peak at Ex = 0 (
orresponding to Q = 0) 
orresponds to theground state of 7Li. Thus, it is just elasti
 s
attering. At Ex = 0.48 MeV, we should seea se
ond peak 
orresponding to the �rst ex
ited state of 7Li. However, due to the energyresolution, this peak is not resolved in these data from the elasti
 peak. At Ex = 4.6 MeVthere is a prominent peak 
orresponding to a 7/2− state in 7Li. This state is above the
4He+t threshold and does a
tually 
orrespond to a 
ontinuum resonan
e. This threshold
orresponds to the energy ne
essary to disso
iate the 7Li nu
leus into 4He+t. Therefore,for ex
itation energies above this value, we have a 
ontinuous of a

essible energies, ratherthan a dis
rete spe
trum, and any value of Ex is possible. This explains the ba
kgroundobserved at these ex
itation energies.Note that the information provided by these data is not enough to determine otherproperties of the energy spe
trum, su
h as as the spin/parity assignment or their 
olle
tive/single-parti
le 
hara
ter. To do that, one needs to 
ompare the data with a suitable rea
tion
al
ulation, as we will see in the next se
tion.3.3 Formal treatment of inelasti
 rea
tions3.3.1 The 
oupled-
hannels (CC) methodRemember from Chapter 1 (Se
. 1.4) that any pra
ti
al solution of the s
attering prob-lem starts with a redu
tion of the full physi
al spa
e into P and Q spa
es, the former
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orresponding to the 
hannels that are to be expli
itly in
luded. In an inelasti
 pro
ess,this P spa
e will 
onsist of the elasti
 
hannel, plus some ex
ited states of the proje
tileand/or target, those more strongly 
oupled in the pro
ess or, at least, those that will be
ompared with the experimental data.Let us 
onsider the s
attering of a proje
tile a by a target A, and let us assume forsimpli
ity that only the proje
tile 
an be ex
ited during the pro
ess, the target being justan inert spe
tator. We denote this mass partition by the index α, i.e., α ≡ a + A. Ourmodel Hamiltonian will des
ribe a set of states of the proje
tile, and the 
oupling betweenduring the 
ollision. This model Hamiltonian will be expressed as:
H = − ~

2

2µaA
∇2

R
+Ha(ξ) + Vα(ξ,R) (3.6)where Vα(ξ,R) is the proje
tile-target intera
tion and Ha(ξ) is the internal Hamiltonianof the proje
tile2. The symbol ξ denotes the set of internal 
oordinates of a. For example,in deuteron s
attering, ξ may refer to the relative 
oordinate between the proton and theneutron3. R is the relative 
oordinate between a and A.Let us denote by {φn(ξ)} the internal states of the proje
tile. These will be theeigenstates of the Hamiltonian Ha(ξ):

Haφn = εnφn. (3.7)The key idea of the CC method is to expand of the total wavefun
tion of the systemthe set of internal states {φn(ξ)},
Ψ(+)(R, ξ) = φ0(ξ)χ0(R) +

N∑

n>0

φn(ξ)χn(R) (3.8)with φ0(ξ) representing the ground-state wavefun
tion and N the number of states in-
luded.The unknown 
oe�
ients χn(R) des
ribe the relative motion between the proje
tileand target in the 
orresponding internal states. They have a de�nite physi
al meaning.They tell us the relative �probability�, as a fun
tion of R, for the proje
tile (or target)being in state n. The di�erent possibilities for n are frequently referred to as �
hannels�.The total wavefun
tion Ψ(R, ξ) veri�es the S
hrödinger equation:
[E −H ]Ψ(+)(R, ξ) = 0.We now pro
eed as follows:

• Use the expansion (3.8) and the Hamiltonian (3.6) in this equation.2If both the proje
tile and target 
an be ex
ited, we 
an generalize the equation above by in
ludingalso the internal Hamiltonian of the target, so Ha(ξ) should be repla
ed by Hα = Ha(ξ) +HA(ξ
′).3The intrinsi
 spins of the proton and neutron, 
ould be also part of these set of internal 
oordinates.
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• Multiply on the left by ea
h of the basis fun
tions φ∗

n(ξ), and integrate over theinternal 
oordinates ξ.
• For ea
h n, we get a di�erential equation of the form:

[

E − εn − T̂R − Vn,n(R)
]

χn(R) =
∑

n′ 6=n

Vn,n′(R)χn′(R) (3.9)where T̂R is the kineti
 energy operator and Vn,n′ are the so 
alled 
oupling potentials,de�ned by:
Vn,n′(R) =

∫

dξφ∗
n(ξ)V (ξ,R)φn′(ξ) (3.10)Thus, for example, V0,m is the potential responsible for the ex
itation from theground state (n = 0) to a given �nal state m. We have still not de�ned the formof the e�e
tive potential V (ξ,R) and the internal states φn, that is, the modelHamiltonian. These potentials are 
onstru
ted within a 
ertain model, as we willsee later.Note that in the equation for a given value of n, we have the unknown χn(R), but alsothose χn′(R) with n′ 6= n. Consequently, Eq. (3.9) represents a set of 
oupled di�erentialequations for the set of fun
tions {χn(R)}.Boundary 
onditionsSimilarly to the OM 
ase, the CC equations have to be solved with the appropriateboundary 
onditions. These boundary 
onditions 
orrespond to the physi
al situation inwhi
h the proje
tile is initially in the ground-state (φ0) and the proje
tile-target relativemotion is represented by a plane wave with momentumK0

4. The situation is s
hemati
allyrepresented in Fig. 3.5. Classi
ally, the dire
tion of the momentum K0 
orresponds to thedire
tion of motion of the proje
tile. As a result of the 
ollision with the target, a serialof outgoing spheri
al waves is 
reated. That is, the general stru
ture of the wave fun
tionof the system is of the form
Ψ

(+)
K0

(R, ξ) = eiK0·Rφ0(ξ) + (outgoing spheri
al waves)Unlike the planes waves, the spheri
al waves s
atter in all dire
tions. In addition to theoutgoing waves 
orresponding to elasti
 s
attering, there will be outgoing 
hannels for allthe open 
hannels (that is, all the possible �nal states allowed by energy 
onservation).So, outside the range of the potentials, the total wave fun
tion satis�es:
Ψ

(+)
K0

(R, ξ)
R≫−−→

{

eiK0·R + f0,0(θ)
eiK0R

R

}

φ0(ξ) +
∑

n>0

fn,0(θ)
eiKnR

R
φn(ξ), (3.11)4A more realisti
 des
ription would be in terms of wave-pa
kets but the formal treatment is mu
hmore 
ompli
ated. To link both pi
tures, one 
an bear in mind that a wave pa
ket 
an be 
onstru
tedas a superposition of plane waves.



3.3. FORMAL TREATMENT OF INELASTIC REACTIONS 29Comparing with (3.8) we see that the fun
tions χn(R) must verify following boundary
onditions:
χ
(+)
0 (K0,R) → eiK0·R + f0,0(θ)

eiK0R

R
n = 0 (elasti
)

χ(+)
n (Kn,R) → fn,0(θ)

eiKnR

R
, n 6= 0 (non-elasti
) (3.12)where the supers
ript �+� indi
ates that this is the solution whi
h 
ontains outgoingspheri
al waves (one 
an 
onstru
t also a solution with ingoing spheri
al waves that behaveas exp(−iK0R)/R. The 
oe�
ient of the outgoing wave exp(−iK0R)/R, fn,0(θ), is justthe s
attering amplitude. On
e we have determined the s
attering amplitude, the 
rossse
tion is 
al
ulated as (
.f. Chapter 1)

dσ(θ)

dΩ
(0 → n) =

Kn

K0

|fn,0(θ)|2 (3.13)Note that:
• There are only in
oming waves for the χ0 
omponent (that is, the elasti
 
omponent)but outgoing waves for all 
omponents.
• The s
attering angle in the 
.m. frame, θ, is determinted by the dire
tion of themomenta K0 and Kn. De�ning the momentum transfer as q = Kn −K0, we have(see Fig. 3.5):

q2 = K2
0 +K2

n − 2K0Kn cos(θ) (3.14)
• The modulus of the momentum K is related to the kineti
 energy of the system in
hannel n in the CM frame:

En
cm =

~
2K2

n

2µ

• Due to energy 
onservation5,
E = ε0 +

~
2K2

0

2µ
= εn +

~
2K2

n

2µ5For εn > E, the kineti
 energy is negative and the 
orresponding momentum Kn be
omes imaginary.Consequently, the asymptoti
 solutions χn of Eq. (3.12) vanish exponentially and then these 
hannels donot 
ontribute to the outgoing �ux.
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Source
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θ
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K 0

qK f

θ

Figure 3.5: Left: in
ident and s
attered waves in a s
attering pro
ess. Right: in
identand �nal momenta, and momentum transfer3.3.2 The DWBA methodIf the number of states is large, the solution of the 
oupled equations 
an be a di�
ulttask. In many situations, however, some of the ex
ited states are very weakly 
oupled tothe ground state and 
an be treated perturbatively. In this 
ase, the set of equations (3.9)
an be solved iteratively, starting from the elasti
 
hannel equation, and setting to zerothe sour
e term (the RHS of the equation). This allows the 
al
ulation of the distortedwave χ0(K0,R). This solution is then inserted into the equation 
orresponding to anex
ited state n, thus providing a �rst order approximation for χn(K0,R). If the pro
essis stopped here, then the method is referred to as distorted wave Born approximation(DWBA).We provide here an alternative derivation of the DWBA method, whi
h leads to amore dire
t 
onne
tion with the s
attering amplitude. We make use of the exa
t s
atteringamplitude (1.23) derived in Chapter 1 using the Gell-Mann�Goldberger transformation,and that we reprodu
e here for 
ompleteness:
Tβ,α = T (0)

β,αδαβ +

∫ ∫

χ
(−)∗
β (Kβ,Rβ)Φ

∗
β(ξβ)WβΨ

(+)
Kα

dξβdRβ , (3.15)where Wβ = Vβ − Uβ. Let us parti
ularize to our 
ase, assuming that we are to des
ribea transition between an initial state i (typi
ally, the g.s.) and a �nal state f . Sin
e thesestates belong to the same partition (α) we do not need to spe
ify expli
itly the subs
ript
α or β. Then, the expression above be
omes

Tf,i =

∫ ∫

χ
(−)∗
f (Kf ,R)φ∗

f(ξ)[Vf − Uf ]Ψ
(+)
Ki

dξdR , (3.16)where, within the CC method, Ψ(+)
Ki

is given by the expansion (3.8). Re
all that, in this
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(−)
f (Kf ,R) is the time reverse of χ(+)

f (Kf ,R), whi
h is a solution of
[T̂R + Uf + εf − E]χ

(+)
f (Kf ,R) = 0 (3.17)for some auxiliary potential Uf (R). Typi
ally, Uf(R) is 
hosen as a phenomenologi
alpotential that des
ribes the elasti
 s
attering in the �nal 
hannel.In DWBA, the wavefun
tion of the system in the initial state is approximated by:

Ψ
(+)
i (R, ξ) ≃ χ

(+)
i (Ki,R)φi(ξ), (3.18)where χ

(+)
i (K,R) is the distorted wave des
ribing the proje
tile-motion in the entran
e
hannel, [

