An experimental view of elastic and inelastic scattering: kinematics

A. Di Pietro

Rutherford scattering: $\eta \ggg 1$

Scattering angle $\theta_{\text {c.m. }}$ related to distance of closest approach.

$$
d(\theta)=\frac{2 b}{\cot \left(\frac{\theta}{2}\right)}
$$

-Pure Coulomb potential

- E<< Coulomb barrier
-No nuclear effects

Rutherford Cross-section:

$$
\frac{d \sigma}{d \Omega}=\frac{z Z e^{2}}{4 E} \frac{1}{\sin ^{4}(\theta / 2)}
$$

Coulomb
or Sommerfeld parameter

$$
\eta=\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0} \hbar v}
$$

Effect of repulsive Coulomb+ attactive nuclear potential. $\mathrm{E}_{\mathrm{cm}}>\mathrm{V}_{\mathrm{C}}$ and NO ABSORPTION $\rightarrow \mathrm{V}(\mathrm{r})$ real!

Example of classical trajectories for potential $\mathrm{V}(\mathrm{r}) \rightarrow$

$$
\frac{d \sigma}{d \Omega}=\frac{b}{\sin (\theta) \frac{d \Theta}{d b}} \quad \begin{gathered}
\text { Singularities in } \mathrm{d} \sigma / \mathrm{d} \Omega \\
\mathrm{~J}=\mathrm{pb}
\end{gathered}
$$

Trajectories 1,2 and 3 emerge with the same scattering angle.

Angular distribution with respect to Rutherford

The oscillations are caused by interference between the contributions from the various orbits which result in the same scattering angle

Grazing collisions

Semiclassically:

For $b>R_{c} \rightarrow$ Coulomb trajectories (illuminated region)
For $b<R_{c} \rightarrow$ Nuclear interaction (shadow region)

In the limiting case of grazing collisions ($\mathrm{D}=\mathrm{R}_{\mathrm{c}}$) we obtain the corresponding Coulomb scattering angle $\theta_{\text {gr }}$

$$
\begin{aligned}
& \begin{array}{l}
\sin \frac{\theta_{g r}}{2}=\frac{\eta}{k R_{c}-\eta}=\frac{\varepsilon_{c}}{2 \varepsilon-\varepsilon_{c}} \\
\varepsilon_{c}=\frac{V_{c}}{\mu} \quad \mu=\text { reduced mass } \\
\varepsilon=\frac{E_{l a b}}{A_{1}}
\end{array} \quad \begin{array}{l}
\text { Knowing the grazing angle gives an idea } \\
\text { about the angular region good for cross- } \\
\text { section normalisation and measurement. }
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
V_{c}=\frac{Z_{1} Z_{2} e^{2}}{R_{c}} \\
R_{c}=r_{0 c}\left(A_{1}^{1 / 3}+A_{2}^{1 / 3}\right)
\end{gathered}
$$

Some reading: R. Bass Nuclear reaction with heavy ions

Springer Verlag
and
G.R. Satchler

Introduction to Nuclear reactions
Ed. Macmilar

How to use Rutherford cross-section to determine solidangles of detection set-up.
We use elastic scattering on some heavy target (e.g. Au) at sub-barrier energy where the elastic cross-section follows the Rutherford behaviour.

$$
\begin{aligned}
& \frac{\frac{d \sigma_{\text {ela }}(\theta)}{d \Omega}}{\frac{d \sigma_{\text {Ruth }}(\theta)}{d \Omega}}=1 \\
& \text { at all angles }
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{d \sigma_{e l}(\theta)}{d \Omega}=\underset{N_{\times} \times N_{1} \times T=\text { normalisation constant }}{\sqrt{\bar{j}(\theta)} \Rightarrow} \Rightarrow \text { Integral of elastic peak } & \frac{\frac{d \sigma_{e l}(\theta)}{d \Omega}}{\frac{d \sigma_{\text {Ruth }}(\theta)}{d \Omega}}=\frac{I}{K \Delta \Omega} \frac{d \sigma_{\text {Ruth }}(\theta)}{d \Omega}
\end{array}
$$

One can simulate the set-up and by equalising K at all angles one gets the correct detector solidangles

Rutherford cross-section used to normalise cross-section

If the elastic cross-section is Rutherford only in a very limited angular range by placing detectors at those angles one can get the normalisation constant K once the solid-angles are known.

