What can we learn from transfer, and how is best to do it?

Wilton Catford
University of Surrey

A Single Particle States; Changing magic no.'s

B How reactions can study this physics
C Practicalities; Inverse Kinematics

D Experimental setups
E Results \& Perspectives

- Motivation: nuclear structure reasons for transfer
- What quantities we actually measure
-What reactions can we choose to use?
- What is a good beam energy to use?
- Inverse Kinematics
- Implications for Experimental approaches
- Example experiments and results

CERN, Geneva ** 22-24 April 2014

Nucleon Transfer using Radioactive Beams:

results and lessons from the TIARA and TIARA+MUST2 experiments at SPIRAL

WILTON CATFORD, University of Surrey, UK

W.N. Catford, N.A. Orr, A. Matta, B. Fernandez-Dominguez, F. Delaunay, C. Timis, M. Labiche, J.S. Thomas, G.L. Wilson, S.M. Brown, I.C. Celik, A.J. Knapton et al.
and the TIARA+MUST2 Collaboration
(Surrey, Liverpool, Daresbury, West of Scotland, Birmingham, Orsay, Saclay, GANIL, LPC Caen)
${ }^{1}$ University of Surrey, Guildford, GU2 7SH, UK
${ }^{2}$ STFC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD, UK
${ }^{3}$ University of Liverpool, Liverpool, L69 7ZE, UK
${ }^{4}$ GANIL, BP 55027, 14076 Caen Cedex 5, France
${ }^{5}$ IPN Orsay, IN2P3-CNRS, 91406 Orsay, France

Results from SHARC+TIGRESS at ISAC2/TRIUMF

UNIVERSITY OF SURREY

The University of York
C.Aa. Diget, B.R. Fulton, S.P. Fox R. Wadsworth, M.P. Taggart
G. Hackman, A.B. Garnsworthy, S. Williams C. Pearson, C. Unsworth, M. Djongolov and

Tugress

 the TIGRESS collaborationN.A. Orr, F. Delaunay, N.L. Achouri

Boston²
F. Sarazin
J.C. Blackmon
C. Svensson

SINGLE PARTICLE STATES in the

Changes - tensor force, p-n

Residual interactions move the mean field levels

Magic numbers "migrate", changing stability, reactions, collectivity

Similarly...
proton filling affects neutron orbitals

SINGLE PARTICLE STATES in the SHELL MODEL:

(d, p)

Probing the changed orbitals and their energies...

SINGLE PARTICLE STATES in the

 SHEL MODEE:As we approach the dripline, we also
have to worry about the meaning and theoretical methods for probing resonant orbitals in the continuum...

Changing shell structure and collectivity at the drip line

J.Dobaczewski et al., PRC 53 (1996) 2809

Changing Magic Numbers

attractive p-n interaction

T. Otsuka et al., Phys. Rev. Lett. 97, 162501 (2006).
T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).

Nuclei are quantum fluids comprising two distinguishable particle types... They separately fill their quantum wells... Shell structure emerges...
Valence nucleons interact...
This can perturb the orbital energies...
The shell magic numbers for $p(n)$ depend on the level of filling for the $n(p)$

Changing Magic Numbers

As the occupancy of the $\mathrm{j}_{\text {, orbit }} \mathrm{d}_{5 / 2}$ is reduced in going from (a) ${ }^{30} \mathrm{Si}$ to (b) ${ }^{24} \mathrm{O}$, then the attractive force on $\mathrm{j}_{<} \mathrm{d}_{3 / 2}$ neutrons is reduced, and the orbital rises relatively in energy. This is shown in the final panel by the $s_{1 / 2}$ to $d_{3 / 2}$ gap, calculated using various interactions within the Monte-Carlo shell model.

Utsuno et al., PRC,60,054315(1999)
Monte-Carlo Shell Model (SDPF-M)

v-p-shell

Exotic

Removing d5/2 protons ($\mathrm{Si} \rightarrow \mathrm{O}$)

Stable

Note:
This changes collectivity, also...

SINGLE PARTICLE STATES - AN ACTUAL EXAMPLE

Systematics of the $3 / 2+$ for $N=15$ isotones

removing $\mathrm{d} 5 / 2$ protons raises $\mathrm{d} 3 / 2$ and appears to lower the f7/2

Migration of the 3/2+ state creates $\mathrm{N}=16$ from $\mathrm{N}=20$ ${ }^{25} \mathrm{Ne}$ TIARA \rightarrow USD modified ${ }^{23,25} \mathrm{O}$ raise further challenges ${ }^{21} \mathrm{O}$ has similar $3 / 2+-1 / 2+$ gap (same d5/2 situation) but poses interesting question of mixing (hence recent ${ }^{20} \mathrm{O}(\mathrm{d}, \mathrm{p}) @ S P I R A L$)

- ${ }^{23}$ O from USD and Stanoiu PRC 69 (2004) 034312 and Elekes PRL 98 (2007) 102502
- ${ }^{25} \mathrm{Ne}$ from TIARA, W.N. Catford et al. Eur. Phys. J. A, 25 S1 251 (2005)

Changing Magic Numbers

$$
\begin{aligned}
& \mathrm{N}=8 \mp \begin{array}{l}
v 0 \mathrm{~d}_{5 / 2} \\
v 1 \mathrm{~s}_{1 / 2} \\
v 0 \mathrm{p}_{1 / 2}
\end{array} \\
& \begin{array}{l}
\pi 0 p_{3 / 2}- \\
\pi 0 p_{3 / 2}-\infty-\vee 0 p_{3 / 2}
\end{array}
\end{aligned}
$$

In the lighter nuclei $(\mathrm{A}<50)$ a good place to look is near closed proton shells, since a closed shell is followed in energy by a j , orbital. For example, compared to ${ }^{14} \mathrm{C}$ the nuclei ${ }^{12} \mathrm{Be}$ and ${ }^{11} \mathrm{Li}$ (just above $\mathrm{Z}=2$) have a reduced π ($0 \mathrm{p}_{3 / 2}$) occupancy, so the $\mathrm{N}=8$ magic number is lost. Similarly, compared to ${ }^{30} \mathrm{Si}$, the empty $\pi\left(0 \mathrm{~d}_{5 / 2}\right)$ in ${ }^{24} \mathrm{O}$ ($\mathrm{Z}=8$) leads to the breaking of the $\mathrm{N}=20$ magic number. Another possible extreme is when a particular neutron orbital is much more complete than normal.

Nuclear states are not in general pure SP states, of course

For nuclear states, we measure the spin and energy and
the magnitude of the single-particle component for that state (spectroscopic factor)

Example: (relevant to one of the experiments)... $3 / 2^{+}$in ${ }^{21} \mathrm{O}$

A. SINGLE PARTICLE STATES - EXAMPLE

Example of population of single particle state: ${ }^{21} \mathrm{O}$

The mean field has orbitals, many of which are filled.
We probe the energies of the orbitals by transferring a nucleon This nucleon enters a vacant orbital
In principle, we know the orbital wavefunction and the reaction theory
But not all nuclear excited states are single particle states...

SINGLE PARTICLE STATES - SPLITTING

Neutron and Proton single-Particle States Built on 208 Pb

Kinematics for ${ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})^{209} \mathrm{~Pb}$ at 20 MeV

Neutron and Proton Single-Particle States
 Built on ${ }^{208} \mathrm{~Pb}$

MAGCHI HisHoRy HOULI ${ }^{1950 \text { 's }} 1960$ s

$1967 \quad{ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})^{209} \mathrm{~Pb}$

 Tandem + spectrometer $>10^{10} \mathrm{pps}$ (stable) beam Helpful graduate student

[^0]

How does the differential cross section vary with beam energy?

and the total cross section?

