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Coulomb  

or Sommerfeld parameter 

Rutherford scattering: >>>1 

•Pure Coulomb potential 

•E<< Coulomb barrier 

•No nuclear effects 

Rutherford Cross-section: 

Scattering angle qc.m.  related to 

distance of closest approach. 
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Rutherford scattering very useful to normalise cross-sections and solid angle determination 



Effect of repulsive Coulomb+ attactive nuclear potential.  

Ecm>VC   and NO ABSORPTIONV(r) real! 
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Example of classical trajectories for potential V(r)   

orbiting 
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Grazing orbit 

Trajectories 1,2 and 3 emerge 

with the same scattering angle. 
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J=pb 



s 

Classical 

Semiclassical   

Angular distribution with respect to Rutherford 

The oscillations are caused by interference between the contributions 

from the various orbits which result in the same scattering angle 



Grazing collisions 
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Semiclassically: 

For b>Rc  Coulomb trajectories (illuminated region) 

For b<Rc  Nuclear interaction (shadow region) 

In the limiting case of grazing collisions (D=Rc) 

we obtain the corresponding Coulomb scattering angle qgr  
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= reduced mass 
Some reading: R. Bass  

Nuclear reaction with heavy ions 

Springer Verlag 

and 

G.R. Satchler 

Introduction to Nuclear reactions 

Ed. Macmilar 

Knowing the grazing angle gives an idea 

about the angular region good for cross-

section normalisation and measurement. 



How to use Rutherford cross-section to determine solidangles of detection set-up. 

We use elastic scattering on some heavy target (e.g. Au) at sub-barrier energy 

where the elastic cross-section follows the Rutherford behaviour.  
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Integral of elastic peak 

NiNtT=normalisation constant 

One can simulate the set-up and by equalising K at 

all angles one gets the correct detector solidangles 

at all angles 



Rutherford cross-section used to normalise cross-section 

If the elastic cross-section is Rutherford only in a very limited angular range by 

placing detectors at those angles  one can get the normalisation constant K once the 

solid-angles are known. 
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for q<q1 (an estimate of q1can be done from the grazing angle) 

The only unknown quantity 



• Strong Coulomb potential  

•E≈ Coulomb barrier 

• “Illuminated” region  interference (Coulomb-nuclear) 

•“Shadow region”  strong absorption 

Fresnel scattering: >>1 

• Weak Coulomb 

•E> Coulomb barrier 

•Near-side/far-side interference (diffraction) 

Fraunhofer scattering: ≤1          

Oscillations in angular distribution 

good angular resolution required 



Which information can be gathered from elastic scattering measurement? 

Simple model: Optical Model structureless particles interacting via an effective 

potential (see A.M.Moro lectures). 

Optical potential: V(r)=VC(r)+Vl(r)+VN(r)+iW(r) 

from A.M.Moro 

l=0 
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Modified optical theorem for charged particles: tot for q=0  
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Scattering matrix 

Which information can we obtain from elastic scatting meaasurement? 

The difference between 

elastic and Rutherford 

cross-section gives the 

total reaction cross-

section. 
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9,10Be+64Zn elastic scattering angular distributions @ 29MeV 

A. Di Pietro et al. Phys. Rev. Lett. 105,022701(2010) 

9Be  

Sn=1.665 MeV 

10Be  

Sn=6.88 MeV 

Effect of nuclear structure on elastic scattering 



Reaction cross-sections 
 

R
9Be≈1.1b R

10Be ≈1.2b R
11Be ≈2.7b 

10Be+64Zn 

11Be+64Zn 

11Be 10,11Be+64Zn  

@ Rex-Isolde, CERN 

A. Di Pietro et al. Phys. Rev. Lett. 105,022701(2010) 

Elastic scattering angular distributions @ 29MeV 

OM analysis adopted procedure: 

volume potential responsible for the 

core-target interaction obtained from 

the 10Be+64Zn elastic scattering fit. 

plus a complex surface DPP having 

the shape of a W-S derivative  with a 

very large diffuseness.  

Very large diffuseness: ai= 3.5 fm 

similar to what found in A.Bonaccrso 

NPA 706(2002)322 



Continuum Discretized Coupled Channel Calculations (CDCC) 

At low bombarding energy coupling between relative 

motion and intrinsic excitations important. 

Halo nuclei  small binding energy, low break-up 

thresholds  coupling to break-up states (continuum) 

important  CDCC. 