E − εi − T̂R − Ui(R)
]

χ
(+)
i (Ki,R) = 0 , (3.19)where Ui(R) is the average potential in the initial 
hannel, and is usually taken as thepotential that des
ribes the elasti
 s
attering in this 
hannel. With this 
hoi
e, one hopesto in
lude e�e
tively some of the e�e
ts of the negle
ted 
hannels.In DWBA, the s
attering amplitude 
orresponding to the inelasti
 ex
itation of theproje
tile from the initial state φi(ξ) and momentum K to a �nal state φf(ξ) and mo-mentum Kf is given by (for details, see for example Ref. [26℄)

fDWBA
f,i (θ) = − µ

2π~2

∫

dRχ
(−)∗
f (Kf ,R)Wif(R)χ

(+)
i (Ki,R) (3.20)where Wif(R) is the 
oupling potential

Wif(R) ≡ 〈φf |Vf − Uf |φi〉 =
∫

dξφ∗
f(ξ)(Vf − Uf )φi(ξ) (3.21)A
tual appli
ations of the DWBA amplitude (3.20) require the spe
i�
ation of thestru
ture model (that will determine the fun
tions {φi(ξ)} as well as the proje
tile-targetintera
tion Vf . We give some examples in the following se
tion.3.4 Appli
ation of the DWBA method to 
olle
tive ex-
itations3.4.1 Coulomb ex
itationLet us 
onsider the Coulomb potential between a 
omposite proje
tile of 
harge Zpeand a target nu
leus of 
harge Zte. We ignore the stru
ture of the target but we 
onsiderexpli
itly the internal stru
ture of the proje
tile (see Fig. 3.6). Consequently, the Coulombpotential is the sum of the intera
tion with all the protons of the proje
tile, that is,6

V (R, ξ) =

Zp∑

i

κZte
2

|R− ri|
, (3.22)6In many textbooks and papers, it is 
ustomary to use units in whi
h κ = 1.
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ri

R−r

Target
R

i

Figure 3.6: Coulomb intera
tion between a parti
le and a 
omposite system.with κ ≡ 1/4πǫ0 and ξ = {ri}. .We use the following multipole expansion, whi
h is valid for R > ri:
1

|R− ri|
=

∑

λµ

4π

2λ+ 1

rλi
Rλ+1

Yλµ(r̂i)Y
∗
λµ(R̂) (R > ri) (3.23)This allows to express the Coulomb potential in terms of the so-
alledmultipole ele
tri
operator, de�ned as:

M(Eλ, µ) ≡ e

Zp∑

i

rλi Yλµ(r̂i), (3.24)giving rise to
V (R, ξ) =

∑

λ,µ

4π

2λ+ 1

κZte

Rλ+1
M(Eλ, µ)Y ∗

λµ(R̂), (3.25)where R̂ ≡ {θ, ϕ}.For the appli
ation of the DWBA method, we write the intera
tion as V (R, ξ) =
V0(R) +W (R, ξ) with

V0(R) =
κZtZpe

2

R
(3.26)and

W (R, ξ) = κZte
∑

λ>0,µ

4π

2λ+ 1
M(Eλ, µ)

Y ∗
λµ(R̂)

Rλ+1
(3.27)The term V0(R) is just the usual monopole (λ = 0) Coulomb potential. This termdoes not depend on the internal 
oordinates of the proje
tile and hen
e 
annot indu
eex
itations. We 
an use the results of the pre
eding se
tion, and 
al
ulate the s
atteringamplitude 
orresponding to the transition from an initial state φi to a �nal state φf .A

ording to Eq. (3.20), we need to 
al
ulate matrix elements between initial and �nalstates (i.e., the transition potentials). It is 
onvenient to express the eigenstates of theinternal Hamiltonian in terms of their angular momentum (I) and their proje
tion (M),i.e.

|φi〉 ≡ |i; IiMi〉, |φf〉 ≡ |f ; IfMf 〉 (3.28)
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Wif(R) = κZte

∑

λ6=0,µ

4π

2λ+ 1
〈f ; IfMf |M(Eλ, µ)|i; IiMi〉

Y ∗
λµ(R̂)

Rλ+1
(3.29)Substituting this expression into the DWBA amplitude (3.20) we get

f(θ)iMi→fMf
=− µ

2π~2
κZte

4π

2λ+ 1
〈f ; IfMf |M(Eλ, µ)|iIiMi〉

×
∫

dRχ
(−)∗
f (Kf ,R)

Y ∗
λµ(R̂)

Rλ+1
χ
(+)
i (Ki,R) (3.30)(re
all that θ is the angle between Ki and Kf )If we de�ne

T λ
if (Kf ,Ki) ≡

∫

dRχ
(−)∗
f (Kf ,R)

Y ∗
λµ(R̂)

Rλ+1
χ
(+)
i (Ki,R) (3.31)we 
an rewrite the DWBA amplitude as

fDWBA(θ)iIiMi→fIfMf
= − µ

2π~2
κZte〈f ; IfMf |M(Eλ, µ)|i; IiMi〉T λ

if (Kf ,Ki) (3.32)This result shows that the DWBA s
attering amplitude fa
torizes into a produ
t oftwo terms; the amplitude T λ
if (Kf ,Ki), whi
h 
ontains information on the rea
tion part,but does not depend on the spe
i�
 stru
ture of the proje
tile or target, and the stru
turefa
tor 〈f ; IfMf |M(Eλ, µ)|i; IiMi〉, whi
h 
ontains all the information on the nu
leus beingex
ited. This fa
torization makes it possible the extra
tion of stru
ture information by
omparing the angular and energy distributions of the outgoing nu
lei with the DWBA
al
ulation, provided that the approximations that lead to the DWBA result are valid.The di�erential 
ross se
tion will be given by,

(
dσ

dΩ

)

iMi→fMf

=
Kf

Ki

∣
∣f(θ)iMi→fMf

∣
∣2 . (3.33)This expression 
orresponds to a pro
ess in whi
h the proje
tile is initially in a state withspin Ii and proje
tion Mi and is ex
ited to a state with spin If and proje
tion Mf . Inmany experiments, the spin proje
tion is not measured in either the initial nor the �nalstates. In this 
ase, the 
ross se
tion is obtained averaging over the initial spin orientationsand summing over their �nal orientations. If the spins are randomly oriented initially,

(
dσ

dΩ

)

i→f

=
1

2Ii + 1

Kf

Ki

∑

Mi,Mf

∣
∣f(θ)iMi→fMf

∣
∣2 . (3.34)It 
an be shown that this result is independent of the azimuthal angle ϕ.
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tri
 multipole operator appearing in Eq. (3.32) 
an beexpressed, using the Wigner-E
kart theorem, in terms of the redu
ed matrix elements as[8℄
〈f ; IfMf |M(Eλ, µ)|i; IiMi〉 = 〈IfMf |λµIiMi〉〈f ; If ||M(Eλ)||i; Ii〉BS , (3.35)where the quantity 〈f ; If ||M(Eλ)||i; Ii〉 is referred to as a redu
ed matrix element. It doesnot depend on the proje
tions Mi and Mj . In the 
ase of the ele
tri
 operator, this isrelated to the redu
ed transition probability:7

B(Eλ; i → f) ≡ 2If + 1

2Ii + 1
|〈f ; If ||M(Eλ)||i; Ii〉BS|2 (3.36)For a inelasti
 ex
itation i → f of multipolarity λ the di�erential 
ross se
tion isproportional to the ele
tri
 redu
ed probability B(Eλ; Ii → If ) be
ause

(
dσ

dΩ

)

i→f

∝ |〈f ; If ||M(Eλ)||i; Ii〉|2 ∝ B(Eλ; Ii → If)So, if the approximations involved in the derivation of the DWBA amplitude are valid,the transition probabilities B(Eλ; If → If) 
an be obtained 
omparing the magnitudeof the inelasti
 
ross se
tions with DWBA 
al
ulations. Note that the Clebs
h-Gordan
oe�
ient in Eq. (3.35) imposes 
ertain restri
tions with respe
t to the allowed transitionsfor a multipolarity λ, sin
e this 
oe�
ient will be zero unless |Ii − If | ≤ λ ≤ Ii + If .3.4.2 Nu
lear ex
itation in the 
olle
tive modelWithin a 
olle
tive model (e.g. vibrational, rotational,. . . ) nu
lear ex
itations are inter-preted in terms of the deformation of the 
harge or mass distribution of the nu
leus.The intera
tion of a nu
leus with a parti
le is typi
ally 
hara
terized by a fun
tion ofthe distan
e from the parti
le to the nu
lear surfa
e (see Fig. 3.7). This is the 
ase, forexample, of the popular Woods-Saxon parametrization,
Unuc(R) = V (R− R0) = − V0

1 + exp
(

R−R0

ar

) − i
W0

1 + exp
(

R−Ri

ai

) .For a spheri
al nu
leus, the intera
tion is of 
ourse independent on the orientation ofthe nu
leus. However, if the nu
leus is deformed (rotational nu
leus) or 
an experien
e7If the 
onvention of redu
ed matrix elements of Bohr and Mottelson is used [7℄, the redu
ed matrixelements are de�ned as
〈f ; IfMf |M(Eλ, µ)|i; IiMi〉 = (2If + 1)1/2〈IfMf |λµIiMi〉〈f ; If ||M(Eλ)||i; Ii〉BMand hen
e, for the ele
tri
 transition probability, we have

B(Eλ; i → f) ≡ 1

2Ii + 1
|〈f ; If ||M(Eλ)||i; Ii〉BM|2
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R −

Figure 3.7: Intera
tion of a parti
le with a nu
leus.os
illations with respe
t to the spheri
al shape (vibrational nu
leus), then the radius willhave a dependen
e on the angles θ and ϕ (see appendix A.1):
r(θ, ϕ) = R0 +

∑

λ,µ

δ̂λµY
∗
λµ(θ, ϕ) (3.37)where δ̂λµ are the so-
alled deformation length operators and 
hara
terize the deviation ofthe radius of the surfa
e with respe
t to the spheri
al shape. Typi
ally, the quadrupole(λ = 2) and o
tupole (λ = 3) deformations are the most relevant.If we assume that the intera
tion with the referen
e parti
le is a fun
tion of the distan
eto the surfa
e, we have:

V (R, ξ) = V (R− r(θ, ϕ)) = V (R− (R0 +
∑

λ,µ

δ̂λµY
∗
λµ(θ, ϕ))) (3.38)Assuming that the deformation is small 
ompared with the variation of the potential(eg. the di�useness), we 
an perform a Taylor expansion of the potential in δ̂λµ whi
h, upto �rst order, gives

V (R, ξ) = V (R −R0)−
∑

λ,µ

δ̂λµ
dV (R− R0)

dR
Y ∗
λµ(θ, ϕ) + . . . (3.39)To apply the DWBA formalism, we write the full intera
tion as V = U + (V −U); weidentify the se
ond term with the residual intera
tion W = V −U , and the �rst term withthe auxiliary potential U . The 
oupling potentials of the residual intera
tion betweenstates |i; IiMi〉 and |f ; IfMf 〉 are [see Eq.(3.21)℄:

Wif (R) ≡ 〈f ; IfMf |V |i; IiMi〉 = −dV0(R −R0)

dR

∑

λ,µ

〈f ; IfMf |δ̂λµ|i; IiMi〉Y ∗
λµ(R̂) (3.40)Inserting these transition potentials in the general expression for the DWBA amplitude
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ff,i(θ) = − µ

2π~2
〈f ; IfMf |δ̂λµ|i; IiMi〉

×
∫

dRχ
(−)∗
f (Kf ,R)

dV

dR
Y ∗
λµ(θ, ϕ)χ

(+)
i (Ki,R) (3.41)As we did for the Coulomb 
ase, this expression 
an be rewritten in a more 
ompa
t formas:

ffi(θ) = − µ

2π~2
〈f ; IfMf |δ̂λµ|i; IiMi〉T λ

i→f(Kf ,Ki) (3.42)with
T λ
i→f(Kf ,Ki) ≡

∫

dRχ
(−)∗
f (Kf ,R)

dV0

dR
Y ∗
λµ(θ, ϕ)χ

(+)
i (Ki,R) (3.43)And, for the di�erential 
ross se
tion [
.f. (3.33)℄,:

(
dσ(θ)

dΩ

)

iMi→fMf

=
( µ

2π~2

)2 Kf

Ki

∣
∣
∣〈f ; IfMf |δ̂λµ|i; IiMi〉

∣
∣
∣

2

×
∣
∣
∣
∣

∫

dRχ
(−)∗
f (Kf ,R)

dV0

dR
Y ∗
λµ(θ, ϕ)χ

(+)
i (Ki,R)

∣
∣
∣
∣

2 (3.44)or, in terms of T λ
i→f

(
dσ(θ)

dΩ

)

iMi→fMf

=
( µ

2π~2

)2 Kf

Ki

∣
∣
∣〈f ; IfMf |δ̂λµ|i; IiMi〉

∣
∣
∣

2

|T λ
i→f(Kf ,Ki)|2 (3.45)The matrix elements of the deformation operators 
an be expressed in terms of aClebs
h-Gordan 
oe�
ient and a redu
ed matrix element (Wigner-E
kart theorem):

〈f ; IfMf |δ̂λµ|i; IiMi〉 = 〈f ; IfMf |λµIiMi〉〈f ; If‖δ̂λ‖i; Ii〉BS. (3.46)When inserted into Eq. (3.44), we see that the di�erential 
ross se
tion is proportional tothe square of the redu
ed matrix elements 〈f ; If‖δ̂λ‖i; Ii〉 whi
h, in turn, are related to thestru
ture of the deformed nu
leus. Consequently, if the approximations whi
h lead to theDWBA are ful�lled, the 
omparison of experimental data on inelasti
 nu
lear ex
itationof a nu
leus provides information on its stru
ture, for example, on its deviation of itsshape from the spheri
al one.In the parti
ular 
ase of the rotational model (see Appendix A.1) the deformationoperator is given by:
δ̂λµ = βλR0Dλ

µ0(ω) = β2R0

√

4π

2λ+ 1
Yλµ(θ0, φ0), (3.47)where D stands for a rotation matrix and ω is the set of Euler angles (α, β, γ) 
orre-sponding to the transformation of the symmetry axis of the rotor to the laboratory frame.



3.5. EXAMPLE: 16O+208 PB INELASTIC SCATTERING 37In general, D depends on three indexes but, in the 
ase of a axially symmetri
 rotor, oneof the indexes is zero. In this 
ase, D is given by a spheri
al harmoni
, as indi
ated bythe se
ond equality of the previous equation. The rotor states are 
hara
terized in therotor model by the total angular momentum (I), its proje
tion along the z axis of thelaboratory frame (M) and the proje
tion of I along the symmetry axis (K). State withthe same value of K belong to the same rotational band. A pure rotational ex
itation
an 
hange the value of I, but 
onserves K, that is, rotational ex
itations o

ur amongstates of a given rotational band. Using the results of Appendix A.1, the 
orrespondingredu
ed matrix elements of δ̂λµ between these rotor states are given by8
〈f ; If‖δ̂λ‖i; Ii〉BS = (−1)If−Ii〈IfKλ0|IiK〉βλR0. (3.49)3.4.3 Simultaneous Coulomb and nu
lear ex
itationsSo far, we have 
onsidered separately the Coulomb and nu
lear ex
itations. In somesituations negle
ting one of the intera
tions is justi�ed. For example, we expe
t Coulombex
itation to be dominant when

• The proje
tile and/or target 
harges are large (i.e. large ZpZt ≫ 1)
• At energies well below the Coulomb barrier (where nu
lear e�e
ts are less impor-tant).
• At very forward angles (large impa
t parameters).However, in other 
ases, both Coulomb and nu
lear 
ontributions 
an be importantand so the s
attering amplitudes for both pro
esses should be added 
oherently:

(
dσ

dΩ

)

i→f

=
Kf

Ki

∣
∣f coul

if + fnucl
if

∣
∣
2 (3.50)Note that, in this situation, interferen
e e�e
ts will appear, making more deli
ate theextra
tion of stru
ture information.3.5 Example: 16O +208 Pb inelasti
 s
atteringAs an example, we 
onsider the inelasti
 s
attering of 16O+208Pb at energies around theCoulomb barrier, populating the low-lying states 3− and 2+ in 208Pb [27℄.8For the Bohr-Mottelson 
onvention of redu
ed matrix elements:

〈f ; If‖δ̂λ‖i; Ii〉BM = (−1)If−Ii
√

2If + 1〈IfKλ0|IiK〉βλR0 (3.48)
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Figure 3.8: E�e
tive (nu
lear + Coulomb) potential for the 16O+208Pb system.Using the nu
lear potential from Ref. [27℄ the e�e
tive potential is as shown in Fig. 3.8.The energy of the Coulomb barrier, de�ned as the maximum of this e�e
tive potential, isslightly above 75 MeV. This is 
onsistent with the simple estimate
Vbarrier ≈

ZpZte
2

1.44(A
1/3
p + A

1/3
t )

≃ 78 MeVSo, for in
ident energies below 78 MeV, we expe
t that the Coulomb e�e
ts dominate,whereas above this energy nu
lear e�e
ts will start to 
ontribute too.In Fig. 3.9 we show the experimental elasti
 and inelasti
 
ross se
tion angular dis-tributions, taken from Ref. [27℄. The elasti
 angular distribution (left panel) has beendivided by the Rutherford 
ross se
tion to make more 
lear the e�e
t of the nu
lear inter-a
tion and higher order (λ > 0) Coulomb e�e
ts. We see that, for energies well below thebarrier, this relative angular distribution is one at all angles, meaning that the s
atteringis governed by the monopole Coulomb intera
tion (VC(r) = κe2ZpZt/r). As the in
identenergy approa
hes the barrier, a redu
tion of the 
ross se
tion is observed at the largests
attering angles, whereas at small angles it remains 
lose to one. This 
an be understoodin a 
lassi
al pi
ture. Classi
ally, the smaller angles 
orrespond to large impa
t param-eters and hen
e to distant 
ollisions. For these traje
tories, the proje
tile feels only theCoulomb intera
tion, due to the short-range nu
lear intera
tion. At large angles (smallimpa
t parameters) the 
lassi
al turning point o

urs at a small distan
e, and there ismore 
han
e to probe the nu
lear intera
tion. As the bombarding energy in
reases abovethe barrier, these nu
lear e�e
ts be
ome more and more important, and the deviationfrom the Rutherford formula is more evident.For the inelasti
 angular distributions we see also a evolution as the in
ident energyin
reases from the sub-barrier to the above-barrier regime. For energies below the barrier,
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Figure 3.9: Experimental angular distribution for the elasti
 (left) and inelasti
 (right)
ross se
tion for the 16O+208Pb rea
tion for several in
ident energies. Quoted from [27℄.the angular distribution is relatively featureless (at least for the angles displayed). Aroundand above the barrier, the distributions start to develop a deep minimum, and a more
ompli
ate pattern arises.We try now to understand this behavior 
omparing the data with theoreti
al 
al
u-lations, using the DWBA formalism dis
ussed above. We assume that the DWBA isvalid, and that the population of the 3− state of the 208Pb nu
leus 
an be treated as ano
tupole 
olle
tive ex
itation. We in
lude both nu
lear and Coulomb ex
itations. The
orresponding DWBA amplitudes are given by Eqs. (3.30) and (3.41), respe
tively. Therequired physi
al ingredients are the redu
ed matrix elements 〈f ; If ||M(E3)||i; Ii〉 (for theCoulomb part) and 〈f ; If ||δ3||i; Ii〉 (for the nu
lear part). The former 
an be obtained fromthe experimental value of the ele
tri
 transition probability B(E3; 0+ → 3−) = 0.595 e2b3.The redu
ed matrix element for the nu
lear part was taken from the DWBA analysis ofRef. [27℄.The 
al
ulated angular distributions are shown in Fig. 3.10 for Elab = 69 MeV and82 MeV. The dashed and dot-dashed lines are the DWBA 
al
ulations for pure Coulomband nu
lear ex
itations, whereas the solid line is the 
oherent superposition of nu
learand Coulomb ex
itation. We see that at Elab = 69 MeV (below the barrier) the data
an be mostly explained in terms of the Coulomb ex
itation. Nu
lear ex
itation is verysmall at all angles, ex
ept at the largest angles, where it interferes destru
tively with theCoulomb amplitude. At Elab = 82 MeV, Coulomb 
ouplings still dominate the smallerangles, but nu
lear 
ouplings are of the same order and even larger 
lose to θc.m. = 180◦.At θc.m. ≈ 140◦, there is a strong interferen
e between both me
hanisms, produ
ing theminimum observed in the data.
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Elab=78 MeVFigure 3.10: Experimental angular distribution for the population of the 3− ex
ited statein 208Pb in the the 16O+208Pb rea
tion at an in
ident energy of 69 MeV (left) and 78 MeV(right) 
ompared with DWBA 
al
ulations.We see that a 
omparison of the data with the appropriate theory 
an provide usefulinformation about the stru
ture of the 
olliding nu
lei and the me
hanisms that take pla
ein the rea
tion.



