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These exercises are designed to introduce catkin via some calculations that illustrate the differences 
between normal and inverse kinematics, with reference to the lecture notes for this school. In fact, 
the main motivation is to study and think about the kinematics calculations once you have done 
them, so catkin is in no way essential – any kinematics programme is suitable – although anybody 
who already has an alternative programme will probably have thought about all of the issues studied 
here, already! Another convenient way to perform kinematics calculations is included in LISE++. 

QUESTION ONE 

This question concerns “normal kinematics” calculations. That is, a light particle is incident on a 
heavier target particle. The figure below, taken from the lectures, shows calculations for deuterons 
incident on Pb at 10 MeV/nucleon (a total of 20 MeV for the deuteron, measured in the laboratory 
frame).  

 

1 (a) 

Make a similar plot for the hypothetical case of the (d,p) reaction on a target of 25Na at 5.0 
MeV/nucleon (10 MeV deuterons). (Hypothetical because 25Na has a half-life of 59.1 seconds and 
realistically it can’t be made as a target). Don’t bother to do the calculations for the carbon and 
oxygen targets, we just need the 25Na target for this question. Use whatever software you like, to do 
the plot; in the simplest case you could just use excel and copy/paste the columns from the lower 
part of the main kinematics page in catkin. Make the plot for (d,p) to the ground state of 26Na and, 
also on the same plot, include the excited states at excitation energies in 26Na of 0.407 MeV and 
3.512 MeV. 



1(b) 

Now calculate the elastic scattering (d,d) at the same beam energy (5 MeV/nucleon), and add it to 
your plot. Also add a plot of (p,p) elastic scattering at 5 MeV/nucleon incident energy for the proton, 
showing what you would get for a proton beam on the 25Na target. Finally, add the (d,t) reaction at 5 
MeV/nucleon, to the ground state of 24Na. Now, finally, add curves for (d,d) and (d,t) reactions to 
hypothetical states in the final nucleus at 0.5 MeV. 

1(c) 

How does the spacing in proton energy of the (d,p) kinematic lines, for final states of 0.0 and 0.407 
MeV, compare with the spacing in excitation energy of the two states, i.e. 0.407 MeV? How does this 
depend upon laboratory angle? 

1(d) 

Considering just (d,p) for example, how different do the kinematical plots appear, if you use the 
centre of mass angle instead of the laboratory angle, for the proton? 

QUESTION TWO 

2(a) 

Repeat the above kinematical calculations, in inverse kinematics: that is, with the deuteron (or 
proton in the case of proton elastic scattering) as the target. The beam should be 25Na at 5.0 
MeV/nucleon, i.e. 125 MeV, and you should make plots of energy versus laboratory angle. 

[Note that classically (and here, 𝛽 = 10.3%𝑐 so it is still just about acceptable to be guided by this) 

the velocity is given by 𝛽(%) = 4.6337�𝐸/𝐴 where 𝐸 is in MeV and 𝐴 is the number of nucleons, 
so these calculations are the same relative velocity between the deuteron (or proton) and the 25Na]. 

The relevant plot from the lectures that should look similar in many ways is shown below, for some 
rather different masses and energies for the beams. Note that the vertical axes (absolute energy) are 
not so different in these cases. In the plots shown below, the points corresponding to the same 
centre of mass angles (10, 20, 30… degrees) are connected. 

 



Note that the smaller values of centre of mass angles (which are the most important to measure 
experimentally, because these are the angles where the approximations in the theory can be 
expected to work the best) correspond to the lower energy branch of the double-valued solutions 
for the (d,t) reaction. For the (d,p) reaction, the lower values of centre of mass angle correspond to 
the backward laboratory angles (closer to 180 degrees in the laboratory). Also, you will find that 
catkin will give the centre of mass angle as (180− 𝜃𝑐𝑚); this is because catkin always measures 
angle relative to the beam direction, whereas the relevant reference direction for the physics is the 
direction pointing from the deuteron towards the 25Na, which is opposite to the beam direction in 
the case of inverse kinematics. 

You will also notice that the inelastic plot for (d,d) to the hypothetical 0.5 MeV state will look quite a 
lot different to the plot for the elastic scattering. This will be obvious, following the discussion in 
Question 3. 

2(b) 

Calculate the difference in energy between the (d,p) curves for the population of the states at 0.0 
and 0.407 MeV, and plot this as a function of the laboratory angle. Note that, in contrast to the 
normal kinematics case, there is a significant “compression” of the spacing between these lines at 
the laboratory angles of primary interest (which, for inverse kinematics, are those towards 180°). 
This makes the experimental challenge more difficult, in terms of resolving closely spaced states in 
terms of energy, and is a factor that gives helical spectrometers such as HELIOS an advantage in 
certain experimental situations, as mentioned in a parallel series of experimental lectures. 

2(c) 

Compare your curves for the kinematics with the experimentally measured data shown below. These 
data are from an experiment performed at TRIUMF using SHARC and TIGRESS (thesis of G.L. Wilson, 
also of I.C. Celik). You should see evidence of the population, amongst other things, of states close to 
0.0, 0.407 and 3.512 MeV in 26Na, via (d,p). Also, there is evidence of elastic scattering of the 
deuterons in the target, which are ejected from the target and are recorded in SHARC. Finally, 
identify which line(s) correspond to proton elastic scattering (this tells us that the targets apparently 
have 1H in them, even though the experimenters asked for them to contain only 2H). The plot is 
calibrated to give kinetic energy (in keV) versus laboratory angle in degrees. 

