You need to measure elastic scattering angular distribution $^{7}Li+^{12}C$ at $E_{lab}=100$ MeV.

Define the experimental condition for this measurement :

1) Verify if a target thickness of 200 μ gr/cm² is ok for discriminating elastic from inelastic scattering measurement up to 150⁰.

2) Si-Detector thicknesses (verify if a 15 μ m Δ E detector is ok for your purposes)

3) Angular resolution (target angular straggling, beam emittance)

Knowing that:

- 1) You need to separate elastic scattering from the inelastic excitation of 7 Li (E_x=0.48 MeV)
- 2) You need to identify ⁷Li using a Δ E-E technique (choose Δ E thickness). Detection threshold 0.5 MeV.
- 3) Your beam transverse emittance is $\Delta\phi\Delta\theta=1/\beta \pi$ mm.mrad ($\gamma=1$) and the beam spot size is 3mm.
- 4) You have to design a collimation system to limit your angular resolution at forward angles to 0.2^o knowing that the distance between the collimators is 1 m.
- 5) You want to measure at very large angles θ H=150⁰.

Use LISE++

Normalised beam emittance $\Delta\phi\Delta\theta = \epsilon/\beta\gamma = 1 \pi$ mm.mrad

At forward angles the ⁷Li beam energy is around 100 MeV \rightarrow need to choose a ΔE detector thickness where the energy deposited by the ⁷Li is sufficiently above the detection threshold.

For $\Delta E=15 \ \mu m \ E_{loss}(^{7}Li \ 100 MeV) \approx 900 \ keV$ $E_{loss}(^{7}Li \ 8 \ MeV \ from \ kinematics) \approx 5.7 \ MeV \ E_{residual}=2.3 \ MeV$

Target thickness 200 μ gr/cm² E_{loss} in target at 150⁰ to be evaluated if you energy resolution is an issue.

Condition 1: no beam energy loss E given by kinematics $\rightarrow E_{7Li}=7.91$ MeV Condition 2: E_{loss} of the beam in the whole target \rightarrow kinematics $\rightarrow E_{loss}$ of particle in the target thickness t/cos(π - θ)= 0.250 MeV

Beam emittance:

$$\varepsilon = 1/\beta \gamma \pi \text{ mm.mrad} \qquad \beta = \sqrt{\frac{2E}{m}} = \sqrt{\frac{2 \times 100 MeV}{7 \times 931 MeV}} = 0.175$$
$$\varepsilon = \frac{1}{0.175} = 5.71 \pi mm.mrad$$

$$\Delta\theta = \frac{5.71\pi}{3} mrad = 5.97 mrad = 0.34^{\circ}$$

$$\delta\theta = \sqrt{\delta\theta_{beam}^2 + \delta\theta_{straggling}^2}$$

Target angular straggling at forward angles $\delta\theta$ H0.05^o FWHM

Target angular straggling at θ =150° $\delta\theta$ H0.6° FWHM

 ϕ 1= diameter of collimator 1 ϕ 2= diameter of collimator 2 D= distance between the two collimators= 1000 mm $\delta\theta$ = 0.2⁰

 $\frac{1}{2}(\phi_1 + \phi_2) = D\sin\delta\theta = 3.5mm$ If you want a beam spot of 3 mm $\rightarrow \phi$ 2=3, ϕ 1=4