Chapter 4Transfer rea
tions: the DWBA method
4.1 Introdu
tionA transfer rea
tion is another example of dire
t pro
ess. In this 
ase, one or more nu
leonsof one of the 
olliding nu
lei are transferred to the other nu
leus. Histori
ally, one uses theterm stripping when nu
leons are transferred from the proje
tile to the target, and pi
k-upwhen the nu
leons are transferred from the target to the proje
tile. The prototypes ofthese rea
tions are the deuteron stripping rea
tions � denoted (d, p) and (d, n) � and theirpi
k-up 
ounter-parts (p, d) and (n, d).4.2 Energy balan
e 
onsiderationsLet us denote generi
ally a (binary) transfer rea
tion as:

a+ A → b+BIn the CM frame, the energy balan
e for this rea
tion is
Ei

cm +Mac
2 +MAc

2 = Ef
cm +Mbc

2 +MBc
2 (4.1)Introdu
ing the Q0 value, de�ned in the same way as we did in the 
ase of inelasti
s
attering (se
tion 3.2),

Q0 = Mac
2 +MAc

2 −Mbc
2 −MBc

2,the energy balan
e is rewritten as
Ef

cm = Ei
cm +Q0 (4.2)Depending on the sign of Q0, we have two distin
t situations:

• Q0 > 0: the system gains kineti
 energy (exothermi
 rea
tion)41
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Figure 4.1: Illustration of the Q-value in the 208Pb(d,p)209Pb stripping rea
tion for atransfer to the ground state (left) and to an ex
ited state (right) of the residual nu
leus.
• Q0 < 0: the system loses kineti
 energy (endothermi
 rea
tion)As an example, we 
onsider the deuteron stripping rea
tion:

d+ 208Pb → p+ 209PbIn this 
ase:
Q0 = Mdc

2 +M(208Pb)c2 −Mpc
2 −M(209Pb)c2 = +1.7MeVso this 
orresponds to an exothermi
 rea
tion. This means that the outgoing proton willgain energy with respe
t to the in
ident deuteron. The energy balan
e is s
hemati
allydepi
ted in Fig. 4.1(left).Note that the di�eren
e M(208Pb)c2 +M(1n)c2 −M(209Pb)c2 is just the one-neutronseparation energy of 209Pb. Analogously, Mp +Mn −Md is just the deuteron separationenergy. Consequently, the Q-value 
an be interpreted (and 
al
ulated) also as the di�er-en
e between the separation energy of the transferred parti
le(s) in the �nal and initialnu
lei. In the previous example:

Q0 = Sn(f)− Sn(i) = 3.936− 2.224 = +1.7 MeVSo far, we have 
onsidered that the outgoing nu
lei are left in their ground-state.Indeed, this is not ne
essarily the 
ase and both the eje
tile (that is, the fragment 
omingfrom the proje
tile) and the residual nu
leus (the one 
oming from the target) 
an beleft in an ex
ited state. In this 
ase, the energy balan
e should take into a

ount theex
itation energy of the �nal nu
lei.
Ef

cm = Ei
cm +Q = Ei

cm +Q0 − Ex (4.3)where Ex denotes the ex
itation energy of the ex
ited nu
leus. In Fig. 4.1 (right) weillustrate the energy balan
e in the 208Pb(d,p)209Pb rea
tion, in whi
h the transferredneutron populates an ex
ited state of the residual nu
leus 209Pb.In general, the residual nu
leus will 
ontain a number of bound ex
ited states, whi
h
an be populated during the transfer rea
tion. A

ording to Eq. (4.3), the ex
itation en-ergy of the outgoing nu
lei is dire
tly related to their kineti
 energy. So, for example, in



4.3. THE DWBA METHOD 43

Figure 4.2: Proton energy in the rea
tion 208Pb(d,p)209Pb measured with a deuteron beamat 18.7 MeV and for a �xed proton s
attering angle of 33◦.the 208Pb(d,p)209Pb example, the kineti
 energy of the outgoing proton gives informationabout the energy spe
trum of the 209Pb nu
leus1. This is shown in Fig. 4.2, whi
h 
orre-sponds to the number of protons dete
ted in a real 208Pb(d,p)209Pb rea
tion, as a fun
tionof its kineti
 energy, for a given s
attering angle. The peaks 
orrespond to ex
ited statesof the 209Pb nu
leus. The labels a

ompanying ea
h peak are single-parti
le quantumnumbers assigned a

ording to a simple independent parti
le model.In the spe
trum shown in Fig. 4.2, we see also that not all states are populated withthe same intensity. The population probability will depend on the rea
tion dynami
s aswell as and on the stru
ture properties of these states. Furthermore, transfer rea
tions
an be used to infer spe
tros
opi
 information of the 
olliding nu
lei, su
h as the intrinsi
spin and parity of the populated states. The ex
itation spe
trum by itself does notprovide in general enough information to extra
t these properties. This information isusually obtained from the angular distribution of the outgoing eje
tile. In order to extra
tuseful physi
al information, these angular distributions must be 
ompared with a suitablerea
tion theory, as we will see below.4.3 The DWBA methodWe want to derive a formal expression for the di�erential 
ross se
tion 
orresponding tothe transfer pro
ess (see Fig. 4.3)
(a+ v)
︸ ︷︷ ︸

A

+b → a+ (b+ v)
︸ ︷︷ ︸

B

.Under the assumption that the transfer 
oupling is small with respe
t to the elasti
1Note that, in this parti
ular example, the target is mu
h more massive than the proje
tile and hen
ethe laboratory energy of the proton will not di�er mu
h from its energy in the CM frame.
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Figure 4.3: Post and prior representations for a transfer rea
tion
hannel, we will des
ribe this pro
ess using DWBA approximation, whi
h was derived inChapter 1 and was applied in Chapter 3 to the 
ase of inelasti
 s
attering.In the 
ase of transfer rea
tions, a similar expression 
an be derived, but the followingdi�eren
es need to be taken into a

ount:1. The proje
tile-target 
oordinate (R) is di�erent now in the initial and �nal 
hannels,be
ause they refer to di�erent mass partitions. To distinguish between them we willuse the notation R and R′ (see Fig. 4.3).2. The e�e
tive Hamiltonian is also di�erent in the initial and �nal 
hannels. Depend-ing on whether we use the intera
tions for the initial or �nal 
hannels we will usethe names prior and post.We start from the exa
t s
attering amplitude derived in Chapter 1 using the Gell-Mann�Goldberger formula. The proje
tile�target intera
tion in the �nal partition (Vβ)is expressed as Uβ + (Vβ − Uβ), where Uβ(Rβ) is some arbitrary potential. The exa
ts
attering amplitude 
an be written as [
.f. Eq. (1.23)℄:
Tβ,α = T (0)

β,αδαβ +

∫ ∫

χ
(−)∗
β (Kβ,Rβ)Φ

∗
β(ξβ)(Vβ − Uβ)Ψ

(+)
Kα

(Rα, ξα)dξβdRβ , (4.4)Remember that the term T (0)
β,α 
orresponds to the s
attering amplitude for an arbitrarypotential Uβ. By assumption, this potential does not depend on the internal 
oordinates ofthe proje
tile or target and, therefore, 
annot 
ontribute to inelasti
 s
attering or transfer.Sin
e we are interested in a transfer pro
ess, it 
an be dropped out. The distorted wave

χ
(−)
β (Kβ,Rβ) is the time-reverse of χ(+)(Kβ,Rβ), whi
h des
ribes the elasti
 s
atteringby the potential Uβ .The DWBA approximation is obtained approximating the total wavefun
tion Ψ

(+)
Kα

by
Ψ

(+)
Kα

(Rα, ξα) ≈ χ(+)
α (Kα,Rα)Φα(ξα) (4.5)where Φα(ξα) is just the produ
t of the internal states of the proje
tile and target ground-state wavefun
tions. This gives rise to the DWBA approximation:
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Tβ,α =

∫ ∫

χ
(−)∗
β (Kβ,Rβ)Φ

∗
β(ξβ)(Vβ − Uβ)χ

(+)
α (Kα,Rα)Φα(ξα)dξβdRβ . (4.6)The expressions (4.4) and (4.6) are known as post forms of the s
attering amplitude,be
ause they 
ontain a matrix element of the residual intera
tion Vβ − Uβ in the �nal
hannel. An analogous (and equivalent) prior form exa
t amplitude is given by (β 6= α)

T prior
β,α =

∫ ∫

Ψ
(−)∗
Kβ

(Rβ, rβ)(Vα − Uα)χ
(+)
α (Kα,Rα)Φα(ξα)dξαdRα , (4.7)where Vα is the proje
tile-target intera
tion in the initial partition, Uα(Rα) some arbitrarypotential de�ned in the 
oordinate and χ

(+)
α (Kα,Rα) a distorted wave des
ribing theproje
tile-target motion under the potential Uα(Rα).The prior DWBA approximation is obtained making the approximation

Ψ
(−)
Kβ

(Rβ, ξβ) ≈ χ
(−)
β (Kβ,Rβ)Φα(ξα) (4.8)In the remaining of this 
hapter, we relax the notation by taking: Rα → R and

Rβ → R′. With this new notation, the relevant 
oordinates are shown in Fig. 4.3.Even within the DWBA approximation, Eqs. (4.6) or (4.8) are di�
ult to solve, be-
ause they involve many-body wavefun
tions of the initial and �nal nu
lei (Φα(ξα) and
Φβ(ξβ)) and the proje
tile�target intera
tions (Vα and Vβ). With some further approx-imations, we 
an redu
e this 
ompli
ate many-body problem to an e�e
tive three-bodyproblem. First, we write the wavefun
tion Φα(ξα) as (see Fig. 4.3):

Φα(ξα) = ΦA(ξ, r)φb(ξ
′) (4.9)and the quantum me
hani
al state of the 
omposite nu
leus A is further expanded as

ΦA(ξ, r) = CA
vaφa(ξ)φvϕav(r) + ΦC

A. (4.10)In this simpli�ed notation, φa and φv represent the internal wavefun
tions of 
lusters
a and v, CA

avϕav(r) represents the overlap fun
tion, whi
h 
an be written in terms of anormalized relative wavefun
tion ϕav(r) and a spe
tros
opi
 amplitude CA
av. The produ
tof these three terms is impli
itly 
oupled to the angular momentum of nu
leus A.Noti
e that not all the state ΦA 
an be des
ribed as two 
lusters b, v with a 
ertainstate of relative motion. ΦC

A represents the part of the state that has a more 
ompli
ated
on�guration.Similarly, for the �nal partition, we may write
Φβ(ξβ) = ΦB(ξ

′, r′)φa(ξ) (4.11)and the state of the 
omposite nu
leus B is expanded as
ΦB(ξ

′, r′) = CB
vbφb(ξ

′)φvϕbv(r
′) + ΦC

B. (4.12)The following approximations allow us to redu
e the many-body problem to a three-body problem:
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• The terms ΦC

A and ΦC
B, 
orresponding to 
omplex 
on�gurations of A and B, do not
ontribute signi�
antly to transfer and are therefore negle
ted.

• The normalized overlap fun
tions ϕbv(r
′) and ϕav(r) 
an be approximated by theeigenstates of two-body Hamiltonians with intera
tions Vbv and Vav, respe
tively.They will be represented by some real mean-�eld intera
tions.