$$
\frac{\frac{d \sigma_{\text {ela }}(\theta)}{d \Omega}}{\frac{d \sigma_{\text {Ruth }}(\theta)}{d \Omega}}=1 \text { for } \theta<\theta_{1} \text { (an estimate of } \theta_{1} \text { can be done from the grazing angle) }
$$

$$
\frac{\frac{d \sigma_{e l}(\theta)}{d \Omega}}{\frac{d \sigma_{R u t h}(\theta)}{d \Omega}}=\frac{I}{\left[K \Omega \frac{d \sigma_{\text {Ruth }}(\theta)}{d \Omega}\right.}
$$

The only unknown quantity

Fresnel scattering: $\eta \gg 1$

- Strong Coulomb potential
-E \approx Coulomb barrier
- "Illuminated" region \rightarrow interference (Coulomb-nuclear)
-"Shadow region" \rightarrow strong absorption

Fraunhofer scattering: $\eta \leq 1$

- Weak Coulomb
-E> Coulomb barrier
-Near-side/far-side interference (diffraction)

Oscillations in angular distribution \rightarrow good angular resolution required

Which information can be gathered from elastic scattering measurement? Simple model: Optical Model \rightarrow structureless particles interacting via an effective potential (see A.M.Moro lectures).

Optical potential: $\mathrm{V}(\mathrm{r})=\mathrm{V}_{\mathrm{C}}(\mathrm{r})+\mathrm{V}_{\mathrm{d}}(\mathrm{r})+\mathrm{V}_{\mathrm{N}}(\mathrm{r})+\mathrm{i} \mathrm{W}(\mathrm{r})$

Which information can we obtain from elastic scatting meaasurement?

Total reaction cross-section:

$$
\sigma_{a b s}=\sum_{\beta \neq \alpha} \sigma_{\beta}=\pi \lambda_{\alpha}^{2} \sum_{l}(2 l+1) \sum_{\beta \neq \alpha}\left(1-\left|S_{l \alpha}\right|^{2}\right)
$$

Scattering matrix
Optical theorem for uncharged particles:

$$
\sigma_{t o t}=\sigma_{e l a}+\sigma_{a b s}
$$

Modified optical theorem for charged particles:

$$
\left[\sigma_{e l a}-\sigma_{R u t h}\right]+\sigma_{a b s}=4 \pi \lambda_{\alpha} \operatorname{Im} f_{N}(\vartheta=0)
$$

The difference between elastic and Rutherford cross-section gives the total reaction crosssection.

Effect of nuclear structure on elastic scattering

${ }^{9,10} \mathrm{Be}+{ }^{64} \mathrm{Zn}$ elastic scattering angular distributions @ 29 MeV

A. Di Pietro et al. Phys. Rev. Lett. 105,022701(2010)

Elastic scattering angular distributions @ 29MeV

OM analysis adopted procedure:
$>$ volume potential responsible for the core-target interaction obtained from the ${ }^{10} \mathrm{Be}+{ }^{64} \mathrm{Zn}$ elastic scattering fit. $>$ plus a complex surface DPP having the shape of a W-S derivative with a very large diffuseness.
$>$ Very large diffuseness: ai $=3.5 \mathrm{fm}$ similar to what found in A.Bonaccrso NPA 706(2002)322

Reaction cross-sections

$$
\sigma_{\mathrm{R}}{ }^{9} \mathrm{Be} \approx 1.1 \mathrm{~b} \sigma_{\mathrm{R}}{ }^{10} \mathrm{Be} \approx 1.2 \mathrm{~b} \sigma_{\mathrm{R}}{ }^{11} \mathrm{Be} \approx 2.7 \mathrm{~b}
$$

A. Di Pietro et al. Phys. Rev. Lett. 105,022701(2010)

Continuum Discretized Coupled Channel Calculations (CDCC)

At low bombarding energy coupling between relative motion and intrinsic excitations important.
Halo nuclei \rightarrow small binding energy, low break-up thresholds \rightarrow coupling to break-up states (continuum) important \rightarrow CDCC.

Depending if the excited state is particle bound or unbound may change the way to identify inelastic scattering from other processes. The closer are the states the higher is the energy resolution required to discriminate them.

Supposing we have to measure an angular distribution of a given process, can you answer to the following questions?

1) where to put the detectors?
2) which solid angle do you have to cover?
3) which angular resolution do you need?
4) which energy resolution?