A. Di Pietro, V. Scuderi, A.M. Moro et al.  

Phys. Rev. C 85, 054607 (2012) 



Depending if the excited state is particle bound or unbound may change the way to identify inelastic 
scattering from other processes. The closer are the states the higher is the energy resolution required 
to discriminate them. 
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Supposing we have to measure an angular distribution of a given process,  

can you answer to the following questions? 

  

1) where to put the detectors? 

2) which solid angle do you have to cover? 

3) which angular resolution do you need? 

4) which energy resolution? 

Before answering the following questions, do you have a clear idea 

about kinematics? 



6Li elastic scattering @ 88 MeV 6He elastic scattering on p @ 38 MeV/u 

S. Hossain et al. Phys. Scr. 87(2013) 015201  

Some example of elastic scattering angular distribution 

Direct kinematics 
inverse kinematics 

scattering 

V.Lapoux et al. PLB417(2001)18 



Direct kinematics: e.g.elastic scattering 6Li+25Mg @ 88MeV 

In direct kinematics we detect the projectile particle.  
The difference between qc.m. and qlab depends on the mass ratio. 



Inverse kinematics: e.g. elastic scattering 6He+p @ 38 MeV/u 

The inverse kinematics is forward focussed in the lab system. 

For the projectile particle there are two kinematical solutions 

and small Dqlab corresponds to large Dqc.m. 



Two body kinematics for elastic scattering 

V1L V2L=0 

VBL=     m1V1L +m2V2L 

m1+m2 

 velocity of the c.m. in the Lab system 

vB 

V1L 

V2L 

V1B 

V2B 

q1B q1L 

V1L=     m1+m2 VBL 

                 m1 

we will use this later 

X 



Two body kinematics 

V1B V2B 

V’1B 

V’2B 

c.m. system 

Elastic scattering 

In the c.m. system before and after the collision the velocities are the same and the 
c.m. is at rest. 

m1v1B=m2v2B 

v1B=v’1B 

 
v2B=v’2B 
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Momentum conservation in the c.m. 
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Energy in the c.m. system 

we will use this → 

V2B=VBL IMPORTANT! We prove this true ………. 
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Since V2B=VBL → q2L+q2L=2q2L=q2B=-q1B 

AB=V1B sinq1B 

 

BC=VBL+V1Bcosq1B 
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Some relations between angles 

q2B 

q1L q1B 

q2L 

V1L 

V2L 

V1B 

V2B 

VBL 

q2L 

A 

B 

C 



m1>m2 (inverse kinematics) 

We draw two cyrcles having radii: R1=V1B and R2=V2B=VBL 

V1L 

V2L 

V1B 

V2B 

VBL 

V1L 

V2L 

V1B 

V2B 

VBL 

In inverse kinematics there is a maximum angle at which particle m1 and m2 
are scattered in the lab system.  

90° 
q1Lmax 

q1Lmax → V1L tangent to the inner circle 
 
sin q1Lmax= V1B = m2 

                    VBL    m1 

since 2q2L=q2B=-q1B 

 

q2Lmax= 90° for q2B=180° 

The inverse  kinematics 

is forward focussed. 



E.g. 20Ne+p Elab=100 MeV 

1H 

20Ne 

1H 

20Ne 



1H lab 

c.m.  

20Ne two kinematical solutions 

Rutherford cross-section  



E.g. 20Ne+p Elab=100 MeV 

NOTE:In inverse kinematic scattering the c.m. angle is not the one 

of the light particle that one generally detects. 



m1=m2 

V1L=0 

V2L=V1B+VBL 

V1B 

V2B 

q1L+q2L=90°        q2B=-q1B      →     sinq1B=cosq2B 

q1Lmax=q2Lmax=90° 

V1L 

V2L 

V1B 

V2B 

q1B 

q2B 

Identical particle scattering 

The maximum angle for both, projectile and recoil is 90° 



E.g. 20Ne+20Ne Elab=100 MeV 



Rutherford cross-section 

c.m. 



V1L 

V2L 

V1B 

V2B 

V1L 

V2L 

V1B 

V2B 

For the projectile particle all angles are allowed both in the c.m. and laboratory system. 

m1<m2 (direct kinematics) 

q1L 
q1L 



E.g. p+ 20Ne Elab=100 MeV 



Rutherford cross-section 

c.m. 