• During the 
ollision pro
ess the intera
tions between the 
lusters a,b, and v are
ompletely des
ribed by two-body intera
tions Vbv, Vav and Uab, that 
annot alterthe internal states of the 
lusters. In our des
ription of transfer, we do not 
onsiderexpli
itly pro
esses that lead to the ex
itations of the 
lusters b and a, so the in-tera
tion between them is represented by an e�e
tive opti
al potential, 
omplex ingeneral, that we denote by Uab. So we will write:
Vα − Uα → Vbv + Uab − UbA ≡ Vprior (4.13)
Vβ − Uβ → Vav + Uab − UaB ≡ Vpost . (4.14)The di�eren
es Uab − UbA (in prior form) and Uab − UaB (in post form) are 
alledremnant terms. For a suitable 
hoi
e of UbA (prior) or UbA (post) we 
an a
hievesome 
an
ellation of these remnant terms and hen
e the transfer will be dominatedby the valen
e�
ore intera
tion Vbv (prior) or Vav (post).The 
orresponding transition amplitudes result:

T prior ≈ CB∗
bv CA

avT 3b
prior (4.15)

T post ≈ CB∗
bv CA

avT 3b
post (4.16)with2

T 3b
prior =

∫ ∫

χ
(−)∗
β (K′,R′)ϕ∗

bv(r
′)Vpriorχ

(+)
α (K,R)ϕav(r)dRdr. (4.17)and

T 3b
post =

∫ ∫

χ
(−)∗
β (K′,R′)ϕ∗

bv(r
′)Vpostχ

(+)
α (K,R)ϕav(r)dR

′dr′. (4.18)It 
an be formally demonstrated that the prior and post DWBA expressions give ex-a
tly the same result. Hen
e, the 
hoi
e of one of another representation is done by
omputational 
onvenien
e, determined by the range of the intera
tions. In many situa-tions, an appropriate 
hoi
e of the auxiliary potential produ
es a 
ertain 
an
ellation ofthe remnant term. In those situations, the transition amplitude is mostly determined by2Note that, dξβ = dξdξ′dr. To evaluate the T-matrix, we have to perform integrals of the form
∫

Φ∗
B(ξ

′, r′)Φb(ξ
′)dξ′ = CB

bvϕbv(r
′).where we have used the parentage de
omposition of Φ∗

B in terms of b state (likewise for A).
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tion Vav (post) or Vbv (prior) and it results numeri
ally advantageous to 
hoosethe representation for whi
h this intera
tion is of shorter range.The a

ura
y of DWBA depends on the 
hoi
e of the auxiliary potentials for thein
ident (UAb) and �nal (UaB) 
hannels. These 
ould be, in prin
iple, any fun
tion of the
o-ordinate R and R′, respe
tively. Two approa
hes are usually taken:
• The mi
ros
opi
 approa
h. The auxiliary potential in the outgoing 
hannel UaB istaken as the expe
tation value, in the �nal bound state ϕbv(r

′), of the sum of theintera
tions Uab + Vva. Expli
itly,
UaB(R

′) =

∫

d3r′ |ϕbv(r
′)|2 (Uab + Vav). (4.19)Similarly, UAb is taken as the expe
tation value, in the initial bound state, of thesum of the intera
tions Uab + Vvb,

UAb(R) =

∫

d3r |ϕav(r)|2 (Uab + Vbv). (4.20)In pra
ti
al appli
ations of DWBA, it is very 
onvenient that the auxiliary po-tentials are 
entral, so that they depend on the value of the radial 
o-ordinate
UAb(R), UaB(R

′) and not in its dire
tion. This is a
hieved 
onsidering only themonopole part of the folding intera
tion, or, equivalently, averaging the folding po-tential over all the magneti
 substates.The mi
ros
opi
 approa
h has the advantage of being 
ompletely determined by thetwo-body intera
tions between the fragments. From the formal point of view, thiswould be the natural 
hoi
e for UAb, in order to make the residual term Uab+Vvb−UAbminimal, for the bound state ϕav.On the negative side, it is not trivial that the intera
tion UAb, so obtained, would re-produ
e a

urately the A+ b elasti
 s
attering. The intera
tions Uab, Vav, Vbv wouldhave to be taken as 
omplex intera
tions, in order to reprodu
e elasti
 s
attering ortransfer, but in this 
ase Vav, Vbv 
an not be used to obtain bound states, unless theintera
tions are expli
itly energy dependent. Finally, this approa
h ex
ludes 
om-pletely any e�e
t of break-up 
hannels on the three-body wavefun
tion. Hen
e, thisapproa
h would be valid when the three-body s
attering wavefun
tions is dominatedby the elasti
 
omponent, either in the in
ident or in the exit 
hannels.
• The phenomenologi
al approa
h. The auxiliary potential in the in
ident 
hannel
UAb is obtained by �tting the elasti
 s
attering data on the α (=A + b) 
hannel.The auxiliary potential in the exit 
hannel, UaB , is obtained by �tting the elasti
s
attering on the β (= a+B) 
hannel. This approa
h has the advantage of allowingfor a 
onsistent des
ription of transfer rea
tions, as well as of elasti
 s
atteringin the in
ident and outgoing 
hannels. It takes into a

ount, through the use of



48 CHAPTER 4. TRANSFER REACTIONS: THE DWBA METHODopti
al potentials, the e�e
t of 
omplex rea
tion pro
esses, su
h as fusion, that 
anremove �ux from the elasti
 and from the transfer 
hannels. Furthermore, the e�e
tof some three-body rea
tions, su
h as break-up, whi
h remove �ux from elasti
and transfer 
hannels, are approximately taken into a

ount be
ause the opti
alpotentials �t the experimental elasti
 
ross se
tions, whi
h are a�e
ted by all thesedynami
 pro
esses. On the negative side, it is not always possible to �nd the elasti
data for the outgoing 
hannel. If the �nal state of nu
leus B is not in its groundstate, but on an ex
ited state, it will not be possible to measure the 
orrespondingelasti
 s
attering. This is parti
ularly true if the �nal state is in the 
ontinuum.Besides, the opti
al potentials reprodu
e typi
ally the asymptoti
 wavefun
tions,whi
h determines the S-matrix and the s
attering amplitudes leading to di�erential
ross se
tions. It does not ne
essarily reprodu
e the wavefun
tions in the internalradial range that is relevant for the transfer matrix elements.Re
alling the relation between the T-matrix and the s
attering amplitude we have(prior form, likewise for post form)
fprior
β,α (θ) = − µβ

2π~2
CB∗

bv CA
av

∫ ∫

χ
(−)∗
β (K′,R′)ϕbv(r

′)Vprior(R, r)ϕav(r)χ
(+)
α (K,R)dRdr(4.21)and the 
orresponding di�erential 
ross se
tion

(
dσα,β

dΩ

)prior

=
µαµβ

(2π~2)2
Kβ

Kα
|CB

bv|2|CA
av|2

×
∣
∣
∣
∣

∫ ∫

χ
(−)∗
β (K′,R′)ϕbv(r

′)Vprior(R, r)ϕav(r)χ
(+)
α (K,R)dRdr

∣
∣
∣
∣

2 (4.22)The fa
tors SB
ℓbv = |CB

bv|2 and SA
av = |CB

bv|2 are 
alled spe
tros
opi
 fa
tors. Thespe
tros
opi
 fa
tor SA
av 
an be regarded as the probability of �nding the valen
e parti
le

v in a given state ϕav(r) 
oupled to the 
ore in the state a. A

ording to this result, inDWBA, the transfer 
ross se
tion is proportional to the produ
t of spe
tros
opi
 fa
tors
SB
bv S

A
av. This is a very important and useful result be
ause, whenever the approximationswhi
h lead to Eq. (4.22) are justi�ed, we 
an extra
t information on the spe
tros
opi
fa
tors of the 
olliding nu
lei by 
omparing the experimental data with the DWBA pre-di
tion.Let us �nish by summarizing the approximations and assumptions inherent to theDWBA method:1. Only the transferred parti
le (or parti
les) is treated expli
itly, while all the others,whi
h we refer generi
ally as the 
ore, are regarded as passive or inert (the 
ore isassumed to remain un
hanged during the 
ollision92. Assumes that the elasti
 opti
al potential Uα provides waves fun
tions for the rela-tive motion whi
h are good within the range of the potential V − U . For example,
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Figure 4.4: Comparison of di�erent 
oupling s
hemes dis
ussed in this work for the rea
-tion 10Be(d,p)11Be: (a) DWBA, (b) CDCC-BA, (
) ADWA and (
) CRC.for a (d, p) rea
tion in post form, Vpost = Vβ − Uβ ≈ Vpn and so the distortingpotentials must be a

urate for small p− n separations.
3. Assumes that the transfer pro
ess is weak so that it 
an be treated in �rst order.
The 
oupling s
heme assumed in the DWBA method is s
hemati
ally depi
ted inFig. 4.4(a) for the 10Be(d,p)11Be 
ase. The solid arrow indi
ates that only transfer fromthe ground state of the deuteron to the proton 
hannel is expli
itly in
luded. The e�e
tof breakup 
hannels of the deuteron (shaded area in this plot) is 
ompletely negle
ted inthe afore-mentioned mi
ros
opi
 approa
h, and only partially taken into a

ount in thephenomenologi
al approa
h, through its e�e
t on the elasti
 wavefun
tion.



50 CHAPTER 4. TRANSFER REACTIONS: THE DWBA METHODSpins and antisymmetrization: spe
tros
opi
 fa
torsThe quantities |CB
bv|2 and |CA

av|2 are 
alled spe
tros
opi
 fa
tors. Re
alling (4.12)or (4.10), they give information on �nding a given single-parti
le 
on�guration inthe 
omposite system. So, for example, |CA
av|2, tell us the probability of �nding thevalen
e parti
le in the single-parti
le state ϕav(r), 
oupled to the 
ore a in somegiven state, to give the 
omposite state A. We note here that our des
ription issomewhat s
hemati
, be
ause (i) we have not introdu
ed the spins expli
itly and(ii) we have not 
onsidered antisymetrization, that is, the fa
t that the 
ompositeand 
ore wavefun
tions are des
ribed by antisymmetrized wavefun
tions and that thetransferred parti
le is indistinguishable from those of the same orbital in the donor orre
eptor nu
lei. So, for example, the 
omposite nu
leus A would be 
hara
terized bysome total angular momentum J and proje
tionM . Its state should be des
ribed by afully antisymmetrized wavefun
tion, ΦJM

A (ξ, r). Analogously, the 
ore nu
leus B, willbe 
hara
terized by a fully antisymmetrized wavefun
tion with angular momentumand proje
tion I, MI . It is possible to expand the wavefun
tion ΦJM
A (ξ, r) in termsof produ
ts of valen
e and 
ore 
on�gurations, i.e.,

ΦJM
A (ξ, r) =

1√
nA

∑

Iℓj

CIJ
ℓsj

[
ΦI

a(ξ)⊗ ϕℓsj
av (r

]

JM

=
1√
nA

∑

Iℓj

〈IMIjm|JM〉CIJ
ℓsjΦ

IMI
a (ξ)ϕℓsjm

av (r) (4.23)where nA is the number of equivalent nu
leons. This fa
tor a

ounts for the anti-symmetrization of the wavefun
tion sin
e these nA nu
leons are indistinguishable. Ifthe overlaps fun
tions ϕℓsjm
av (r) are normalized to unity, the 
oe�
ients C(A|a)IJℓsj arethe spe
tros
opi
 amplitudes or 
oe�
ients of fra
tional parentage. Theirsquare are the spe
tros
opi
 fa
tors:

SIJ
ℓsj = |CIJ

ℓsj|2 (4.24)The overlap wave fun
tions ϕℓsjm
av (r) and ϕℓsjm

bv (r′) are not easy to 
al
ulate frommi
ros
opi
 stru
ture models. For that reason, the standard pro
edure is to approxi-mate these fun
tions by the solutions of a one-body S
hrödinger equation assuming asimple potential shape (typi
ally, a Woods-Saxon shape), for the apropriate quantumnumbers {n, l, s, j}, and the experimental separation energy
[

− ~
2

2µva
∇2

r
+ Vva(r)− εva

]

ϕℓsj
av (r) = 0 , (4.25)and [

− ~
2

2µvb
∇2

r
+ Vvb(r)− εvb

]

ϕℓsj
bv (r) = 0 , (4.26)where εva and εvb are the binding energy of the valen
e parti
le in the nu
lei A and

B, respe
tively.
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ations of the DWBA methodDependen
e with the quantum numbers of the transferred parti
leThe DWBA does not only provide information on spe
tros
opi
 fa
tors. The shape of theangular distribution obtained with Eq. (4.22) is found to depend 
riti
ally on the internalwavefun
tions ϕA
ℓsj(r) and ϕB

ℓ′sj′(r
′). If we have an a

urate model for either the proje
tileor target (this is the 
ase of a (d, p) rea
tion) then we 
an infer information on the othernu
leus.As an example we show in Fig. 4.5 several 
al
ulations for the 56Fe(d,p)57Fe rea
tion,ea
h of them using a di�erent 
hoi
e for the orbital angular momentum of the transferredneutron in the �nal state.