TIARA $A^{\text {rinn }}$
W.N. CATFORD SURREY
${ }^{32} \mathrm{Mg}(\mathrm{d}, \mathrm{p})^{33} \mathrm{Mg}$
total integrated cross section

${ }^{132} \mathrm{Sn}(\mathrm{d}, \mathrm{p}){ }^{133} \mathrm{Sn}$
total integrated cross section

Angular Momentum transfer

Cosine rule, 2nd order:

$$
\theta^{2}=\frac{\left(p_{t} / p\right)^{2}-(\delta / p)^{2}}{1-(\delta / p)}
$$

But $\quad \mathrm{p}_{\mathrm{t}} \times \mathrm{R} \geq \sqrt{\ell(\ell+1)} \quad \hbar \quad(\mathrm{R}=$ max radius $)$

So

$$
\begin{aligned}
& \theta^{2} \geq \frac{\ell(\ell+1) \hbar^{2} / p^{2} R^{2}-(\delta / p)^{2}}{1-(\delta / p)} \\
& \theta \geq \text { const } \times \sqrt{\ell(\ell+1)}
\end{aligned}
$$

or

$$
\theta_{\min } \approx \text { const } \times \ell
$$

Diffraction structure also expected (cf. Elastics)
PWBA \Rightarrow spherical Bessel function, $\theta_{\text {peak }} \approx 1.4 \sqrt{\ell(\ell+1)}$

(b)

How does the differential cross section vary with beam energy?

and the total cross section?

TIARA $A^{\text {rinn }}$
W.N. CATFORD SURREY
${ }^{32} \mathrm{Mg}(\mathrm{d}, \mathrm{p})^{33} \mathrm{Mg}$
total integrated cross section

${ }^{132} \mathrm{Sn}(\mathrm{d}, \mathrm{p}){ }^{133} \mathrm{Sn}$
total integrated cross section

How does the differential cross section vary with beam energy?

${ }^{32} \mathrm{Mg}(\mathrm{d}, \mathrm{p})^{33} \mathrm{Mg}$
total integrated cross section

${ }^{132} \mathrm{Sn}(\mathrm{d}, \mathrm{p}){ }^{133} \mathrm{Sn}$ otal integrated cross section

Distorted Wave Born Approximation - Outline

e.g. (d,p) with a deuteron beam (following H.A.Enge Chap. 13 with ref. also to N.Austern)

In the optical model picture, $\mathrm{V}_{\mathrm{xb}}+\mathrm{V}_{\mathrm{bA}} \approx \mathrm{U}_{\mathrm{bB}}\left(=\mathrm{Vopt}_{\mathrm{bB}}+i \mathrm{~W}^{\mathrm{opt}}{ }_{\mathrm{bB}}\right.$, the optical potential)
And the final state, we have said, can be approximated by an eigenstate of $U_{b B}$
Thus, the transition is induced by the interaction $V_{\text {int }}=H_{\text {entrance }}-H_{\text {exit }}=V_{x b}+V_{b A}-U_{b B}$

> Remnant term
> ≈ 0 if $x \ll A$
i.e. $\mathrm{V}_{\mathrm{int}} \approx \mathrm{V}_{\mathrm{xb}}$ which we can estimate reasonably well

$$
\begin{aligned}
\hline \mathrm{T}_{\mathrm{i}, \mathrm{f}} \mathrm{DWBA} & =\left\langle\phi_{\mathrm{b}} \phi_{\mathrm{B}} \chi_{\mathrm{bB}}-\right| \mathrm{V}_{\mathrm{xb}}\left|\chi_{\mathrm{aA}}^{+} \phi_{\mathrm{a}} \phi_{\mathrm{A}}\right\rangle \\
=\phi_{\mathrm{x}} \phi_{\mathrm{A}} \psi_{\mathrm{rel}, \mathrm{Ax}} & =\phi_{\mathrm{x}} \phi_{\mathrm{b}} \psi_{\mathrm{rel}, \mathrm{bx}}
\end{aligned}
$$

$$
\text { so } T_{i, f} \text { DWBA }=\left\langle\psi_{\mathrm{rel}, \mathrm{Ax}} \chi_{\mathrm{bB}}{ }^{-}\right| V_{\mathrm{xb}}\left|\chi_{\mathrm{aA}}{ }^{+} \psi_{\mathrm{rel}, \mathrm{bx}}\right\rangle
$$

known as radial form factor for the transferred nucleon
often simple, e.g. if $\mathrm{a}=d$

Distorted Wave Born Approximation - Outline 2

so $\mathrm{T}_{\mathrm{i}, \mathrm{f}}$ DWBA $=\left\langle\psi_{\text {rel, } \mathrm{Ax}} \chi_{\mathrm{bB}}^{-}\right| \mathrm{V}_{\mathrm{xb}}\left|\chi_{\mathrm{aA}}{ }^{+} \psi_{\mathrm{rel}, \mathrm{bx}}\right\rangle$
(compare Enge eq. 13-60)
The wave function of the transferred nucleon, orbiting A, inside of B
radial wave function $u(r)$ given by $\psi(r)=u(r) / r$ $1 \quad \mathrm{~V}(\mathrm{r})$ given by Woods-Saxon; $\xrightarrow{\text { depth determined by known }}$

$$
\boldsymbol{U} \mathrm{nlj}^{*} \mathrm{~S}^{1 / 2}{ }_{n \mid j}
$$

S measures the occupancy of the shell model orbital...
the spectroscopic factor
Radial wave functions in Woods-saxon potential with various geometries

Woods-Saxon:
$V(r)=\frac{-V_{0}}{1+e^{\left(r-r_{0} A^{1 / 3}\right) / a}}$

Photographs of Distorted Waves

N. Austern
 Direct Reactions

Beam of α 's on ${ }^{40} \mathrm{Ca}$ 18 MeV from left

Beam of p's on ${ }^{40} \mathrm{Ca}$ 40 MeV from left

Fig. 7.1 Three-dimensional model of $\left|\chi^{(+)}\right|$, the modulus of the optical model wavefunction, for 18 MeV alpha particles bombarding Ca^{40}. The beam is incident from the left. The dark zone is the $10 \%-90 \%$ region of the optical potential. (Computed by R. M. Drisko and N. Austern, unpublished.)

Fig. 7.2 This figure is the same as Fig. 7.1, for 40 MeV protons bombarding Ca^{40}.

SUM RULES FOR 1N TRANSFER

For adding a nucleon to a given j-shell the sum rule gives the vacancy in the shell
Number of Holes $=\sum_{i}\left(\frac{2 T_{f}^{i}+1}{2 T_{0}+1}\right)\left(\frac{2 J_{f}^{i}+1}{2 J_{0}+1}\right) S_{i}$
for removing a nucleon from a given j-shell it gives the occupancy of the shell, with the sum running over all final states i.
Number of Particles $=\sum_{i}\left(\frac{2 T_{f}^{i}+1}{2 T_{0}+1}\right) S_{i}$
Note that only one value of isospin $T_{f}\left(=T_{0}+1 / 2\right)$ is allowed for neutron adding or proton removing reactions, and two values $T_{f}\left(=T_{0} \pm 1 / 2\right)$ for neutron removal or proton adding.

Some Illustrations of Complications in Transfer Calculations

Example of coupled channels

Example of coupled reaction channels

REACTION MODEL FOR (d,p) TRANSFER - the ADWA

Johnson-Soper Model: an alternative to DWBA that gives a simple prescription for taking into account coherent entangled effects of deuteron break-up on (d,p) reactions [1,2]

- does not use deuteron optical potential - uses nucleon-nucleus optical potentials only
- formulated in terms of adiabatic approximation, which is sufficient but not necessary [3]
- uses parameters (overlap functions, spectroscopic factors, ANC's) just as in DWBA
[1] Johnson and Soper, PRC 1 (1970) 976
[2] Harvey and Johnson, PRC 3 (1971) 636; Wales and Johnson, NPA 274 (1976) 168
[3] Johnson and Tandy NPA 235 (1974) 56; Laid, Tostevin and Johnson, PRC 48 (1993) 1307

Spectroscopic Factor

Shell Model: overlap of $|\psi(\mathrm{N}+1)\rangle$ with $|\psi(\mathrm{N})\rangle_{\text {core }} \otimes \mathrm{n}(\ell \mathrm{j})$
Reaction: the observed yield is not just proportional to this S, because in T the overlap integral has a radial-dependent weighting or sampling

```
Many-body theory of d+A(N,Z)->B(N+1,Z)+p
```

Hence the yield, and hence deduced spectroscopic factor, depends on the radial wave function and thus the geometry of the assumed potential well for the transferred nucleon, or details of some other structure model
overlap integral

$$
\phi_{n}^{B A}\left(\vec{r}_{n}\right)=\sqrt{N+1} \int d \xi_{A} \phi_{B}^{*}\left(\xi_{A}, \vec{r}_{n}\right) \phi_{A}\left(\xi_{A}\right)
$$

spectroscopic factor $\quad S^{A B}=\int d \vec{r}_{n}\left|\phi_{n}^{A B}\left(\vec{r}_{n}\right)\right|^{2}$

$$
T_{d, p}=\left\langle\chi_{p}^{(-)} \phi_{n}^{B A}\right| V_{n p}\left|\Psi_{\vec{K}_{d}}\right\rangle
$$

REACTION MODEL FOR (d, p) TRANSFER - the ADWA

A CONSISTENT application of ADWA gives 20% agreement with large basis SM

JENNY LEE, M. B. TSANG, AND W. G. LYNCH

FIG. 12. (Color online) Ratios of SF(JS) values and the LBSM predicted SF values as a function of neutron separation energy $\left(S_{n}\right)$. Open and closed symbols denote elements with odd and even Z, respectively. Only data with an overall uncertainties of less than 25% are included.