Before answering the following questions, do you have a clear idea about kinematics?

Some example of elastic scattering angular distribution

Direct kinematics

${ }^{6}$ Li elastic scattering @ 88 MeV

S. Hossain et al. Phys. Scr. 87(2013) 015201
inverse kinematics scattering
${ }^{6} \mathrm{He}$ elastic scattering on $\mathrm{p} @ 38 \mathrm{MeV} / \mathrm{u}$

V.Lapoux et al. PLB417(2001)18

Direct kinematics: e.g.elastic scattering ${ }^{6} \mathrm{Li}+{ }^{25} \mathrm{Mg} @ 88 \mathrm{MeV}$

In direct kinematics we detect the projectile particle. The difference between $\theta_{\text {c.m. }}$ and $\theta_{\text {lab }}$ depends on the mass ratio.

Inverse kinematics: e.g. elastic scattering ${ }^{6} \mathrm{He}+\mathrm{p} @ 38 \mathrm{MeV} / \mathrm{u}$

The inverse kinematics is forward focussed in the lab system. For the projectile particle there are two kinematical solutions and small $\Delta \theta_{\text {lab }}$ corresponds to large $\Delta \theta_{\text {c.m. }}$.

Two body kinematics for elastic scattering

V_{1}

$$
V_{2 L}=0
$$

$\mathbf{V}_{\mathrm{BL}}=\frac{\left.\mathrm{m} 1 \mathbf{V}_{1 \mathrm{~L}}+\mathrm{m}\right)}{\mathrm{m} 1+\mathrm{m} 2} \mathbf{V}_{2 \mathrm{~L}}$ velocity of the c.m. in the Lab system

```
ViL}=\frac{m1+m2}{m1}\mp@subsup{\mathbf{V}}{\mathbf{BL}}{
```

we will use this later

Two body kinematics

Elastic scattering

c.m. system

In the c.m. system before and after the collision the velocities are the same and the c.m. is at rest.

$$
\begin{aligned}
& v_{1 B}=v_{1 B}^{\prime} \\
& v_{2 B}=v^{\prime}{ }_{2 B}
\end{aligned}
$$

$$
m_{1} V_{1 B}=m_{2} V_{2 B}
$$

Momentum conservation in the c.m.
we will use this $\rightarrow \quad V_{2 B}=\frac{m_{1}}{m_{2}} V_{1 B}$

Energy in the c.m. system

$$
\begin{aligned}
& E_{c m}=E_{L}-E_{B L}=\frac{1}{2} m_{1} V_{1 L}{ }^{2}-\frac{1}{2}\left(m_{1}+m_{2}\right) V_{B L}{ }^{2}=\frac{1}{2} m_{1} V_{1 L}{ }^{2}-\frac{1}{2}\left(m_{1}+m_{2}\right) \frac{m_{1}{ }^{2}}{\left(m_{1}+m_{2}\right)^{2}} V_{1 L}{ }^{2}= \\
& =\frac{1}{2} \frac{m_{1} m_{2} V_{1 L}{ }^{2}}{m_{1}+m_{2}}=\frac{m_{2}}{m_{1}+m_{2}} E_{1 L} \\
& \text { IMPORTANT! } \mathbf{V}_{2 \mathrm{~B}}=\mathbf{V}_{\mathrm{BL}} \quad \text { We prove this true } \\
& E c m=\frac{1}{2} \frac{m_{1} m_{2} V_{1 L}{ }^{2}}{m_{1}+m_{2}}=\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\frac{\left(m_{1}+m_{2}\right)}{m_{1}}\right)^{2} V_{B L}{ }^{2}=\frac{1}{2} \frac{m_{2}}{m_{1}}\left(m_{1}+m_{2}\right) V_{B L}{ }^{2} \\
& E c m=\frac{1}{2} m_{1} V_{1 B}{ }^{2}+\frac{1}{2} m_{2} V_{2 B}{ }^{2}=\frac{1}{2} m_{1}\left(\frac{m_{2}}{m_{1}}\right)^{2} V_{2 B}{ }^{2}+\frac{1}{2} m_{2} V_{2 B}{ }^{2}=\frac{1}{2} \frac{m_{2}}{m_{1}}\left(m_{2}+m_{1}\right) V_{2 B}{ }^{2}
\end{aligned}
$$