0 20 40 60 80 100
θ

c.m.
 (deg)

0

10

20

30

40

50

dσ
/d

Ω
 (

m
b/

sr
)

l=0
l=1
l=2
l=3

56
Fe(d,p)

57
Fe

Figure 4.5: DWBA 
al
ulations for the di�erential 
ross se
tion of the rea
tion
56Fe(d,p)57Fe, showing several assumptions for the wavefun
tion of the transferred neutronin the 57Fe residual nu
leus.
Dependen
e with the binding energyIn addition to the quantum numbers, the wavefun
tions ϕA

ℓsj(r) will depend on the bindingenergy of the transferred parti
le. This is illustrated in Fig. 4.6, where we show severalDWBA 
al
ulations for a given single-parti
le 
on�guration, and varying the bindingenergy of the transferred neutron in the �nal nu
leus. The larger the separation energy,the smaller the 
ross se
tion. This is expe
ted sin
e a more bound nu
leon will be moredi�
ult to remove than a weakly bound nu
leon.
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Figure 4.6: DWBA 
al
ulations for the di�erential 
ross se
tion of the rea
tion
56Fe(d,p)57Fe, for a �xed 
on�guration of the transferred neutron, and several valuesof its separation energy in the 57Fe residual nu
leus.Dependen
e with the in
ident energyIn inelasti
 s
attering, the ex
itation probability in
reases with the in
ident energy; thelarger the in
ident energy, the larger the transferred momentum to the proje
tile or target.On the other hand, for transfer rea
tions there is an optimal energy for whi
h the transfero

urs. This is shown in Fig. 4.7 for our working example, 56Fe(d,p)57Fe. In this 
ase, theoptimum energy is about 9 MeV (that is, about 4.5 MeV per nu
leon).4.5 Beyond DWBA: ADWA and CCBA methodsIn general, DWBA has been, and still is, a key approa
h to des
ribe transfer rea
tions, andit has been used extensively to extra
t spe
tros
opi
 information on nu
lear stru
ture, inparti
ular spe
tros
opi
 amplitudes. However, DWBA is based on a rather 
rude approa
hto the three-body problem, and is expe
ted to be a

urate only when the elasti
 s
attering,in the in
ident and outgoing 
hannels, is dominant. For the 
ase of exoti
 nu
lei, whi
hare frequently weakly bound, break-up 
hannels 
an play a very important role in thethree-body dynami
s. Hen
e, it is important, in order to extra
t reliable spe
tros
opi
information from transfer rea
tions with exoti
 nu
lei, to 
he
k the validity of the DWBAmethod by 
omparing it with other approa
hes that take into a

ount the role of break-up
hannels.The DWBA approa
h, as mentioned previously, relies strongly on the assumption thatthe elasti
 
hannel dominates the rea
tion. This does not only imply that the dominant
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Figure 4.7: DWBA 
al
ulations for the di�erential 
ross se
tion of the rea
tion
56Fe(d,p)57Fe as a fun
tion of the in
ident energy.
ross se
tions is elasti
, but also that, during the 
ollision pro
ess, the three-body wave-fun
tion 
an be approximated by the elasti
 
omponent. Note that these two fa
ts arenot equivalent. There 
an be dynami
 situations in whi
h elasti
 
ross se
tion dominates,meaning that the asymptoti
 three-body wavefun
tion, at large distan
es, is dominatedby the elasti
 
omponent. However, this does not mean that at short proje
tile-targetdistan
es, whi
h give the main 
ontribution to the transfer matrix element, the elasti

omponent should be dominant. Dynami
 polarization e�e
ts make that the 
ompos-ite proje
tile 
an be strongly distorted at short distan
es, even when asymptoti
ally theenergy mat
hing 
onditions make the elasti
 
hannel dominant.Moreover, the phenomenologi
al DWBA approa
h relies on the use of opti
al poten-tials, usually taken as lo
al, L-independent potentials, 
hosen to reprodu
e elasti
 s
at-tering. This means that the opti
al potentials will reasonably reprodu
e the phase shifts,for all L-values, in the elasti
 
hannel. In other words, the phenomenologi
al DWBAapproa
h reprodu
es the elasti
 wavefun
tion asymptoti
ally, at large proje
tile-targetdistan
es. It is not trivial that the elasti
 wavefun
tion used in the phenomenologi
alDWBA approa
h reprodu
e 
orre
tly the elasti
 
omponent of the wavefun
tion, in theradial range relevant for the transfer T-matrix elements.We dis
uss in the next subse
tions some approa
hes that go beyond the DWBAmethod.4.5.1 The adiabati
 (ADWA) methodIndeed, this 
riti
ism of the DWBA approa
h is not very useful if an alternative for-mulation is available, whi
h maintains the relative simpli
ity of DWBA, and provides
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tion 
al
ulation that 
an be 
ompletely determined from experi-ment. This is a
hieved by the Adiabati
 Distorted Wave Approximation (ADWA), whi
hwas initially formulated by Johnson and Soper [16℄. This approa
h is formulated in prin-
iple for (d, p), or (d, p) rea
tions, although it 
ould be applied to other weakly bound
omposite systems. It relies on the fa
t that the 
omposite proje
tile has a relatively lowbinding energy (2.22 MeV in the 
ase of the deuteron), and so, if the 
ollision energyis relatively high, we 
an expe
t that, during the 
ollision pro
ess, the relative proton-neutron 
o-ordinate does not 
hange signi�
antly; it is �frozen�. Under this situation, therelevant intera
tion that determines a

urately the proje
tile-target wavefun
tion is notthe phenomenologi
al deuteron-target intera
tion that would reprodu
e elasti
 s
attering,but the sum of the intera
tions of ea
h one of the fragments of the proje
tile (proton andneutron in the deuteron 
ase) with the target.In the adiabati
 approximation [16℄ (also 
alled sudden approximation by some authors)the three-body wavefun
tion 
an be written as
Ψ

(+)
K

(R, r) ≃ χ(+)
α (K,R, r)ϕav(r), (4.27)where χ

(+)
α (R, r) is the solution of a two-body s
attering problem, on the 
o-ordinate R,in whi
h the intera
tion is given by

UAb(R, r) = Uab(Rab) + Vvb(r
′). (4.28)Indeed, the potential that des
ribes the s
attering wavefun
tion, although two-body, isnot 
entral and so the 
al
ulation of the adiabati
 wavefun
tion, for ea
h value of the

a-v separation r is very 
ompli
ated, but it has been done [3, 4℄. Besides, the adiabati
approximation to the three-body wavefun
tion is not a

urate for large values of r, whereone would expe
t to see outgoing waves, instead of the exponential de
ay given by thebound two-body wavefun
tion ϕav(r).Fortunately, these short
omings of the adiabati
 wavefun
tions are not important, ifone is only interested in evaluating the matrix element involved in transfer. These aredominated by the Vav(r) intera
tion (the proton-neutron intera
tion, in the deuteron 
ase)whi
h has a short range. Note that, even if the a-v wavefun
tion ϕav(r) has a relativelylong range, whi
h is the 
ase for weakly bound halo systems, the Vav(r) has a mu
h shorterrange. Hen
e, for the purpose of evaluating the transfer matrix element, one 
an evaluatethe adiabati
 wavefun
tion using the potential evaluated at r = 0. This leads to theJohnson and Soper approximation [16℄, in whi
h
Ψ(+)(R, r) ≃ χ(+)

α (K,R)ϕav(r), (4.29)where χ(+)
α (K,R) is the solution of a two-body s
attering problem, on the 
o-ordinate R,in whi
h the intera
tion is given by

UJS
Ab (R) = Uab(R) + Uvb(R). (4.30)Note that, in this expression, the v − b intera
tion Vvb, whi
h would in general be energydependent, and would generate the bound state ϕbv(r

′), is repla
ed by the opti
al potential
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Uvb that des
ribes the v − b intera
tion at the same energy per nu
leon in the in
identbeam. This is justi�ed by the adiabati
 approximation; the transfer pro
ess dynami
s is
onsistent with freezing the a-v 
o-ordinate, that then s
atters from the b target with anintera
tion that is the sum of Ubv and Uba intera
tions at the same energy per nu
leon.Several re�nements and 
orre
tions have been performed to the ADWA formalism.For example, a �nite-range version of the adiabati
 potential was proposed by Johnsonand Tandy [17℄:

UJT
Ab (R) =

〈ϕav(r)|Vav(Uab + Uvb)|ϕav(r)〉
〈φav(r)|Vav|φav(r)〉

. (4.31)However, for the purpose of the analysis of (d, p) and (p, d) rea
tions, the simplest Johnson-Soper expression given by Eq. (4.30) is by far the most widely used. Here, we will outlineits advantages and disadvantages. On the positive side, the ADWA approa
h ingredientsare 
ompletely determined by experiments. These ingredients are the proton-target andneutron-target opti
al potentials, evaluated at half of the deuteron s
attering energy, aswell as the well known proton-neutron intera
tion.The adiabati
 approximation is equivalent to negle
t the ex
itation energy of thestates of the proje
tile [16℄. The adiabati
 wavefun
tion takes into a

ount the ex
itationto breakup 
hannels, but assuming that these states are degenerate in energy with theproje
tile ground state, as illustrated in Fig. 4.4(
). Therefore, the ADWA approa
htakes into a

ount, approximately, the e�e
t of deuteron break-up on the transfer 
rossse
tion, within the adiabati
 approximation. So, it should be well suited to des
ribedeuteron s
attering at high energies, around 100 MeV per nu
leon. Systemati
 studies[13, 25, 30℄ have shown that ADWA is superior to standard DWBA for (d, p) s
atteringat high energies.On the negative side, the ADWA approa
h does not 
onsistently des
ribe elasti
 s
at-tering and transfer. Although physi
ally one 
onsiders that elasti
 s
attering, transferand break-up should be 
losely related, so that the in
rease of �ux in one 
hannel shouldredu
e the �ux in the others, this 
onne
tion is not present in ADWA. On the other hand,the arguments leading to ADWA are strongly asso
iated with the assumption that thetransfer is governed by a short range operator. So, it is not obvious that the methodremains valid for other weakly bound systems, like 11Be. Even in the 
ase of (d, p) s
at-tering, the transfer matrix element is determined not only by the n − p intera
tion, butalso by the proton-target and neutron target intera
tions, that de�ne the remnant term.It is not 
lear a-priori the role of these terms, that would have 
ontributions of three-body
on�gurations in whi
h proton and neutron are not so 
lose together.4.5.2 Continuum Dis
retized Coupled Channels Born Approxi-mation (CDCC-BA)In s
attering of weakly bound nu
lei, 
oupling to break-up 
hannels 
an play an importantrole. DWBA may not be su�
iently a

urate, as the three-body wavefun
tion is notdominated by the elasti
 
hannels. ADWA requires to assume the adiabati
 approximation
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omposite proje
tile, whi
h may not be a

urate if the 
ollision energy is notsu�
iently high. Besides, the simple Johnson-Soper expression requires to assume a shortrange in the transfer intera
tion, whi
h may not be a

urate beyond (d, p) rea
tions.A more a

urate approa
h for transfer is obtained if the three-body wavefun
tion isapproximated in terms of a basis of the states of the relative motion of the a+v sub-system,i.e.
Ψ