FIG. 8. (Color online) Comparison of spectroscopic factors obtained from (p, d) and (d, p) reactions as listed in Table II. Line indicates perfect agreement between the two values.

80 spectroscopic factors Z = 3 to 24 Jenny Lee et al.

Tsang et al PRL 95 (2005) 222501

Lee et al
PRC 75 (2007) 064320
Delaunay at al
PRC 72 (2005) 014610

REACTION MODEL FOR (d,p) TRANSFER

Given what we have seen, is transfer the BEST way to isolate and study single particle structure and its evolution in exotic nuclei?

Transfer - decades of (positive) experience
Removal - high cross section, similar outputs, requires full orbitals

(e,e'p) - a bit ambitious for general RIB application
(p,p'p) - more practical than (e,e'p) for RIB now, does have problems

YES

Also:
Heavy Ion transfer (${ }^{9} \mathrm{Be}$), ${ }^{3,4} \mathrm{He}$-induced reactions

Some Common Codes in Transfer Reaction Work

DWUCK - can be zero range or finite range

CHUCK - a coupled channels, zero range code

FRESCO - full finite range, non-locality, coupled channels, coupled reaction channels, you-name-it code
(Ian Thompson, University of Surrey)

TWOFNR - includes an implementation of ADWA which is very well suited to (d, p)... plus other options (J. Tostevin, University of Surrey, on-line version)
(A. Moro, University of Seville, examples in this School)

Summary of single-nucleon transfer and knockout

Each of these processes can probe single-particle structure:

- measure the occupancy of single-particle (shell model) orbitals (spectroscopic factors)
- identify the angular momentum of the relevant nucleon.

Knockout has recently been developed specifically for radioactive beams (initially for haloes) and the nucleus being studied is the projectile. The removed nucleon may go anywhere.

Transfer was developed in the 1950's for stable beams (initially for $\mathrm{p}, \mathrm{d}, \mathrm{t},{ }^{3} \mathrm{He}, \ldots$) and the nucleus being studied was the target. The removed nucleon must transfer and "stick". With radioactive beams, the p, d, ..etc., becomes the target, known as inverse kinematics

With knockout we can probe:

- occupancy of single-particle (shell model) orbitals in the projectile ground state
- identify the angular momentum of the removed nucleon
- hence, identify the s.p. level energies in odd-A nuclei produced from even-even projectiles and the projectile-like particle is detected essentially at zero degrees

With transfer we can probe:

- occupancy of single-particle (shell model) orbitals in the original nucleus A ground state or distribution of s.p. strength in all final states of $A-1$ or $A+1$ nucleus
that is, can add a nucleon to the original nucleus, e.g. by (d,p)
- identify the angular momentum of the transferred nucleon
- hence, identify the s.p. level energies in $\mathrm{A}-1$ or $\mathrm{A}+1$ nuclei produced from even-even nuclei - identify the s.p. purity of coupled states in $\mathrm{A}-1$ or $\mathrm{A}+1$ nuclei produced from odd nuclei and the scattered particle is detected, with most yield being at small centre-of-mass angles

Energy regimes of single-nucleon transfer and knockout

Lenske \& Schrieder
$<10 \mathrm{MeV} / \mathrm{A}$ HIE-Isolde
$10-50 \mathrm{MeV} / \mathrm{A}$ GANIL/SPIRAL $\downarrow \uparrow$
>100 MeV/A GSI/FRS
example European
facility for this energy

Intensity regimes of single-nucleon transfer and knockout
knockout >1 pps near drip-lines; $>10^{3} \mathrm{pps}$ for more-bound projectiles
$\sim 100 \mathrm{mb}$ near drip-lines, closer to 1 mb for more-bound
transfer $\quad>10^{4} \mathrm{pps}$ is essentially the minimum possible
$\sim 1 \mathrm{mb}$ cross sections typical

Some general observations for transfer reactions

The nucleon having to "stick" places kinematic restrictions on the population of states:

- the reaction Q-value is important (for Q large and negative, higher ℓ values are favoured)
- the degree (ℓ-dependent) to which the kinematics favour a transfer is known as matching

Various types of transfer are employed typically, and using different mass probe-particles:

- light-ion transfer reactions: (probe $\leq \alpha$ say) ... (d,p) (p,d) (d,t) (d, $\left.{ }^{3} \mathrm{He}\right)$ also $\left({ }^{3} \mathrm{He}, \alpha\right)$ etc.
- heavy-ion transfer reactions: e.g. $\left({ }^{13} \mathrm{C},{ }^{12} \mathrm{C}\right) \quad\left({ }^{13} \mathrm{C},{ }^{14} \mathrm{C}\right) \quad\left({ }^{17} \mathrm{O},{ }^{16} \mathrm{O}\right) \quad\left({ }^{9} \mathrm{Be},{ }^{8} \mathrm{Be}\right)$
- two-nucleon transfer: e.g. (p,t) (t,p) (${ }^{9} \mathrm{Be},{ }^{7} \mathrm{Be}$) ($\left.{ }^{12} \mathrm{C},{ }^{14} \mathrm{C}\right) ~(\mathrm{~d}, \alpha)$
- alpha-particle transfer (or α-transfer): e.g. ($\left.{ }^{6} \mathrm{Li}, \mathrm{d}\right),\left({ }^{7} \mathrm{Li}, \mathrm{t}\right),\left(\mathrm{d},{ }^{6} \mathrm{Li}\right),\left({ }^{12} \mathrm{C},{ }^{8} \mathrm{Be}\right)$

Light-ion transfer reactions with Radioactive Beams

Light-ion induced reactions give the clearest measure of the transferred ℓ, and have a long history of application in experiment and refinement of the theory

Thus, they are attractive to employ as an essentially reliable tool, as soon as radioactive beams of sufficient intensity become available (i.e. NOW)

To the theorist, there are some new aspects to address, near the drip lines.
To the experimentalist, the transformation of reference frames is a much bigger problem!
The new experiments need a hydrogen (or He) nucleus as target the beam is much heavier. This is inverse kinematics, and the energy-angle systematics are completely different.

A PLAN for how to STUDY STRUCTURE

- Use transfer reactions to identify strong single-particle states, measuring their spins and strengths
- Use the energies of these states to compare with theory
- Refine the theory
- Improve the extrapolation to very exotic nuclei
- Hence learn the structure of very exotic nuclei
N.B. The shell model is arguably the best theoretical approach for us to confront with our results, but it's not the only one. The experiments are needed, no matter which theory we use.
N.B. Transfer (as opposed to knockout) allows us to study orbitals that are empty, so we don't need quite such exotic beams.