Some relations between angles

$$
\operatorname{tg} \theta_{1 L}=\frac{V_{1 B} \sin \theta_{1 B}}{V_{B L}+V_{1 B} \cos \theta_{1 B}}=\frac{\sin \theta_{1 B}}{\frac{m_{1}}{m_{2}}+\cos \theta_{1 B}}
$$

We draw two cyrcles having radii: $R_{1}=V_{1 B}$ and $R_{2}=V_{2 B}=V_{B L}$

$m_{1}>m_{2}$ (inverse kinematics)

In inverse kinematics there is a maximum angle at which particle m 1 and m 2 are scattered in the lab system.
$\theta_{1 \text { Lmax }} \rightarrow \mathrm{V}_{1 \mathrm{~L}}$ tangent to the inner circle

$$
\sin \theta_{1 L \max }=\frac{V_{1 B}}{V_{B L}}=\frac{m_{2}}{m_{1}}
$$

$$
\begin{aligned}
& \text { since } \rightarrow 2 \theta_{2 \mathrm{~L}}=\theta_{2 \mathrm{~B}}=\pi-\theta_{1 \mathrm{~B}} \\
& \theta_{2 \mathrm{Lmax}}=90^{\circ} \text { for } \theta_{2 \mathrm{~B}}=180^{\circ}
\end{aligned}
$$

The inverse kinematics is forward focussed.

E.g. ${ }^{20} \mathrm{Ne}+\mathrm{p} \mathrm{E}_{\mathrm{lab}}=100 \mathrm{MeV}$

Reaction's Kinematics: A_lab \& E_lab

$$
20 \mathrm{Ne}+1 \mathrm{H} \Rightarrow 20 \mathrm{Ne}+1 \mathrm{H} \quad 1 \mathrm{H}(20 \mathrm{Ne}, 20 \mathrm{Ne}){ }^{1} \mathrm{H} \text {; Reaction at the "middle" of the target }
$$

Projectile Energy at the reaction place: $4.96 \mathrm{MeV} / \mathrm{u}$ Grazing angle in CMS [$\left.{ }^{20} \mathrm{Ne}+{ }^{1} \mathrm{H}\right]=30.73 \mathrm{deg}$

Rutherford cross-section

Rutherford scattering

$20 \mathrm{Ne}+1 \mathrm{H} \Rightarrow 20 \mathrm{Ne}+1 \mathrm{H}$
Projectile Energy at the reaction place: $5.00 \mathrm{MeV} / \mathrm{u}$
$1 \mathrm{H}(20 \mathrm{Ne}, 20 \mathrm{Ne}) 1 \mathrm{H} \quad \mathrm{Q}$ reaction: 0.00 MeV ; Use Mott's scattering =No

E.g. ${ }^{20} \mathrm{Ne}+\mathrm{p} \mathrm{E}_{\mathrm{lab}}=100 \mathrm{MeV}$

Reaction's Kinematics: A_CM \& E_lab
${ }^{20 N e}+1 \mathrm{H}=>20 \mathrm{Ne}+1 \mathrm{H} \quad 1 \mathrm{H}(20 \mathrm{Ne}, 20 \mathrm{Ne}){ }^{1} \mathrm{H} ;$ Reaction at the "middle" of the target
Projectile Energy at the reaction place: $5.00 \mathrm{MeV} / \mathrm{u}$
Q reaction: 0.00 MeV (Excitations $0.0+0.0=>0.0+0.0$); Plotted Energy option is "after reaction"

NOTE:In inverse kinematic scattering the c.m. angle is not the one of the light particle that one generally detects.

Identical particle scattering

$\mathrm{m} 1=\mathrm{m} 2$

\longrightarrow

$$
\begin{gathered}
\theta_{1 L}+\theta_{2 \mathrm{~L}}=90^{\circ} \quad \theta_{2 \mathrm{~B}}=\pi-\theta_{1 \mathrm{~B}} \rightarrow \sin \theta_{1 \mathrm{~B}}=\cos \theta_{2 \mathrm{~B}} \\
\theta_{1 \mathrm{Lmax}}=\theta_{2 \mathrm{Lmax}=} 90^{\circ}
\end{gathered}
$$

The maximum angle for both, projectile and recoil is 90°
E.g. ${ }^{20} \mathrm{Ne}+{ }^{20} \mathrm{Ne} \mathrm{E}_{\mathrm{lab}}=100 \mathrm{MeV}$

Rutherford cross-section

$\mathrm{m} 1<\mathrm{m} 2$ (direct kinematics)

For the projectile particle all angles are allowed both in the c.m. and laboratory system.