1H lab 

20Ne lab 



E.g. p+ 20Ne Elab=100 MeV 

NOTE:In direct kinematics the c.m. angle is the one of the light 

particle which is also the projectile particle. 
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E1L ,v1L   before collision                    E’1L ,V1L  after collision 
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By combining these equations we can express the energy after the 
collision as a function of the energy before: 

Eq.1 

For particles having the same masses m1=m2=m: 
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By measuring energy and angle of one particle we can completely reconstruct the kinematics. 
 

Now we calculate the relative energy trasferred in one collision:  

The maximum energy is transferred in a collision between two identicle particles  
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Relative energies. 

LLLLBB

LBB

LBB

EVmV
mm

m

mm

m

mm

mm
VEE

V
mm

m
mVmE

V
mm

m
mVmE

1

2

11

2

1

21

1

21

2

2

21

212

121

2

1

2

21

1
2

2

222

2

1

2

21

2
1

2

111

2

1

2

1

2

1

2

1

2

1

2

1

2

1



















































 1 

The total energy in the cm is less than the incident energy in the lab system owing to the 
kinetic energy used for the cm motion in the lab. 

E1B+E2B+EBL=E1L=E’1L+E’2L 
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Vrel=V1B-V2B =V1L-V2L   
 
V2
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2B+2V1BV2B=V2
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For m1<<m2          Ecm≈E1L 



We now consider the case of  Q≠0 
a) Inelastic scattering 20Ne+p  

elastic 

Inelastic E*(20Ne)=4.2 MeV 

V1L 

V2L 

V1B 

V2B 

VBL 

V2L<V2B 

V1L 

V2L 

V1B 

V2B 

VBL 

Two solutions for projectile fragment 

Two solutions for both fragments 

depending upon excitation energy 



b) reaction 

1+2→3+4    3=light    4=heavy        
 
  Q=(E3L+E4L)-(E1L+E2L)=[(m1+m2)-(m3+m4)]c2 

 
The total energy  ∑mc2+ E is conserved: ET=E1L+Q=E3L+E4L 

 
(m1c2+E1)+(m2c2+E2)=(m3c2+E3)+(m4c2+E4) 

q2L 
VBL 

V3L 
V3B 

q3L q3B 

q2 
VBL 

V3L 
V3B 

q3L q3B V3B 

VBL<V3B→ one solution 
VBL<V3B→ two solutions 

The number of solutions depends upon Q 



q2L 
VBL 

V3L 
V3B 

q3L q3B 

q2 
VBL 

V3L 
V3B 

q3L q3B V3B 

20Ne+20Ne16O*+24Mg 

Q=Qgg-E*1-E*2 

Q=-5.41MeV 

Q=-45.41MeV 



From T.Davinson  

Inelastic scattering 

Transfer reactions 



Threshold energy for a reaction to occur: 








 


2

21

m

mm
QEth

T

B

T

T

B

T

TL

TL

E

E

Em

Qm

mmmm

mm
D

E

E

Em

Qm

mmmm

mm
C

mmmm

EEmm
B

mmmm

EEmm
A

3

1

1

4321

42

4

1

1

4321

32

4321

131

4321

141

)1(
))((

)1(
))((

))((

)/(

))((

)/(

















A+B+C+D=1            AC=BD 

If one or both the emitted particles are excited the Q=Qgg-E*1-E*2 



  

  

L
TL

B

L

L

L
B

LLB

T

L

LLB

T

L

D

EE

Em

Em

ACAACCA
E

E

BDBACDB
E

E

3
3

3

3

22

33
4

2

4

2

44
4

2

3

2

33
3

sin
/

sin

sinsin

)sin/(coscos2

)sin/(coscos2

qq

qq

qqq

qqq





















-

-

Use only sign + (one solution) unless A>C (two solutions), in this case there is 
a maximum angle for the heavy particle in the Lab: θ4Lmax=sin-1(C/A)1/2 

Use only sign + (one solution) unless B>D (two solutions), in this case there is 
a maximum angle for the heavy particle in the Lab: θLmax=sin-1(D/B)1/2 



We suppose now that the two particles form a compound system S. 
The velocity of S equals the cm velocity after the collision: VS=VBL 

 

If from S is emitting a particle with velocity Vp in the cm system, we have:  

VS 

Vp 

VL 

qp 
qL 

VLsinqL=Vpsinqp 

VLcosqL=VS+Vpcosqp 

p

p

S

p

L

V

V
tg

q

q
q
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

 This equation completely determines c.m. angles 
once Lab angles are measured. 