USING RADIOACTIVE BEAMS in INVERSE KINEMATICS

Velocity vector addition diagram

Velocity Addition
 (non-relativistic)

Reaction:
T (P, e) R
$V_{e}=\sqrt{M_{R / M e}}$
$q \cong 1+\mathrm{Q}_{\text {tot }} /(\mathrm{E} / \mathrm{A})$ beam $\mathrm{f}=1 / 2$ for $(\mathrm{p}, \mathrm{d}), 2 / 3$ for (d, t)

Inverse Kinematics

$$
\theta_{\max }=\sin ^{-1} \sqrt{\mathrm{f}}
$$

(c)

U_{Cm} is the velocity of the centre of mass, in the laboratory frame

Reaction Q-values in MeV

Ne				14	15	$\begin{array}{\|l\|} \hline 16 \\ -77.6 \end{array}$	$\begin{array}{\|l\|} \hline 17 \\ -13.4 \end{array}$	$\left\lvert\, \begin{aligned} & \text { 18 } \\ & -17.0 \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 19 \\ \hline-9.4 \end{array}$	-14.6	$\left\lvert\, \begin{aligned} & 21 \\ & -4.5 \end{aligned}\right.$	-8.1	-3.0	$\begin{aligned} & 24 \\ & -6.6 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ -2 . \end{array}$	$\begin{array}{\|l\|} \hline 35 \\ -3.3 \end{array}$	$\left.\right\|^{\pi}$	$\left\lvert\, \begin{aligned} & \text { 죠 } \\ & -1.5 \end{aligned}\right.$	2.5	$\begin{aligned} & 30 \\ & -2.1 \end{aligned}$					
F				13	$\begin{array}{\|l\|} \hline 14 \\ -81.1 \end{array}$	$\begin{array}{\|l\|} \hline 15 \\ -27.7 \end{array}$	$\begin{aligned} & 16 \\ & -11.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 17 \\ -14.6 \end{array}$	$\begin{array}{\|l\|} \hline 18 \\ \hline-6.9 \end{array}$	$\left\lvert\, \begin{aligned} & 19 \\ & -8.2 \end{aligned}\right.$	$\begin{aligned} & 20 \\ & -4.4 \end{aligned}$	$\begin{aligned} & 21 \\ & \hline-5.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 23 \\ -3.0 \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ -5.3 \end{array}$	$\begin{aligned} & 24 \\ & -1.4 \end{aligned}$	$\begin{aligned} & 25 \\ & -2.7 \end{aligned}$	$\begin{gathered} 23 \\ 0.9 \end{gathered}$	$\begin{array}{\|l\|} \hline 2 \pi \\ 2.5 \end{array}$	18						
\bigcirc				12	$\begin{array}{\|l\|} \hline 13 \\ -14.8 \end{array}$	$\begin{array}{\|l\|} \hline 14 \\ -21.0 \end{array}$	$\begin{aligned} & 15 \\ & -11.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \\ -13.4 \end{array}$	-1.9		$\begin{array}{\|l\|} \hline 19 \\ -1.7 \end{array}$	$\begin{aligned} & 20 \\ & -5.4 \end{aligned}$	$\begin{aligned} & 21 \\ & -1.6 \end{aligned}$	$\begin{aligned} & 23 \\ & -4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 8 \\ -0.7 \end{array}$	= stable									
N				$\begin{array}{\|l} \hline 11 \\ -20.7 \end{array}$	$\begin{array}{\|l\|} \hline 12 \\ -13.4 \end{array}$	$\begin{array}{\|l\|} \hline 13 \\ -17.8 \end{array}$	14	$\sqrt{15}-8.6$	$\begin{array}{\|l\|} \hline 16 \\ -0.3 \end{array}$	$\begin{array}{\|l\|} \hline 17 \\ \hline-3.7 \end{array}$	$\begin{array}{\|l\|} \hline 18 \\ -0.6 \end{array}$	$\begin{array}{\|l\|} \hline 19 \\ -3.1 \end{array}$	$\begin{gathered} 20 \\ 0.2 \end{gathered}$	$\begin{aligned} & 21 \\ & -2.6 \end{aligned}$											
C		-	$\begin{aligned} & 9 \\ & -12.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ -19.1 \end{array}$	$\mid 11$	$\begin{array}{\|l\|} \hline 12 \\ -16.5 \end{array}$	$\left\lvert\, \begin{aligned} & 13 \\ & -2.7 \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 14 \\ -6.0 \end{array}$	$\begin{array}{r} 15 \\ 1.0 \end{array}$	$\begin{array}{\|l\|} \hline 16 \\ -2.0 \end{array}$	$\begin{array}{\|l\|} \hline 17 \\ 1.5 \end{array}$	$\begin{array}{\|l\|} \hline 18 \\ \hline-2.0 \end{array}$	19	$\begin{aligned} & 20 \\ & -1.4 \end{aligned}$		Reaction Q-value in Mev									
B		7	-10.8	$\text { - } 16.4$	$\int_{-6.2}^{10}$	$\left\lvert\, \begin{aligned} & 11 \\ & -9.2 \end{aligned}\right.$	$\begin{aligned} & \hline 12 \\ & -1.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 13 \\ -2.7 \end{array}$	$\begin{gathered} 14 \\ 1.3 \end{gathered}$	$\begin{array}{\|l\|} \hline 15 \\ -0.5 \end{array}$	$\bigcap_{N=14}^{4} \quad(p, d):$ refer to cell of TARGET														
E		6	${ }^{7}-8.5$	-16.7	P0.6	$\begin{array}{\|l\|} \hline 10 \\ -4.6 \end{array}$	11	$\begin{array}{\|l\|} \hline 12 \\ -0.9 \end{array}$	$\begin{array}{\|c\|} \hline 13 \\ 4.1 \end{array}$	$\left\lvert\, \begin{array}{l\|} \hline 14 \\ -0.7 \end{array}\right.$															
Li	4	5	F	-5.0	0.1	-1.8	$\begin{array}{\|l\|} \hline 10 \\ 3.0 \end{array}$	$¢_{N=8}^{4}$ (d, $):$ Cell of TARGET + 4.0 Mev																	