E.g. $p+{ }^{20} \mathrm{Ne} \mathrm{E}_{\mathrm{lab}}=100 \mathrm{MeV}$

Reaction's Kinematics: A_CM \& A_lab
$\mathrm{H}+20 \mathrm{Ne}=>1 \mathrm{H}+20 \mathrm{Ne}{ }^{20 \mathrm{Ne}(1 \mathrm{H}, 1 \mathrm{H})^{20} \mathrm{Ne} \text {; Reaction at the "middle" of the target }}$
rojectile Energy at the reaction place: $29.77 \mathrm{MeV} / \mathrm{u}$ Grazing angle in $\mathrm{CMS}\left[{ }^{1} \mathrm{H}+20 \mathrm{Ne}\right]=4.15 \mathrm{deg}$
Q reaction : 0.00 MeV (Excitations $0.0+0.0=>0.0+0.0$); Plotted Energy option is "after reaction"

Rutherford cross-section

E.g. $\mathrm{p}+{ }^{20} \mathrm{Ne} \mathrm{E}_{\text {lab }}=100 \mathrm{MeV}$

NOTE:In direct kinematics the c.m. angle is the one of the light particle which is also the projectile particle.

Relation between variables before and after the collision

We remind that :

$$
\mathrm{v} 1 \mathrm{~B}=\mathrm{V} 1 \mathrm{~B} ; \quad \mathrm{V} 2 \mathrm{~B}=\mathrm{v} 2 \mathrm{~B}=\mathrm{VBL} ; \quad \frac{V_{2 B}}{V_{1 B}}=\frac{v_{2 B}}{v_{1 B}}=\frac{m_{1}}{m_{2}} ; \quad V_{B L}=\frac{m_{1}}{m_{1}+m_{2}} v_{1 L} ;
$$

$$
\mathrm{E}_{1 \mathrm{~L}}, \mathrm{v} 1 \mathrm{~L} \text { before collision } \quad \mathrm{E}_{1 \mathrm{~L}}^{\prime}, \mathrm{V} 1 \mathrm{~L} \text { after collision }
$$

By combining these equations we can express the energy after the collision as a function of the energy before:

$$
\begin{aligned}
& E_{1 L}=\frac{1}{2} m_{1} v_{1 L}{ }^{2} \\
& E_{1 L}{ }^{\prime}=\frac{1}{2} m_{1} V_{1 L}{ }^{2}=\frac{1}{2}\left[v_{1 L}{ }^{2} \frac{m_{1}^{2}}{\left(m_{1}+m_{2}\right)^{2}}+v_{1 L}{ }^{2} \frac{m_{2}^{2}}{\left(m_{1}+m_{2}\right)}+v_{1 L}{ }^{2} \frac{2 m_{1} m_{2} \cos \theta_{1 B}}{\left(m_{1}+m_{2}\right)^{2}}\right]= \\
& =E_{1 L}\left[\frac{m_{1}^{2}+m_{2}^{2}+2 m_{1} m_{2} \cos \theta_{1 B}}{\left(m_{1}+m_{2}\right)^{2}}\right] \quad \text { Eq. } 1
\end{aligned}
$$

For particles having the same masses $\mathrm{m} 1=\mathrm{m} 2=\mathrm{m}$:

$$
\begin{aligned}
& E_{1 L}{ }^{\prime}=E_{1 L}\left[\frac{2 m^{2}+2 m^{2} \cos \theta_{1 B}}{(2 m)^{2}}\right]=E_{1 L}\left(\frac{1+\cos \theta_{1 B}}{2}\right)=E_{1 L} \cos ^{2} \theta_{1 L} \\
& E_{1 L}=E_{1 L}^{\prime}+E_{2 L}^{\prime} \\
& E_{1 L}=E_{1 L}\left(\cos ^{2} \theta_{1 L}+\sin ^{2} \theta_{1 L}\right)=E_{1 L}^{\prime}+E_{2 L}^{\prime} \\
& E_{2 L}^{\prime}=E_{1 L} \sin ^{2} \theta_{1 L}=E_{1 L} \cos ^{2} \theta_{2 L} \quad \text { We know that } \theta_{1 L}+\theta_{2 L}=90^{\circ}
\end{aligned}
$$

By measuring energy and angle of one particle we can completely reconstruct the kinematics.