(+)
K

(R, r) ≈ ΨCDCC(R, r) =
N∑

i=0

χ
(+)
α,i (Ki,R)ϕav,i(r). (4.32)Here, the index i indi
ates all states expli
itly in
luded in a 
oupled 
hannels 
al
ulation

ϕav,i(r), whi
h would 
orrespond in general to a given spin and spin proje
tion (i =
0 denotes the ground state of the a + v system). This basis of states should in
ludeother possible bound states of the a + v system, if present, as well as a suitable dis
reterepresentation of the two-body 
ontinuum states. In a
tual 
al
ulations, this 
ontinuummust be trun
ated in ex
itation energy and limited to a �nite number of partial waves ℓasso
iated to the relative 
o-ordinate r. Normalizable states representing the 
ontinuumshould be obtained for ea
h ℓ value. This 
an be a
hieved making use of a pseudo-statebasis and diagonalizing the a+v Hamiltonian [18℄. Alternatively, 
ontinuum states of the
a + v Hamiltonian 
an be obtained, and normalizable states (bins) 
an be obtained byaveraging these 
ontinuum states over a 
ertain energy interval [5℄.On
e a suitable basis on the a + v 
o-ordinate is de�ned, the radial 
oe�
ients
χ
(+)
α,i (Ki,R) appearing in the expansion (4.32) are obtained as a solution of the set of
oupled di�erential equations:

[E − εiav − T̂α − U ii
Ab(R)]χ

(+)
α,i (Ki,R) =

N∑

j 6=i

U ij
Ab(R)χ

(+)
α,j (Kj,R), (4.33)where U ij

Ab are the transition potentials de�ned as
U ij
Ab(R) =

∫

dr ϕ∗
av,i(r)(Uab + Uvb)ϕav,j(r) . (4.34)The 
oupled 
hannels solution χ

(+)
α,i (K,R) 
orresponds to the outgoing waves in all di�er-ent 
hannels i, for boundary 
onditions given by a plane wave in the initial bound state

i = 0. The potentials Uab and Uvb are to be understood as e�e
tive intera
tions (
omplexin general) des
ribing the elasti
 s
attering of the 
orresponding sub-systems, at the sameenergy per nu
leon as in the in
ident proje
tile. In parti
ular, Uvb will be des
ribed ingeneral by a 
omplex opti
al potential, and will di�er from the intera
tion Vvb used togenerate the bound state wavefun
tion of the vb system.Note that, without any loss of generality, we 
an introdu
e an arbitrary auxiliarypotential UAb(R), so that eq.(4.33) 
an ve written as
[E − εiav − T̂α − UAb(R)]χ

(+)
α,i (Ki,R) =

N∑

j

V ij
prior(R)χ

(+)
α,j (Kj,R), (4.35)
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prior(R) are the matrix elements of Vprior = Uab + Uvb − UAb.On
e the CDCC wavefun
tion (4.32) is obtained, it 
an be inserted into Eq. (4.4) togive:

T (CDCC) = 〈χ(−)
β (K′,R′)ϕbv(r

′)|Vpost|ΨCDCC(R, r)〉. (4.36)with Vpost = Vva + Uab − UaB. To 
larify the link between the CDCC-BA and DWBAmethods it is 
onvenient to rewrite this expression as:
T (CDCC) = 〈χ(−)

β (K′,R′)ϕbv(r
′)|Vpost|χ(+)

α,0 (R)ϕav,0(r)〉

+

N∑

i=1

〈χ(−)
β (K′,R′)ϕbv(r

′)|Vpost|χ(+)
α,i (R)ϕav,i(r)〉. (4.37)The �st term in this expression 
orresponds to the dire
t transfer, that is, the transferpro
eeding dire
tly from the ground state of the proje
tile (eg. the deuteron, in a (d, p)rea
tion), whereas the se
ond term a

ounts for the multi-step transfer o

urring via theex
ited states of the proje
tile (p − n 
ontinuum states in the 
ase of the deuteron).These two types of pro
esses 
orrespond, respe
tively, to the solid and dashed lines inFig. 4.4(b) for the 10Be(d,p)11Be 
ase. Clearly, the multi-step pro
ess going through thebreakup 
hannels are omitted in the DWBA 
al
ulation. At most, the DWBA 
onsidersthe e�e
t of these 
hannels on the elasti
 s
attering if a suitable 
hoi
e of the entran
eopti
al potential is made. The adiabati
 approximation in
ludes in prin
iple both me
ha-nisms, but under the assumption that the ex
ited (breakup) 
hannels of the proje
tile aredegenerate with the ground state [Fig. 4.4(
)℄. The advantage of the CDCC-BA approa
his that all relevant bound and 
ontinuum states in the a+v system are expli
itly in
ludedin the 
al
ulation.Some early 
omparisons between these three methods 
an be found in Refs. [24, 15,2, 18℄ and the main results are also summarized in Ref. [5℄. Due to numeri
al limitations,these �rst studies where done using a zero-range approximation of the Vav potential. Over-all, they �nd that the ADWA model des
ribes well the dire
t transfer 
ontribution. How-ever, the multi-step 
ontribution, whi
h are 
ompletely absent in DWBA, are des
ribedvery ina

urately by the adiabati
 approximation. At low energies (Ed < 20 MeV) thedis
repan
y between the ADWA and CDCC-BA 
al
ulation 
an be understood be
auseat these energies the adiabati
 approximation is questionable. However, even at mediumenergies (Ed ≈ 80 MeV) there are situations in whi
h transfer through breakup 
hannelsis found to be very signi�
ant, and therefore the ADWA method did not work well either.In these situations, the CDCC-BA should be better used instead. The disadvantage ofthe 
al
ulations is that, in prin
iple, a large basis of internal states has to be in
luded,making this approa
h mu
h more demanding numeri
ally.Finite-range e�e
ts have been studied within the adiabati
 approximation in Ref. [20,22℄ and were found to be small ( < 10%) at energies below 20-30 MeV/u but be
omemore and more important as the in
ident energy in
reases. This limitation should be alsotaken into a

ount in the analysis of experimental data.



58 CHAPTER 4. TRANSFER REACTIONS: THE DWBA METHOD4.5.3 The CRC methodIt was stated that Eqs. (4.4) and (4.7) provide the exa
t solution to the 3-body s
at-tering problem, provided that Ψ(+)
K

(R, r) (in the post form) or Ψ(−)
K′ (R′, r′) (in the priorform) 
orrespond to the exa
t three-body wavefun
tions with the appropriate boundary
onditions. However, in pra
ti
al 
al
ulations, these exa
t solutions are not available andthus they need to be repla
ed by approximated ones, su
h as the fa
torized form usedin the DWBA method, the adiabati
 wavefun
tion or the CDCC expansion. In all theseapproximations, the three-body wavefun
tion is restri
ted to 
on�gurations 
orrespond-ing to either the initial or the �nal 
hannel. For example, in the post representation, theinitial state is a solution solution of the three-body S
hrödinger equation

[

T̂ + Vav + Vvb + Uab − E
]

Ψ(+)(r,R) = 0. (4.38)Asymptoti
ally, the solution of this equation is of the form
Ψ(+)(r,R) → ϕav(r)e

iK·R + outgoing waves (4.39)where the �outgoing waves� 
ontain 
ontributions from all open 
hannels. This in
ludeselasti
 and breakup 
hannels, but also rearrangement 
hannels of the a+b and v+b pairs, ifthey are present. In prin
iple, the eigenstates of the a+v Hamiltonian form a 
omplete setand hen
e the expansion Eq. (4.32) should 
ontain all the relevant 
hannels. In parti
ular,the asymptoti
 part of (4.32) should 
ontain information from all open 
hannels, in
ludingrearrangement 
hannels. However, rearrangement 
hannels 
orresponding to the v + bsystem would behave asymptoti
ally as a produ
t of the bound wavefun
tion ϕvb(r
′
vb)times a plane wave in the aB 
o-ordinate. Although these states 
ould be in prin
ipleexpressed in the ϕav(rav) basis, this would require require a very large number of energiesand angular momenta [5℄. In other words, any �nite CDCC approximation will des
ribepoorly the 
ontribution from rearrangement 
hannels.A heuristi
 way of in
orporating rearrangement 
hannels is provided by the Coupled-Rea
tion-Channels (CRC) framework [23, 19, 26, 29, 12℄. We just give a brief outlineof the method here, and refer the reader to the referred works for details (see also [1℄for a re
ent review). The idea of the CRC method is to propose a model wavefun
tionwhi
h in
orporates expli
itly 
ontributions from several mass partitions. For simpli
ity,let us assume that we wish to 
onsider expli
itly ex
ited states (bound or unbound) ofthe in
oming partition plus some ex
ited states of the aB partition. Then, we use thefollowing ansatz:

Ψ(+)(R, r) ≈ ΨCRC(R, r) =
∑

i

χ
(+)
α,i (R)ϕav,i(r) +

∑

j

χ
(+)
β,j (R

′)ϕbv,j(r
′) . (4.40)This wavefun
tion 
an be interpreted as a generalization of the CDCC expansion ofEq. (4.32). The radial fun
tions χ(+)

α,i (R) and χ
(+)
β,j (R

′) are obtained by substituting themodel wavefun
tion (4.40) into the S
hrödinger equation:
[H −E]Ψ(+)CRC = 0. (4.41)



4.5. BEYOND DWBA: ADWA AND CCBA METHODS 59To get the equations satis�ed by χ
(+)
α,i (R) we repla
e in this equation ΨCRC by the ansatz(4.40), multiply on the left by ea
h of the fun
tions ϕ∗

av,i(r) and integrate along r we getthe system of equations:
∑

i′

〈ϕav,i|H −E|χ(+)
α,i′ϕav,i′〉+

∑

j

〈ϕav|H − E|χ(+)
β,j ϕbv,j〉 = 0. (4.42)A 
ompli
ation that arises when solving these equations, is that one have to deal with
oupling potentials between internal states ϕbv,j and ϕav,i that belong to di�erent Hamil-tonians and, therefore, are not mutually orthogonal. These gives rise to the appearan
eof the so-
alled non-orthogonality terms in the 
oupled equations. Furthermore, the 
ou-pling potentials are found to be non-lo
al. For all these reasons, the solution of the CRCequations is mu
h more involved than the 
onventional CC or CDCC equations.The great advantage of the CRC method is that it 
an treat transfer 
ouplings beyondthe �rst order (in addition to the inelasti
 
ouplings). For example, a possible CRC
oupling s
heme for our 10Be(d,p)11Be rea
tion is shown in Fig. 4.4(d).
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Appendix ARotor and vibrator models
A.1 Axially symmetri
 parti
le-rotor model (PRM)The parti
le-rotor model (PRM) [7℄ assumes that the nu
leus has a permanent deforma-tion, and hen
e its radius will not be longer a 
onstant. Instead, the distan
e from the
enter to an arbitrary point in the surfa
e 
hara
terized by a fun
tion of the angles θ′ and
φ′), de�ned with respe
t to intrinsi
, i.e., body-�xed, frame (see Box),

r(θ′, φ′) = R0[1 +
∑

λ

βλYλ0(θ
′, φ′)] = R0 +

∑

λ

δλYλ0(θ
′, φ′)] ≡ R0 +∆(r̂′) (A.1)where R0 is an average radius of the nu
leus and hen
e the remaining term (denoted