Ne					$\begin{aligned} & 15 \\ & 60.3 \end{aligned}$	5	$\begin{array}{\|r\|} \hline 17 \\ 4.0 \end{array}$	18	$\begin{array}{\|l\|} \hline 19 \\ -0.9 \end{array}$	$\sqrt{20}$	$\begin{aligned} & 21 \\ & -7.5 \end{aligned}$	-9.8	$\begin{array}{\|l\|} \hline 2 \\ -9.8 \end{array}$	$\begin{aligned} & 24 \\ & -11.1 \end{aligned}$	$\begin{aligned} & 2 \\ & -11.6 \end{aligned}$	$\begin{aligned} & 35 \\ & -12.3 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { ar } \\ & -13.1\end{aligned}\right.$	\|-17	-16.4	\|30
F				$\begin{array}{\|l\|} \hline 13 \\ 75.0 \end{array}$	$\begin{aligned} & 14 \\ & 8.7 \end{aligned}$	$\begin{array}{\|c\|} \hline 15 \\ 7.0 \end{array}$	$\begin{array}{\|l\|} \hline 16 \\ 6.0 \end{array}$	$\begin{array}{\|l\|} \hline 17 \\ 4.9 \end{array}$	$\begin{array}{\|l\|} \hline 18 \\ \hline-0.1 \end{array}$	19	$\begin{array}{\|l\|} \hline 20 \\ -5.1 \end{array}$	$\begin{array}{\|l\|} \hline 21 \\ \hline-5.6 \end{array}$	$\begin{array}{\|l\|} \hline 23 \\ -7.0 \end{array}$	$\begin{aligned} & \hline 2 \\ & -7.9 \end{aligned}$	$\begin{aligned} & \hline 24 \\ & -8.6 \end{aligned}$	$\begin{array}{\|l\|} \hline 25 \\ -9.6 \end{array}$	$\begin{array}{\|l\|} \hline 25 \\ -16.7 \end{array}$	$\begin{aligned} & \hline 2 \pi \\ & -14.1 \end{aligned}$	$\begin{aligned} & \hline \text { 조 } \\ & -15.6 \end{aligned}$	
0				$\begin{array}{r} 12 \\ \hline 5.4 \end{array}$	$\begin{array}{\|c\|} \hline 13 \\ 4.0 \end{array}$	$\begin{gathered} 14 \\ 0.9 \end{gathered}$	$\begin{array}{\|l\|} \hline 15 \\ -1.8 \end{array}$	$\left\lvert\, \begin{array}{l\|} \hline 16 \\ -6.6 \end{array}\right.$	$\left\lvert\, \begin{aligned} & 1 \overline{7} \\ & -8.3 \end{aligned}\right.$	$\begin{aligned} & \text { 19 } \\ & -10.4 \end{aligned}$	$\begin{aligned} & \hline 19 \\ & -11.6 \end{aligned}$	$\begin{aligned} & 20 \\ & -13.9 \end{aligned}$	$\begin{aligned} & 21 \\ & -15.6 \end{aligned}$	$\begin{aligned} & 23 \\ & -17.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ -19.0 \end{array}$			-		
N				$\begin{array}{\|c\|} \hline 11 \\ 7.3 \end{array}$	4.9	$\begin{array}{\|l\|} \hline 13 \\ 3.6 \end{array}$	$\left\lvert\, \begin{aligned} & 14 \\ & -2.1 \end{aligned}\right.$	15	$\begin{array}{\|l\|} \hline 16 \\ -6.0 \end{array}$	$\begin{array}{\|l\|} \hline 17 \\ -7.6 \end{array}$	$\begin{array}{\|l\|} \hline 18 \\ \hline-9.7 \end{array}$	$\begin{array}{\|l\|} \hline 19 \\ -10.8 \end{array}$	$\begin{aligned} & 30 \\ & -12.5 \end{aligned}$	$\begin{aligned} & 21 \\ & -13.7 \end{aligned}$				\square	stab	
C		5.4	9	${ }^{10} 1.5$	$\begin{aligned} & 11 \\ & -3.1 \end{aligned}$	$\left\lvert\, \begin{aligned} & 12 \\ & -10.5 \end{aligned}\right.$	$\begin{aligned} & 13 \\ & -12.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 14 \\ -15.3 \end{array}$	$\begin{array}{\|l\|} \hline 15 \\ -15.6 \end{array}$	$\begin{aligned} & \hline 16 \\ & -17.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 17 \\ -17.9 \end{array}$	$\left\lvert\, \begin{aligned} & \text { 18 } \\ & -20.2 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 19 \\ & -21.4 \end{aligned}\right.$	$\begin{array}{l\|} \hline 20 \\ -24.1 \end{array}$		Reaction Q-value in Mev				
B		${ }^{7} 7.7$	5.4	95	$\left\lvert\, \begin{aligned} & 10 \\ & -1.1 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 11 \\ & -5.7 \end{aligned}\right.$	$\left\lvert\, \begin{array}{l\|} \hline 12 \\ -8.6 \end{array}\right.$	$\begin{array}{\|l\|} \hline 13 \\ -10.3 \end{array}$	$\begin{array}{\|l\|} \hline 14 \\ -13.1 \end{array}$	$\begin{aligned} & 15 \\ & -12.9 \end{aligned}$				4 $N=14$		[d, ${ }^{3}$	$\mathrm{He})$:	efer t	cell	of TARGET
Be		${ }^{6} 4.9$	$\left.\right\|^{x}-0.1$	-11.8	-11.4	$\begin{array}{\|l\|} \hline 10 \\ -14.1 \end{array}$	$\begin{aligned} & 11 \\ & -15.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 12 \\ -17.6 \end{array}$												
Li	4	${ }^{5} 7.5$	50.9	-4.5	-7.0	-8.4	$\begin{array}{\|l\|} \hline 10 \\ -8.7 \end{array}$	$\dagger_{N=8}^{4}$												

${ }^{16} \mathrm{C}$ incident on ${ }^{2} \mathrm{H}$ at $35 \mathrm{MeV} / \mathrm{u}$

The general form of the kinematic diagrams is determined by the light particle masses, and has little dependence on the beam mass or velocity

(p, d) and (d, t) and (d, p) on ${ }^{74} \mathrm{Kr}$ in inverse kinematics

Solid Angle Transformation Jacobian

typical (d, p) reaction

Note that $\theta_{\text {lab }}$ changes much more rapidly (at back angles) than does θ_{CM}

This means that a small solid angle in the $\mathrm{CM}, \mathrm{d} \Omega_{\mathrm{CM}}$ is spread over a rather large solid angle $\mathrm{d} \Omega_{\text {lab }}$ in the lab

Defining: $\gamma=\mathrm{v}_{\mathrm{CM}} / \mathrm{v}_{\mathrm{e}}$
${\frac{d \sigma}{d \Omega_{l a b}}}=\frac{\left(1+\gamma^{2}+2 \gamma \cos \theta\right)^{3 / 2}}{|1+\gamma \cos \theta|} \frac{d \sigma}{d \Omega_{\mathrm{CM}}}$
e.g. L.I. Schiff, Quantum Mechanics, 3rd Ed., p. 113

DWBA ZR: ${ }^{94} \mathrm{Sr}(\mathrm{d}, \mathrm{p}){ }^{95} \mathrm{Sr}^{*}\left(1.0 \mathrm{MeV} ; \mathrm{s}_{1 / 2}\right)$ at $4.894 \mathrm{MeV} / \mathrm{u}$

Adiabatic deuteron potential (B-G) and Perey proton potential

USING RADIOACTIVE BEAMS in INVERSE KINEMATTICS

from 180° to forward of 80°

(d,t) forward of 45°

The energies are also weakly dependent on mass of the beam so a general purpose array can be utilised

Calculations of E_{x} resolution from particle detection

Table 2
Major contributions in keV to the resolution of the excitation energy spectra of single neutron stripping and pickup reactions in inverse kinematics, where the heavy ion is detected in a spectrometer. The detection angle corresponds to 10_{cm}°. The last column is an approximate estimate as a sum in quadrature of the net effect of five non-Gaussian contributions. Other symbols are explained in the text

beamlike particle detected

Reaction	$\begin{aligned} & E_{\mathrm{i}} / A \\ & (\mathrm{MeV}) \end{aligned}$	$\theta_{\text {lab }}$	Origin of contribution					$\Sigma_{\text {quad }}$
				Δp	$E_{\text {stragg }}$	$\Theta_{1 / 2}$	$\mathrm{d} E / \mathrm{d} x$	
$\mathrm{p}\left({ }^{12} \mathrm{Be},{ }^{11} \mathrm{Be}\right) \mathrm{d}$	30	1.07°	172	147	101	74	23	259
p($\left.{ }^{12} \mathrm{Be},{ }^{11} \mathrm{Be}\right) \mathrm{d}$	15	$1.06{ }^{\circ}$	84	71	99	74	37	169
p($\left.{ }^{77} \mathrm{Kr},{ }^{76} \mathrm{Kr}\right) \mathrm{d}$	30	$0.16{ }^{\circ}$	1404	811	808	723	56	1952
p(${ }^{77} \mathrm{Kr},{ }^{76} \mathrm{Kr}$) d	10			143	502	570	268	883
$\left.{ }^{\text {d }}{ }^{76} \mathrm{Kr},{ }^{77} \mathrm{Kr}\right) \mathrm{p}$	10	0.21°	1140	614	2177	1859	1321	3408

Table 3
Major contributions in keV to the resolution of the excitation energy spectra of single neutron pickup and stripping reactions in inverse kinematics, where the light particle is detected in a silicon detector. Symbols as described in text and Table 2

light particle detected

Reaction	$\begin{aligned} & E_{\mathrm{i}} / A \\ & (\mathrm{MeV}) \end{aligned}$	$\theta_{\text {lab }}$	Origin of contribution					$\Sigma_{\text {quad }}$
			$\Delta \theta$	ΔE_{f}	ΔE_{i}	$\Theta_{1 / 2}$		
$\mathrm{p}\left({ }^{12} \mathrm{Be}, \mathrm{d}\right)^{11} \mathrm{Be}$	30	$19.0{ }^{\circ}$	136	74	114	96	649	685
$\mathrm{p}\left({ }^{12} \mathrm{Be}, \mathrm{d}\right)^{11} \mathrm{Be}$	15	17.8°	66	72	55	89	984	995
$\mathrm{p}\left({ }^{77} \mathrm{Kr}, \mathrm{d}\right)^{76} \mathrm{Kr}$	30	15.0°	124	55	64	63	186	249
$\mathrm{p}\left({ }^{(77} \mathrm{Kr}, \mathrm{~d}\right)^{76} \mathrm{Kr}$	10	6.0°	26	24	23	19	775	777
$\left.\mathrm{d}^{7}{ }^{76} \mathrm{Kr}, \mathrm{p}\right)^{77} \mathrm{Kr}$	10	155.3°	52	93	37	60	1309	1316

Lighter projectiles

Heavier projectiles

Some advantages to detect beam-like particle (gets difficult at higher energies) Better to detect light particle (target thickness lilmits resolution)

Possible Experimental Approaches to Nucleon Transfer

1) Rely on detecting the beam-like ejectile in a spectrometer

- Kinematically favourable unless beam mass (and focussing) too great
- Spread in beam energy (several MeV) translates to E_{x} measurement
- Hence, need energy tagging, or a dispersion matching spectrometer
- Spectrometer is subject to broadening from gamma-decay in flight

2) Rely on detecting the target-like ejectile in a Si detector

O Kinematically less favourable for angular coverage

- Spread in beam energy generally gives little effect on E_{x} measurement
- Resolution limited by difference [dE/dx(beam) - dE/dx(ejectile)]
- Target thickness limited to $0.5-1.0 \mathrm{mg} / \mathrm{cm}^{2}$ to maintain resolution

3) Detect decay gamma-rays in addition to particles

- Need exceptionally high efficiency, of order $>25 \%$
- Resolution limited by Doppler shift and/or broadening
- Target thickness increased up to factor 10 (detection cutoff, mult scatt'g)
J.S. Winfield, W.N. Catford and N.A. Orr, NIM A396 (1997) 147
- Motivation: nuclear structure reasons for transfer
- Choices of reactions and beam energies
- Inverse Kinematics
- Implications for Experimental approaches
- Early Experiments: examples
- Why do people make the choices they do?
- Some recent examples: TIARA, MUST2, SHARC
- Brief mention of Heavy lon transfer reactions

CERN, Geneva ** 22-24 April 2014

Possible Experimental Approaches to Nucleon Transfer

1) Rely on detecting the beam-like ejectile in a spectrometer

- Kinematically favourable unless beam mass (and focussing) too great
- Spread in beam energy (several MeV) translates to E_{X} measurement
- Hence, need energy tagging, or a dispersion matching spectrometer Spectrometer is subject to broadening from gamma-decay in flight

2) Rely on detecting the target-like ejectile in a Si detector

- Kinematically less favourable for angular coverage
- Spread in beam energy generally gives little effect on E_{X} measurement
- Resolution limited by difference [$\mathrm{dE} / \mathrm{dx}$ (beam) - $\mathrm{dE} / \mathrm{dx}$ (ejectile)]
- Target thickness limited to $0.5-1.0 \mathrm{mg} / \mathrm{cm}^{2}$ to maintain resolution

3) Detect decay gamma-rays in addition to particles

- Need exceptionally high efficiency, of order > 25%
- Resolution limited by Doppler shift and/or broadening
- Target thickness increased up to factor 10 (detection cutoff, mult scatt'g)

$$
{ }^{11} \mathrm{Be}(\mathrm{P}, \mathrm{~d}){ }^{10} \mathrm{Be}
$$

beam energy

resolution $2.0-3.0 \mathrm{MeV}$
angular spread $\pm 1^{\circ}$
dispersion-matched spectrometer "SPEG"
(Spectromètre à Perte $d^{\prime \prime}$ Energie du Ganil)
microchannel plate
polythene target
momentum analysis measure reaction angle

Inverse kinematics ${ }^{11} \mathrm{Be}(\mathrm{p}, \mathrm{d})^{10} \mathrm{Be}$

Focal plane spectrum from SPEG magnetic spectrometer

Separation Energy form factor

- poor form factor
- no core coupling
- no ${ }^{11} \mathrm{Be} / \mathrm{d}$ breakup

$0.84 \quad 0.16$
- vibrational model
- core-excited model
- realistic form factor

$\left\{\begin{array}{lr}0.74 & 0.19 \\ \text { Shell } & \text { model }\end{array}\right\}$
C.M. angle (deg)

Study of the ${ }^{56} \mathrm{Ni}(d, p){ }^{57} \mathrm{Ni}$ Reaction and the Astrophysical ${ }^{56} \mathrm{Ni}(p, \gamma){ }^{57} \mathrm{Cu}$ Reaction Rate

K. E. Rehm, ${ }^{1}$ F. Borasi, ${ }^{1}$ C. L. Jiang, ${ }^{1}$ D. Ackermann, ${ }^{1}$ I. Ahmad, ${ }^{1}$ B. A. Brown, ${ }^{2}$ F. Brumwell, ${ }^{1}$ C. N. Davids, ${ }^{1}$

P. Decrock, ${ }^{1}$ S. M. Fischer, ${ }^{1}$ J. Görres, ${ }^{3}$ J. Greene, ${ }^{1}$ G. Hackmann, ${ }^{1}$ B. Harss, ${ }^{1}$ D. Henderson, ${ }^{1}$ W. Henning, ${ }^{1}$ R. V. F. Janssens, ${ }^{1}$ G. McMichael, ${ }^{1}$ V. Nanal, ${ }^{1}$ D. Nisius, ${ }^{1}$ J. Nolen, ${ }^{1}$ R. C. Pardo, ${ }^{1}$ M. Paul, ${ }^{4}$ P. Reiter, ${ }^{1}$ J. P. Schiffer, ${ }^{1}$
D. Seweryniak, ${ }^{1}$ R.E. Segel, ${ }^{5}$ M. Wiescher, ${ }^{3}$ and A.H. Wuosmaa ${ }^{1}$

WHAT IS THE BEST IMPLEMENTATION FOR OPTIONS 2 AND 3 ?

It turns out that the target thickness is a real limitation on the energy resolution...
Several hundred keV is implicit, when tens would be required, So the targets should be as thin as possible...

But RIBs, as well as being heavy compared to the deuteron target, are:
(a) Radioactive
(b) Weak

Issues arising:
(a) Gamma detection useful for improving resolution
(b) Active target (TPC) to minimize loss of resolution
(c) Need MAXIMUM efficiency for detection

Experimental solutions can be classed roughly as:
(a) For beams $<10^{3} \mathrm{pps}$ ACTIVE TARGET
(b) $10^{3}<$ beam $<10^{6} \mathrm{pps}$ Si BOX in a γ-ARRAY
(c) For beams $>10^{6} \mathrm{pps}$ MANAGE RADIOACTIVITY

SOLUTIONS FOR BEAMS IN RANGE 10^{2} to $10^{4} \mathrm{pps}$ USING TPC's

MAYA

Now in use at GANIL/SPIRAL TRIUMF

SOLUTIONS FOR BEAMS IN RANGE 10^{4} to $10^{6} \mathrm{pps}$ USING GAMMAS

ORRUBA oak ridge

SOLUTIONS FOR BEAMS IN RANGE 10^{6} to $10^{9} \mathrm{pps}$ USING GAMMAS

Forward and Backward annular detectors

NOVEL SOLENOID FOR 4π DETECTION to DECOMPRESS KINEMATICS

FROZEN TARGETS and not detecting the LIGHT PARTICLE

A. Obertelli et al., Phys. Lett. B633, 33 (2006).

Also:
Elekes et al PRL 98 (2007) 102502 ${ }^{22} \mathrm{O}(\mathrm{d}, \mathrm{p})$ to n -unbound ${ }^{23} \mathrm{O}$ SP states

And helium:
Especially ($\alpha,{ }^{3} \mathrm{He}$) etc. at RIKEN

Experimental approaches largely depend on the beam intensity and resolution:
Below 10^{4} pps MAYA, ACTAR...

Up to $10^{9} \mathrm{pps}$ TIARA or alternatively...

A solenoid device...