Now we calculate the relative energy trasferred in one collision:

$$
\begin{aligned}
& \frac{\Delta E_{1 L}}{E_{1 L}}=\frac{E_{1 L}-E_{1 L}^{\prime}}{E_{1 L}} 1-\frac{E_{1 L}^{\prime}}{E_{1 L}}=1-\left[\frac{m_{1}^{2}+m_{2}^{2}+2 m_{1} m_{2} \cos \theta_{1 B}}{\left(m_{1}+m_{2}\right)^{2}}\right]= \\
& =\frac{2 m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}}\left(1-\cos \theta_{1 B}\right)
\end{aligned}
$$

The maximum energy is transferred in a collision between two identicle particles

$$
\begin{aligned}
& \left(\frac{\Delta E_{1 L}}{E_{1 L}}\right)_{\max } \Rightarrow \frac{d}{d m_{1}}\left[\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}}\right]=\frac{m_{2}\left(m_{1}+m_{2}\right)^{2}-2\left(m_{1}+m_{2}\right) m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{4}} \\
& m_{2}\left(m_{1}+m_{2}\right)^{2}-2\left(m_{1}+m_{2}\right) m_{1} m_{2}=0 \quad \text { If m1 }=\mathrm{m} 2
\end{aligned}
$$

Relative energies.

$$
\begin{aligned}
& E_{1 B}=\frac{1}{2} m_{1} V_{1 B}{ }^{2}=\frac{1}{2} m_{1}\left(\frac{m_{2}}{m_{1}+m_{2}}\right)^{2} V_{1 L}^{2} \\
& E_{2 B}=\frac{1}{2} m_{2} V_{2 B}{ }^{2}=\frac{1}{2} m_{2}\left(\frac{m_{1}}{m_{1}+m_{2}}\right)^{2} V_{1 L}^{2} \\
& \underbrace{E_{1 B}+E_{2 B}}_{1 B}=\frac{1}{2} V_{1 L}{ }^{2} \underbrace{\left(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right)^{2}[\underbrace{\left.\frac{m_{2}}{m_{1}+m_{2}}+\frac{m_{1}}{m_{1}+m_{2}}\right]}_{1}=\frac{1}{2} \mu V_{1 L}{ }^{2}\left\langle\frac{1}{2} m_{1} V_{1 L}{ }^{2}=E_{1 L}\right.}_{1}
\end{aligned}
$$

The total energy in the cm is less than the incident energy in the lab system owing to the kinetic energy used for the cm motion in the lab.

$$
\begin{aligned}
& \mathrm{E}_{1 \mathrm{~B}}+\mathrm{E}_{2 \mathrm{~B}}+\mathrm{E}_{\mathrm{BL}}=\mathrm{E}_{1 \mathrm{~L}}=\mathrm{E}_{1 \mathrm{~L}}^{\prime}+\mathrm{E}_{2 \mathrm{~L}}^{\prime} \\
& \frac{1}{2} \mu \mathrm{~V}_{1 \mathrm{~L}}^{2}+\mathrm{E}_{\mathrm{BL}}=\mathrm{E}_{1 \mathrm{~L}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{V}_{\text {rel }}=\mathbf{V}_{1 B}{ }^{-} \mathrm{V}_{2 \mathrm{~B}}=\mathrm{V}_{1 \mathrm{~L}}-\mathrm{V}_{2 \mathrm{~L}} \\
& \mathrm{~V}_{\text {rel }}{ }_{\mathrm{rel}}=\mathrm{V}^{2}{ }_{1 \mathrm{~B}}+\mathrm{V}^{2}{ }_{2 B}+2 \mathrm{~V}_{1 B} \mathrm{~V}_{2 \mathrm{~B}}=\mathrm{V}^{2}{ }_{1 \mathrm{~L}}+\mathrm{V}^{2}{ }_{2 \mathrm{~L}}+2 \mathrm{~V}_{1 \mathrm{~L}} \mathrm{~V}_{2 \mathrm{~L}} \cos \theta_{\text {rel }} \\
& m_{1} V_{1 B}-m_{2} V_{2 B}=0 \text { From momentum conservation } \\
& \left(m_{1} V_{1 B}-m_{2} V_{2 B}\right)^{2}=0=m_{1}{ }^{2} V_{1 B}{ }^{2}+m_{2}{ }^{2} V_{2 B}{ }^{2}-2 m_{1} V_{1 B} m_{2} V_{2 B} \\
& 2 V_{1 B} V_{2 B}=\frac{m_{1}{ }^{2} V_{1 B}{ }^{2}+m_{2}{ }^{2} V_{2 B}{ }^{2}}{m_{1} m_{2}} \\
& \frac{1}{2} \mu V_{\text {rel }}{ }^{2}=\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left[V_{1 B}{ }^{2}+V_{2 B}{ }^{2}+2 V_{1 B} V_{2 B}\right]= \\
& =\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left[V_{1 B}{ }^{2}\left(1+\frac{m_{1}}{m_{2}}\right)+V_{2 B}{ }^{2}\left(1+\frac{m_{2}}{m_{1}}\right)\right]= \\
& =\frac{1}{2} m_{1} V_{1 B}{ }^{2}+\frac{1}{2} m_{2} V_{2 B}{ }^{2}=E_{c m}
\end{aligned}
$$