∆(θ′, φ′)) represents the deviation of the radius for a parti
ular point on the surfa
e fromthis average radius. The quantities δλ = βλR0 are the deformation lengths. The fun
tion
∆̂(r̂′) is sometimes referred to as shift-fun
tion.The angular variables in these expressions are referred to the referen
e frame alignedwith the symmetry axis, but 
an be 
onverted to the laboratory frame (
hara
terized bythe variables θ, φ) by means of the transformation [see eg. Ref. [8℄, Eq. (2.24)℄:

Yλ0(θ
′, 0) =

∑

µ

Dλ
µ0(ω)Yλµ(θ, φ) (A.2)where D is the so 
alled rotation matrix (or D-matrix) and with ω = {α, β, γ} are theEuler angles des
ribing the transformation from the body-�xed frame to the laboratoryframe. In this parti
ular 
ase (on the three-indexes equal to zero) the D-matrix is just

Dλ
µ0(α, β, γ) =

√

4π

2λ+ 1
Yλµ(θ0, φ0) (A.3)where {θ0, φ0} are the angles de�ning the orientation of the symmetry axis with respe
tto the laboratory frame. 61



62 APPENDIX A. ROTOR AND VIBRATOR MODELSThe deformation parameterThe deformation parameter, β, measures the departure of a nu
leus from the spheri
alshape. For a spheri
al nu
leus, we have β = 0. For a nu
leus with a quadrupolepermanent deformation, we have β2 6= 0. If β2 > 0, the nu
leus is said to be prolate(�rugby ball� shape), whereas for β < 0 it is said to be oblate (�dis
us-shaped�).Spheri
al nu
leus (β = 0)
0r(  )=Rθ

z

x

y

Deformed nu
leus (β 6= 0)
r(  )θ’

y’

z’

x

y

z

x’

It is 
onvenient to introdu
e the deformation length operator, de�ned as
δ̂λµ ≡ βλR0Dλ

µ0(ω) = β2R0

√

4π

2λ+ 1
Yλµ(θ0, φ0). (A.4)In terms of this operator, the radius of the nu
leus is written in the laboratory frameas

r(θ, φ) = R0 +
∑

µ

δ̂λµYλµ(θ, φ). (A.5)If one assumes that the proje
tile�target potential is still a fun
tion of the distan
ebetween the valen
e parti
le and the surfa
e of the nu
leus, the intera
tion potentialwill follow the same fun
tional dependen
e as V (r − R0), but repla
ing R0 by r(θ′, φ′).Choosing a referen
e frame with the z axis along the symmetry axis:
V rot(~r, θ′, φ′) = V (r − r(θ′, φ′)). (A.6)This expression is expanded in multipoles as:
V rot(r, r̂′) =

∑

λ

V rot
λ (r)Yλ0(r̂

′) (A.7)with
V rot
λ (r) = 2π

∫ 1

−1

V (r − ∆̂(r̂′))Yλ,0(θ
′, 0)d(cos θ′) (A.8)
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Figure A.1: Angular momenta of a rotor. I is the total angular momentum and K itsproje
tion along the symmetry axis.For small deformations, one 
an perform a Taylor series of the potential (A.6) inpowers of ∆:
V rot(r, r̂′) ≈ V rot(r − R0)−

dV coup

dr

∑

λ

δλYλ0(r̂
′) (A.9)Inserting this expansion into Eq. (A.8) gives for a multipole λ > 0

V rot
λ (r) = −δλ

dV rot

dr
(A.10)Inserting (A.2) into (A.7):

V rot(r, r̂′) =
∑

λµ

V rot
λ (r)Dλ

µ0(ω)Yλµ(r̂). (A.11)In the derivation of the DWBA formula for inelasti
 s
attering, we had to evaluate thematrix elements of the deformation length operator between di�erent states of the rotor.These states are also de�ned in the intrinsi
 frame and 
an be 
hara
terized by the totalangular momentum I and its proje
tion on the symmetry axis, K (see Fig. A.1). Thesestates, denoted |IK〉, 
an be transformed to the laboratory frame as1
|K; IM〉 =

√

2I + 1

8π2
DI

MK(ω)|IK〉 (A.12)The matrix elements thus involve an integral of three D matri
es. These are given by (see1This expression is valid for a symmetri
 rotor. For an asymmetri
 rigid rotor, there is in general asum in K, [
.f. Ref. [8℄, dis
ussion following Eq. (2.21)℄.



64 APPENDIX A. ROTOR AND VIBRATOR MODELSe.g. [8℄, Appendix V)2,
∫

DC
c′c(αβγ)DA

a′a(αβγ)DB
b′b(αβγ) sin(β)dβdαdγ = (−)2B−2A+c+c′ 8π2

2C + 1

× 〈AaBb|C − c〉〈Aa′Bb′|C − c′〉 (A.15)Using this formula, the matrix elements of the transition operator result (I is assumed tobe integer here)
〈K; IM |Dλ

µ0|K; I ′M ′〉 =
√
2I ′ + 1√
2I + 1

〈I ′M ′λµ|IM〉〈I ′Kλ0|IK〉. (A.16)Using the Wigner-E
kart theorem (Brink and Sat
hler 
onvention), the redu
ed matrixelement is
〈K; I‖Dλ‖K; I ′〉BS =

√
2I ′ + 1√
2I + 1

〈I ′Kλ0|IK〉 = (−1)I−I′〈IKλ0|I ′K〉. (A.17)where, in the se
ond equality, we have used the properties of the Clebs
h-Gordan 
oe�-
ients.A.2 Parti
le-vibrator model (PVM)In the PVM model [28℄, the nu
leus is assumed to be spheri
al, but it 
an undergovibrations around the spheri
al shape. The surfa
e is parametrized as
r = R0[1 +

∑

λ,µ

α†
αµYλµ(r̂)] ≡ R0 +∆(r̂) (A.18)with ∆(r̂) ≡

∑

λµ α
†
αµYλµ(r̂) and where αλµ are to be understood as dynami
al variables,given in terms of phonon 
reation (b†λµ) and annihilation (bλµ) operators as:3

αλµ =
βλ√
2λ+ 1

[bλµ + (−1)µb†λ,−µ] (A.19)2In [8℄ this expressions is a
tually given in terms of the 3j symbols
∫

DC
c′c(αβγ)DA

a′a(αβγ)DB
b′b(αβγ) sin(β)dβdαdγ = 8π2

(
A B C

a b c

)(
A B C

a′ b′ c′

) (A.13)Both expressions are simply related taken into a

ount the relation between 3j-symbols and Clebs
h-Gordan 
oe�
ientes
〈AaBb|C − c〉 = (−1)A−B−c

√
2C + 1

(
A B C

a b c

) (A.14)3Di�erent authors use slightly di�erent de�nitions of these operators. In any 
ase, for r to be real α†
αµmust have the same transformation properties as Yλµ, namely, α†

αµ = (−1)µαα,−µ.
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alled zero-point amplitude, de�ned as the root mean square of α inthe ground state (no phonons) of the system (denote |0〉):
β2
λ = 〈0|

∑

µ

αλµα
†
λµ|0〉 (A.20)As in the rotational 
ase, one assumes that the proje
tile�target potential is depen-dent on the distan
e of the valen
e parti
le to the surfa
e of the deformed nu
leus,

V (r, θ, ϕ) = V vib(r − (R0 + ∆(r̂)). We 
an expand this intera
tion in a Taylor seriesabout the equilibrium position of the surfa
e (R = R0)
V vib(r − (R0 +∆(r̂)) = V (r − R0)−R0

dV vib

dr
∆(r̂) + . . . (A.21)The states of the nu
leus being ex
ited are expressed as |N ; IM〉, where N is thenumber of phonons of a given multipolarity4. The �rst term in (A.21) 
annot alter thenumber of phonons and hen
e it has only diagonal matrix elements between nu
lear states.The se
ond term, being linear in the amplitude, 
an 
onne
t vibrational states di�eringby one unit in the number of phonons. For example, for the transition between the groundstate of the system for an even nu
leus (N = I = M = 0) to a one-phonon state of angularmomentum I and proje
tion M , we have to evaluate the matrix element

〈1; IM |α†
λµ|0; 00〉 =

δI,λδM,µ√
2I + 1

, (A.22)And, for the inverse transition
〈0; 0‖α†

λµ‖1;M〉 = (−1)IδI,λδM,µ. (A.23)Of 
ourse, for the diagonal terms we have
〈1; 1‖α†

λµ‖1; I〉 = 〈0; 0‖α†
λµ‖0; 0〉 = 0. (A.24)

4A generi
 vibrational mode might 
ontain phonons of di�erent multipolarities. However, we will
onsider only states 
ontaining phonons of a given multipolarity.
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Appendix BWigner-E
kart theorem and redu
edmatrix elementsThe Wigner-E
kart theorem establishes that the matrix element of a tensor operator Ôλµ
an be expressed as
〈IfMf |Ôλµ|IiMi〉 = C(Ii, If , λ)〈IfMf |λµIiMi〉〈If‖Ôλ‖Ii〉 (B.1)where the obje
t 〈If‖Ôλ‖Ii〉 is the so 
alled redu
ed matrix element, and is independentonf the value of the z proje
tions. The 
oe�
ient C(Ii, If , λ) is an arbitrary fun
tion of Ii,

If , and λ, but is independent of the proje
tions. Several 
onventions are en
ountered inthe literature, giving rise to di�erent de�nitions for the redu
ed matrix elements (and tothe unavoidable 
onfusion when works using di�erent 
onventions are to be 
ompared!).Here, we 
ite two popular 
onventions followed in Nu
lear Physi
s:1. Bohr-Mottelson (BM) 
onvention: C(Ii, If , λ) = (2If + 1)−1/2. Hen
e,
〈IfMf |Ôλµ|IiMi〉 = (2If + 1)−1/2〈IfMf |λµIiMi〉〈If‖Ôλ‖Ii〉BM (B.2)2. Brink-Sat
hler (BS) 
onvention: C(Ii, If , λ) = (−1)2λ

〈IfMf |Ôλµ|IiMi〉 = (−1)2λ〈IfMf |λµIiMi〉〈If‖Ôλ‖Ii〉BS (B.3)So, these redu
ed matrix elements will be related by:
〈If‖Ôλ‖Ii〉BM =

√

2If + 1〈If‖Ôλ‖Ii〉BS (B.4)
67
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