TIARA***

OUR EXPERIMENT TO STUDY ${ }^{25} \mathrm{Ne} \mathrm{d}_{3 / 2}{ }^{24} \mathrm{Ne}(\mathrm{d}, \mathrm{p} \gamma) \mathrm{N}=16$ replaces broken $\mathrm{N}=20$

Schematic of the TIARA setup. A beam of $10^{5} \mathrm{pps}$ of ${ }^{24} \mathrm{Ne}$ at 10.5 A MeV was provided from SPIRAL, limited to $8 \pi \mathrm{~mm} . \mathrm{mrad}$ to give a beam spot size of $1.5-2.0 \mathrm{~mm}$. The target was $1.0 \mathrm{mg} / \mathrm{cm}^{2}$ of $\left(\mathrm{CD}_{2}\right)_{\mathrm{n}}$ plastic. The TIARA array covered 90% of 4π with active silicon.
W.N. Catford et al., Eur. Phys. J. A25, Suppl. 1, 245 (2005).

GRAND ACCELERATEUR NATIONAL DIONS LOURDS
LABORATOIRE COMMUN DSIWCEA-INZPY/CNRS

Geant simulation: first interaction point for $\mathrm{E}(\mathrm{gamma})=2.05 \mathrm{MeV}$

Results from the experiment to study ${ }^{25} \mathrm{Ne}$

EXCITATION E_x FROM PROTONS

SOME RESULTS and PERSPECTIVES

In ${ }^{25} \mathrm{Ne}$ the $3 / 2^{+}$state was
far from a pure SP state
due to other couplings at
higher energies, but it was
clear enough in its ID and
could be used to compare
with its SM partner to improve
the USD interaction

USD

A.B.C.D.E. RESULTS AND PERSPECTIVES

1.2.3.4.5. Gamma rays as an aid to identification

Physics outcomes for ${ }^{25} \mathrm{Ne}$ study:

COZMIN TIMIS and WNC, SURREY

Identified lowest lying 3/2+ and 5/2+ excited states
Showed that $3 / 2+$ is significantly raised due to monopole shift, Supporting $\mathrm{N}=16$ emerging as a shell gap

Identified lowest negative parity intruder states as 3/2- and 7/2-
Measured relative energy of negative parity intruder states, Supporting $\mathrm{N}=20$ disappearance as a shell gap, and also Supporting $\mathrm{N}=28$ disappearance as a shell gap

Provided quantitative input to measuring magnitude of monopole shift

Fig. 12. Intrinsic single-particle density distribution $\rho(\mathbf{x})$ for different neon isotopes (cf. Fig. 11).
Roth, Neff et al., NPA 745 (2004) 3-33

We proceed from here by

- removing more protons from d5/2 - that is, looking at oxygen, namely ${ }^{21} \mathrm{O}$... there are important anomalies to resolve, regarding the $v(d 3 / 2)$ energy - also looking at the more exotic neon isotopes - namely ${ }^{27} \mathrm{Ne}, \mathrm{N}=17$

Oxygen 23 by (d, p) at 600 pps
PRL 98, 102502 (2007)
PHYSICAL REV

FIG. 4. Excited states of ${ }^{23} \mathrm{O}$ observed in the present experiment in comparison with the shell model calculation using the USD05 [11,12] interaction and the effective single particle energies taken from the Monte Carlo shell model (MCSM) calculation based on the SDPF-M interaction [15].

Oxygen 25 by ${ }^{26} \mathrm{~F}$ - p at 20 pps

FIG. 3 (color online). The experimental (data points) and theoretical [13-15] (lines) single-particle energies (SPE) for the $\nu 1 s_{1 / 2}$ and $\nu 0 d_{3 / 2}$ orbitals at $N=16$ are shown on the left. The difference between these SPEs is shown for $Z=8$, $N=15$ [12] and 16 , giving the $N=16$ shell gap size. Errors are shown if they are larger than the symbol size.

TIARA + MUST2 experiments at SPIRAL/GANIL:

Beam of ${ }^{20} \mathrm{O}$ at $10^{5} \mathrm{pps}$ and $10 \mathrm{MeV} / \mathrm{A}$ (stripping at target to remove ${ }^{15} \mathrm{~N}^{3+}$ with $\mathrm{A} / \mathrm{q}=5$)
(This experiment not discussed, in these lectures).
Beam of ${ }^{26} \mathrm{Ne}$ at $10^{3} \mathrm{pps}$ (pure) and $10 \mathrm{MeV} / \mathrm{A}$
The (d,p) could be studied to both BOUND and UNBOUND states
Gamma-ray coincidences were recorded for bound excited states

With MUST2 we could measure (d.t) at forward angles with good PID
The 16% of ${ }^{1} \mathrm{H}$ in the ${ }^{2} \mathrm{H}$ target allowed (p, d) measurements also

> BEA FERNANDEZ DOMINGUEZ, LIVERPOOL (GANIL) JEFFRY THOMAS, SURREY SIMON BROWN, SURREY
> ALEXIS REMUS, IPN ORSAY

TIARA+MUST2+VAMOS+EXOGAM @ SPIRAL/GANIL

In these case, the spins were already known.

The magnitude was the quantity to be measured.

${ }^{27} \mathrm{Ne}$ UNBOUND STATES

${ }^{27} \mathrm{Ne}$ results

- level with main $\mathrm{f}_{7 / 2}$ strength is unbound
- excitation energy measured
- spectroscopic factor measured
- the $\mathrm{f}_{7 / 2}$ and $\mathrm{p}_{3 / 2}$ states are inverted
- this inversion also in ${ }^{25} \mathrm{Ne}$ experiment
- the natural width is just $3.5 \pm 1.0 \mathrm{keV}$

${ }^{27} \mathrm{Ne}$ results

- we have been able to reproduce the observed energies with a modified WBP interaction, full 1 hw SM calculation
- the SFs agree well also
- most importantly, the new interaction works well for ${ }^{29} \mathrm{Mg},{ }^{25} \mathrm{Ne}$ also
- so we need to understand why an ad hoc lowering of the fp-shell by 0.7 MeV is required by the data!

Preliminary results for ${ }^{26} \mathrm{Ne}(\mathrm{d}, \mathrm{t})^{25} \mathrm{Ne}$ and also (p, d) JEFFRY THOMAS, SURREY ${ }^{26} \mathrm{Ne}(\mathrm{d}, \mathrm{t}){ }^{25} \mathrm{Ne} \quad{ }^{26} \mathrm{Ne}(\mathrm{p}, \mathrm{d}){ }^{25} \mathrm{Ne}$

POSITIVE IDENTIFICATION OF EXCITED 5/2+ STATE

NEW ALGORITHM FOR ENERGY

Preliminary results for ${ }^{26} \mathrm{Ne}(\mathrm{d}, \mathrm{t})^{25} \mathrm{Ne}$ and also (p, d) JEFFRY THOMAS, SURREY
${ }^{26} \mathrm{Ne}(\mathrm{d}, \mathrm{t}){ }^{25} \mathrm{Ne} \quad{ }^{26} \mathrm{Ne}(\mathrm{p}, \mathrm{d}){ }^{25} \mathrm{Ne}$

${ }^{26} \mathrm{Ne}(\mathrm{d}, \mathrm{t} \gamma){ }^{25} \mathrm{Ne}$ GAMMA ENERGY

国
First 5/2+
1701 keV

INDIVIDUAL DECAY SPECTRA OF EXCITED 5/2+ STATES

Migration of Levels as nuclei become more exotic, normalised to 7/2- energy

The Next Step...