$$
\frac{1}{2} \mu V_{1 L}^{2}=E_{1 B}+E_{2 B}=E_{c m}
$$

We now consider the case of $\mathrm{Q} \neq 0$

a) Inelastic scattering ${ }^{20} \mathrm{Ne}+\mathrm{p}$

Reaction's Kinematics: A_lab \& E_lab
$20 \mathrm{Ne}+{ }^{1 \mathrm{H}} \Rightarrow 20 \mathrm{Ne}+1 \mathrm{H} \quad 1 \mathrm{H}(20 \mathrm{Ne}, 20 \mathrm{Ne}) 1 \mathrm{H}$; Reaction at the "middle" of the target
Q reaction: -4.20 MeV (Excitations $0.0+0.0=>4.2+0.0$). Plotted Energy option is "after reaction"

Two solutions for projectile fragment

Two solutions for both fragments depending upon excitation energy

b) reaction

$1+2 \rightarrow 3+4 \quad 3=$ light $4=$ heavy

$$
\mathrm{Q}=\left(\mathrm{E}_{3 \mathrm{~L}}+\mathrm{E}_{4 \mathrm{~L}}\right)-\left(\mathrm{E}_{1 \mathrm{~L}}+\mathrm{E}_{2 \mathrm{~L}}\right)=\left[\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)-\left(\mathrm{m}_{3}+\mathrm{m}_{4}\right)\right] \mathrm{c}^{2}
$$

The total energy $\sum \mathrm{mc}^{2}+\mathrm{E}$ is conserved: $\mathrm{E}_{\mathrm{T}}=\mathrm{E}_{11}+\mathrm{Q}=\mathrm{E}_{31}+\mathrm{E}_{4 \mathrm{~L}}$

$$
\left(m_{1} c^{2}+E_{1}\right)+\left(m_{2} c^{2}+E_{2}\right)=\left(m_{3} c^{2}+E_{3}\right)+\left(m_{4} c^{2}+E_{4}\right)
$$

$V_{B L}<V_{3 B} \rightarrow$ one solution

The number of solutions depends upon Q

${ }^{20} \mathrm{Ne}+{ }^{20} \mathrm{Ne} \rightarrow{ }^{16} \mathrm{O}^{*}+{ }^{24} \mathrm{Mg}$

Reaction's Kinematics: A_lab \& E_lab
${ }^{20} \mathrm{Ne}+20 \mathrm{Ne}=>16 \mathrm{O}+24 \mathrm{Mg} \quad{ }^{20} \mathrm{Ne}\left({ }^{(20} \mathrm{Ne}, 16 \mathrm{O}\right)^{24} \mathrm{Mg}$; Reaction at the "middle" of the target
Projectile Energy at the reaction place: $4.99 \mathrm{MeV} / \mathrm{u} \quad$ Grazing angle in $\mathrm{CMS}\left[{ }^{[20} \mathrm{Ne}+{ }^{20} \mathrm{Ne}\right]=22.02 \mathrm{deg}$
Q reaction : -5.41 MeV (Excitations $0.0+0.0=>0.0+10.0$); Plotted Energy option is "after reaction

$$
\mathrm{Q}=\mathrm{Q}_{\mathrm{gg}}-\mathrm{E}^{*}{ }_{1}-\mathrm{E}_{2}^{*}
$$

