You need to measure elastic scattering angular distribution ${ }^{7} \mathrm{Li}+{ }^{12} \mathrm{C}$ at $\mathrm{E}_{\mathrm{lab}}=100 \mathrm{MeV}$.

Define the experimental condition for this measurement :

1) Verify if a target thickness of $200 \mu \mathrm{gr} / \mathrm{cm}^{2}$ is ok for discriminating elastic from inelastic scattering measurement up to 150°.
2) Si-Detector thicknesses (verify if a $15 \mu \mathrm{~m} \Delta \mathrm{E}$ detector is ok for your purposes)
3) Angular resolution (target angular straggling, beam emittance)

Knowing that:

1) You need to separate elastic scattering from the inelastic excitation of ${ }^{7} \mathrm{Li}\left(\mathrm{E}_{\mathrm{x}}=0.48 \mathrm{MeV}\right)$
2) You need to identify ${ }^{7}$ Li using a $\Delta \mathrm{E}-\mathrm{E}$ technique (choose $\Delta \mathrm{E}$ thickness). Detection threshold 0.5 MeV .
3) Your beam transverse emittance is $\Delta \phi \Delta \theta=1 / \beta \pi \mathrm{mm} . \operatorname{mrad}(\gamma=1)$ and the beam spot size is 3 mm .
4) You have to design a collimation system to limit your angular resolution at forward angles to 0.2^{0} knowing that the distance between the collimators is 1 m .
5) You want to measure at very large angles $\theta \mathrm{H}=150^{\circ}$.

Use LISE++

Remember that:

Normalised beam emittance $\Delta \phi \Delta \theta=\varepsilon / \beta \gamma=1 \pi \mathrm{~mm} . \mathrm{mrad}$

At forward angles the ${ }^{7} \mathrm{Li}$ beam energy is around $100 \mathrm{MeV} \rightarrow$ need to choose a $\Delta \mathrm{E}$ detector thickness where the energy deposited by the ${ }^{7} \mathrm{Li}$ is sufficiently above the detection threshold.

```
For }\Delta\textrm{E}=15\mu\textrm{m}\mp@subsup{\textrm{E}}{\mathrm{ loss }}{(7Li 100MeV) }\mp@subsup{}{}{(
    E
```

Target thickness $200 \mu \mathrm{gr} / \mathrm{cm}^{2} \mathrm{E}_{\text {loss }}$ in target at 150° to be evaluated if you energy resolution is an issue.

Condition 1: no beam energy loss E given by kinematics $\rightarrow \mathrm{E}_{7 \mathrm{Li}}=7.91 \mathrm{MeV}$ Condition 2: $\mathrm{E}_{\text {loss }}$ of the beam in the whole target \rightarrow kinematics $\rightarrow \mathrm{E}_{\text {loss }}$ of particle in the target thickness $\mathrm{t} / \cos (\pi-\theta)=0.250 \mathrm{MeV}$

Beam emittance:

$\varepsilon=1 / \beta \gamma \pi \mathrm{mm} . \mathrm{mrad} \quad \beta=\sqrt{\frac{2 E}{m}}=\sqrt{\frac{2 \times 100 \mathrm{MeV}}{7 \times 931 \mathrm{MeV}}}=0.175$

$$
\begin{aligned}
& \varepsilon=\frac{1}{0.175}=5.71 \pi \mathrm{~mm} \cdot \mathrm{mrad} \\
& \Delta \phi \Delta \theta=5.71 \pi \mathrm{~mm} \cdot \mathrm{mrad} \\
& \Delta \theta=\frac{5.71 \pi}{3} \mathrm{mrad}=5.97 \mathrm{mrad}=0.34^{\circ}
\end{aligned}
$$

$$
\delta \theta=\sqrt{\delta \theta_{\text {beam }}^{2}+\delta \theta_{\text {straggling }}^{2}}
$$

Target angular straggling at forward angles $\delta \theta \mathrm{HO} 0.05^{\circ} \mathrm{FWHM}$

Target angular straggling at $\theta=150^{\circ} \delta \theta \mathrm{HO} .6^{\circ} \mathrm{FWHM}$

$\phi 1=$ diameter of collimator 1
\$2= diameter of collimator 2
$\mathrm{D}=$ distance between the two collimators $=1000 \mathrm{~mm}$

$$
\delta \theta=0.2^{0}
$$

$\frac{1}{2}\left(\phi_{1}+\phi_{2}\right)=D \sin \delta \theta=3.5 \mathrm{~mm} \quad$ If you want a beam spot of $3 \mathrm{~mm} \rightarrow \phi 2=3, \phi 1=4$