$d 3 / 2$
$s 1 / 2$

d $5 / 2$

${ }^{25} \mathrm{Na}(\mathrm{d}, \mathrm{p}){ }^{26} \mathrm{Na}$
odd-odd final nucleus
High density of states Gamma-gating needed

MULTIPLETS e.g. $\pi\left(d_{5 / 2}\right) \otimes v\left(p_{3 / 2}\right) \rightarrow(1,2,3,4)^{-}$

Shell Model Predictions (modified WBP) for ${ }^{26} \mathrm{Na}$ states expected in (d,p

$1 s_{1 / 2} \quad 0 d_{3 / 2} \quad 0 d_{5 / 2} \quad 0 f_{7 / 2} \quad 1 p_{3 / 2} \quad 1 p_{1 / 2}$

TRIUMF
 ISAC

ISAC2
TIGRESS

SHARC at ISAC2 at TRIUMF
 Christian Diget

Digital signal processing was used for all Ge and all Si signals, via TIG10 modules

Preliminary Analysis: E vs θ

Preliminary Analysis: y ray spectra

[1] Contrib.Proc. 5th Int.Conf.Nuclei Far from Stability, Rosseau Lake, Canada, D1 (1987)

Preliminary Analysis

Measuring Trifoil performance

- 80% of protons tagged
- Signal to background improved by factor of 10

Data from $\mathrm{d}\left({ }^{25} \mathrm{Na}, \mathrm{p}\right){ }^{26} \mathrm{Na}$ at $5 \mathrm{MeV} / \mathrm{A}$ using SHARC at ISAC2 at TRIUMF
Gemma Wilson, Surrey

Doppler corrected $(\beta=0.10)$ gamma ray energy measured in TIGRESS

Substate populations over proton CM angle for a 2.2 MeV state in ${ }^{26} \mathrm{Na}$

However, our gamma-ray angular coverage is sufficient that the integrated efficiency for gamma detection remains very similar and the SHAPE of the proton angular distribution is unchanged by gating.

If we gate on a gamma-ray, then we bias our proton measurement, if the gamma detection probability depend: on the proton angle.

And it does depend on the proton angle, because the gamma-ray correlation is determined by magnetic substate populations.

[^1]a) present work, from gamma-ray energies
b) inferred in present work
c) present work, using the indicated nucleon transfer
d) from fusion-evaporation study, ref. [22]
e) shell model using modified WBP interaction (see text)
f) numbering of shell model state (lowest $=1$)
g) shell model value, for indicated nucleon transfer
${ }^{h)}$ mixed strength $0.080 d_{5 / 2}$ and $0.100 d_{3 / 2}$
3.512 MeV p 32

3.136 MeV p_{32}

1.807 MeV d 32 D
2.226 MeV 32
0.233 MeV s/2

Shell Model Predictions (and new candidates) for ${ }^{26} \mathrm{Na}$ states expected in (d,p)

$1 s_{1 / 2} \quad 0 d_{3 / 2} \quad 0 d_{5 / 2} \quad 0 f_{7 / 2} \quad 1 p_{3 / 2} \quad 1 p_{1 / 2}$

Shell Model Predictions (and new candidates) for ${ }^{26} \mathrm{Na}$ states expected in (d,p)...
Comparison of spectroscopic strength in theory and experiment

个experimental SF magnitude
excitation energy
\downarrow shell model SF magnitude

Above: $s 1 / 2$ strength for $2+$ states
Below: p3/2 to 4-states

Above: d3/2 to 3+ states
Below: $\mathrm{d} 3 / 2$ to $4+$ states

SOME FUTURE PERSPECTIVES

"... WORK IN PROGRESS"

FUTURE:

- We have experiments planned with ${ }^{16} \mathrm{C},{ }^{64} \mathrm{Ge}$ at GANIL \& ${ }^{28} \mathrm{Mg}$ and others at TRIUMF
- Many other groups are also busy! T-REX at ISOLDE, ORRUBA at ORNL etc
- New and extended devices are planned for SPIRAL2, HIE-ISOLDE and beyond

GASPARD

Designed to use cryogenic target CHyMENE and gamma-arrays PARIS, AGATA... A development of the GRAPA concept originally proposed for EURISOL.

CHyMENE (Saclay/Orsay/...) SOLID Hydrogen TARGET

Left: photograph from 2007 of a $200 \mu \mathrm{~m}$ pure solid hydrogen film being extruded.
Right: more recent photograph of $100 \mu \mathrm{~m}$ pure solid hydrogen film being extruded.
The CHyMENE project has achieved $100 \mu \mathrm{~m}$ and is designed to achieve $50 \mu \mathrm{~m}$ uniform films.
For $100 \mu \mathrm{~m}$ target, the energy loss by a typical beam is equivalent to a $1 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{CD}_{2}$ target.
For $100 \mu \mathrm{~m}$ target, the number of hydrogen atoms is THREE TIMES that of a $1 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{CD}_{2}$.

TSR@ISOLDE

- Existing storage ring
- Re-deploy at ISOLDE
- Thin gas jet targets
- Light beams will survive
- Increased luminosity
- Supported by CERN
- In-ring initiative led by UK
electron cooler
extraction

resonator
- Also linked to post-ring helical spectrometer

Ultimately, with single particle transfer reactions, we can certainly:

- make the measurements to highlight strong SP states
- measure the spin/parity for strong states
- associate experimental and Shell Model states and see
- when the shell model works (energies and spectroscopic factors)
- when the shell model breaks down
- whether we can adjust the interaction and fix the calculation
- how any such modifications can be interpreted in terms of NN interaction

And clearly:

- monopole shifts need to be measured and understood because the changes

In energy gaps fundamentally affect nuclear structure (collectivity, etc.)

And finally, there is a simple requirement that $\ell_{1}+\lambda_{1}=$ even and $\ell_{2}+\lambda_{2}=$ even

And finally, there is a simple requirement that $\quad \ell_{1}+\lambda_{1}=$ even and $\quad \ell_{2}+\lambda_{2}=$ even

$$
\begin{aligned}
& \text { Initial } \psi_{1}=u_{1}\left(r_{1}\right) Y_{\ell 1, \lambda 1}\left(\theta_{1}, \phi_{1}\right) \\
& \text { Final } \psi_{2}=u_{2}\left(r_{2}\right) Y_{\ell 2, \lambda 2}\left(\theta_{2}, \phi_{2}\right) \\
& \text { and the main contribution to the } \\
& \text { transfer is at the reaction plane: } \\
& \Rightarrow \theta_{1}=\theta_{2}=\pi / 2 \\
& \text { But } \quad Y_{\ell \lambda}(\pi / 2, \phi)=0 \text { unless } \\
& \quad \ell+\lambda=\text { even }
\end{aligned}
$$

Matching probability for given $\Delta \lambda$ transfer

excitation energy

Example of Brink matching conditions

$$
{ }^{12} \mathrm{C}\left({ }^{17} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{13} \mathrm{C} \text { * } \quad \mathrm{E}_{\text {beam }}=100 \mathrm{MeV}
$$

Projectile is ${ }^{17} \mathrm{O}$ which has transferred nucleon in $\mathrm{d}_{5 / 2}$ orbital which can have $\lambda_{1}=0, \pm 2$ (π selection rules)

$\longrightarrow \mathrm{L}$ matching, lambda1 $=0$
$\longrightarrow \mathrm{k}$ matching, lambda1 $=0$
$\longrightarrow \mathrm{~L}$ matching, lambda1 $=-2$
$\longrightarrow \mathrm{k}$ matching, lambda1 $=-2$
-L matching, lambda1 $=+2$
$\longrightarrow \mathrm{k}$ matching, lambda1 $=+2$

Given λ_{1} and the reaction: intersection point gives λ in final nucleus and E_{x} at which transfer is matched

$\mathrm{j}_{>} / \mathrm{j}_{<}$selectivity

P.D. Bond, Phys. Rev., C22 (1980) 1539
P.D. Bond, Comments Nucl. Part. Phys., 11 (1983) 231-240

The application of $j_{>} / j_{<}$selectivity is difficult if considering experiments with complete kinematics with RNBs

However, detecting just the beam-like particle in coincidence with decay gamma-rays has much potential (recent experiments at ORNL, F. Liang)

FIGURE 1 Single neutron transfer reactions for ${ }^{148} \mathrm{Sm} \rightarrow{ }^{149} \mathrm{Sm}$. Spectra were taken at the peaks of the bell-shaped angular distributions. Note the strong difference in the relative population of final states with (a) the $\left({ }^{13} \mathrm{C},{ }^{12} \mathrm{C}\right)$ reaction, (b) the $\left({ }^{12} \mathrm{C},{ }^{11} \mathrm{C}\right)$ reaction and (c) the (${ }^{16} \mathrm{O},{ }^{15} \mathrm{O}$) reaction.

Thank you to all of the

 Collaborators...

And

thank you to all of the Audience...

[^0]: Phys. Rev. 159, 1043 (1967)

[^1]: * not possible to extract differential cross section