Reaction's Kinematics: A_lab \& E_lab
$\left.{ }^{20 \mathrm{Ne}}+20 \mathrm{Ne}=>16 \mathrm{O}+24 \mathrm{Mg} \quad{ }^{20 \mathrm{Ne}(20 \mathrm{Ne}, 16 \mathrm{O}}\right)^{24 \mathrm{Mg} \text {; Reaction at the "middle" of the targe }}$
Projectile Energy at the reaction place: $4.99 \mathrm{MeV} / \mathrm{u}$ Grazing angle in CMS $\left[{ }^{20} \mathrm{Ne}+{ }^{+20} \mathrm{Ne}\right]=22.02 \mathrm{de}$

Inelastic scattering

From T.Davinson

Transfer reactions

Threshold energy for a reaction to occur:

$$
E t h=|Q|\left(\frac{m_{1}+m_{2}}{m_{2}}\right)
$$

$$
\begin{aligned}
A & =\frac{m_{1} m_{4}\left(E_{1 L} / E_{T}\right)}{\left(m_{1}+m_{2}\right)\left(m_{3}+m_{4}\right)} \\
B & =\frac{m_{1} m_{3}\left(E_{1 L} / E_{T}\right)}{\left(m_{1}+m_{2}\right)\left(m_{3}+m_{4}\right)} \\
C & =\frac{m_{2} m_{3}}{\left(m_{1}+m_{2}\right)\left(m_{3}+m_{4}\right)}\left(1+\frac{m_{1} Q}{m_{1} E_{T}}\right)=\frac{E_{4 B}}{E_{T}}
\end{aligned}
$$

$$
D=\frac{m_{2} m_{4}}{\left(m_{1}+m_{2}\right)\left(m_{3}+m_{4}\right)}\left(1+\frac{m_{1} Q}{m_{1} E_{T}}\right)=\frac{E_{3 B}}{E_{T}} \quad \mathrm{~A}+\mathrm{B}+\mathrm{C}+\mathrm{D}=1 \quad \mathrm{AC}=\mathrm{BD}
$$

If one or both the emitted particles are excited the $\mathrm{Q}=\mathrm{Q}_{\mathrm{gg}}-\mathrm{E}^{*}{ }_{1}-\mathrm{E}^{*}{ }_{2}$

$$
\frac{E_{3 L}}{E_{T}}=B+D+2 \sqrt{A C} \cos \theta_{3 B}=B\left[\left(\cos \theta_{3 L}\right) \pm \sqrt{\left(D / B-\sin ^{2} \theta_{3 L}\right)}\right]^{2}
$$

Use only sign + (one solution) unless $B>D$ (two solutions), in this case there is a maximum angle for the heavy particle in the Lab: $\theta_{\mathrm{Lmax}}=\sin ^{-1}(D / B)^{1 / 2}$

$$
\frac{E_{4 L}}{E_{T}}=A+C+2 \sqrt{A C} \cos \theta_{4 B}=A\left[\left(\cos \theta_{4 L}\right) \pm \sqrt{\left(C / A-\sin ^{2} \theta_{4 L}\right)}\right]^{2}
$$

Use only sign + (one solution) unless $A>C$ (two solutions), in this case there is a maximum angle for the heavy particle in the Lab: $\theta_{4 L \max }=\sin ^{-1}(C / A)^{1 / 2}$

$$
\begin{aligned}
& \sin \theta_{4 B}=\sqrt{\left(\frac{m_{3} E_{3 L}}{m_{2} E_{2 L}}\right)} \sin \theta_{3 L} \\
& \sin \theta_{3 B}=\left(\frac{E_{3 L} / E_{T}}{D}\right) \sin \theta_{3 L}
\end{aligned}
$$

We suppose now that the two particles form a compound system S .
The velocity of S equals the cm velocity after the collision: $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{BL}}$
If from S is emitting a particle with velocity Vp in the cm system, we have:

$$
\begin{gathered}
V_{S} \\
V_{\mathrm{L}} \sin \theta_{\mathrm{L}}=\mathrm{V}_{\mathrm{p}} \sin \theta_{\mathrm{p}} \\
\mathrm{~V}_{\mathrm{L}} \cos \theta_{\mathrm{L}}=\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{\mathrm{p}} \cos \theta_{\mathrm{p}}
\end{gathered}
$$

$$
\operatorname{tg} \theta_{L}=\frac{\sin \theta_{p}}{\frac{V_{S}}{V_{p}}+\cos \theta_{p}}
$$

This equation completely determines c.m. angles once Lab angles are measured.