 

Energy v Theta 



2(d) 

Use your results for (d,p) to the ground state of 26Na to calculate the Jacobian quantity 𝑑𝜃𝑙𝑎𝑏/𝑑𝜃𝑐𝑚 
as a function of 𝜃𝑙𝑎𝑏 and to plot it. Observe that the effect here is to “decompress” the angles in the 
change of frame from centre of mass to laboratory frame, so that a given span in laboratory angle 
covers a smaller range of angles in the centre of mass frame for the laboratory angles tending 
towards 180°. This means that the most backward angles, whilst important because they 
correspond to small centre of mass angles, have their importance diminished in terms of the number 
of counts seen at these angles in an experiment. 

2(e) 

If you have LISE++ you can calculate* the angles at which the protons from the (d,p) reaction will 
punch completely through the silicon detector in SHARC. For this you need to know that the silicon 
detectors were aligned with their front faces parallel to the beam direction, and had thicknesses of 
1000µm for laboratory angles > 90° and 140µm for angles < 90°. (Actually, you will find that the 
1000µm is sufficient to stop the protons from (d,p) for all angles > 90°). 

Now, if you calculate the angles at which (d,d) and (p,p) punch through the 140µm silicon, you will 
find that they start to punch through for laboratory angles in the range 50-70°. You can see from the 
experimental data that the particles at more forward angles than the punch-through are depositing 
less and less energy in the silicon; this is because the rate of energy loss of the particles drops to 
smaller values as the energy of the particles increases. This explains the difference between the 
kinematics calculations and the data, for the elastic scattering. (Note that in the experiment, in 
SHARC, the 140µm silicon detector is backed by a second silicon detector of thickness 1000µm which 
can also be included in the analysis of the data, to recover the full energy experimentally. The data 
shown here do not include the second detector.) 

*to use LISE++ in this way, you need to use the “Physical calculator” shown by the blue P icon. You 
can specify the type of ion, and the total kinetic energy (TKE), and it will calculate the energy 
deposited in a given thickness of silicon. You can also specify the angle of incidence, which in this 
case is equal to the difference between the laboratory angle and 90°. It will also give you the range 
in silicon. With these calculations, you can calculate the punch-through angles for the elastics. 

QUESTION THREE 

3(a) 

The overall properties of the kinematics can be recognised intuitively using the velocity vector 
diagrams discussed in the lectures (even though it should be remembered that these obviously use 
the Galilean transformation of classical mechanics, to allow them to be drawn on a sheet of paper). 
The slide from the lectures that includes the formulae for the lengths of the vectors is in the 
following diagram. 

The diagram shows the velocity of the centre of mass in the laboratory reference frame and also the 
velocity vectors, as measured in the centre of mass reference frame, of the ejectile and the heavier 
recoil. Momentum is conserved in the centre of mass frame, so the lengths of the two velocity 



vectors in that frame simply reflect the different masses. Here, the symbols P, T, e and R are used to 
denote the projectile, target, (light) ejectile and (heavy) recoil respectively. 

[A special case is elastic scattering, where 𝑀𝑅 = 𝑀𝑃 and 𝑀𝑒 = 𝑀𝑇 and also the Q-value and 
excitation energy are both zero so 𝑞 = 1 exactly. Therefore the magnitudes of 𝑣𝐶𝑀 and 𝑣𝑒 are equal. 
At a scattering angle in the centre of mass frame of zero (see diagram), the resultant velocity of the 
target nucleus after the collision is zero in the laboratory frame. As the angle of the deflection 
increases slightly, in the centre of mass frame, the resultant starts to trace around a circle and the 
elastically scattered target particles are seen to emerge just forward of 90° in the laboratory frame 
and with a kinetic energy that increases rapidly with angle. Initially, the length of the resultant vector 
is proportional to the centre of mass angle and hence the kinetic energy increases quadratically with 
centre of mass angle. Also, the vector triangle is isosceles so that (90 − 𝜃𝑙𝑎𝑏) = 𝜃𝑐𝑚/2 and hence 
the kinetic energy also increases approximately quadratically with laboratory angle, as the angle 
varies away from 90° before settling down to a slower rate of increase.] 

 

 

Calculate the quantity 𝑞 and hence the relative lengths of the vectors 𝑣𝐶𝑀, 𝑣𝑅 and 𝑣𝑒 (here, 𝐸𝐶𝑀 is 

the incident kinetic energy as measured in the centre of mass frame: 𝐸𝐶𝑀 = 𝐸𝑙𝑎𝑏 × ( 𝑀𝑇
[𝑀𝑇+𝑀𝑃]) where 

𝐸𝑙𝑎𝑏 is the total kinetic energy of the beam particles (projectiles) in MeV). Do this for 𝐸𝑙𝑎𝑏 = 5 
MeV/nucleon, i.e. 125 MeV, and for the inverse kinematic reactions: 

• d(25Na,p)26Na to the ground state 
• d(25Na,d)26Na elastic scattering 
• d(25Na,t)24Na to the ground state 

The vector diagrams that you can construct in each case, and then imagining how they change as 
𝜃𝑐𝑚 changes, should make the overall form of the kinematical diagrams that you produced in 
Question 2 become obvious. 



[Note that the ratio of lengths 𝑣𝑒/𝑣𝐶𝑀 is given by the expression �𝑞𝑓(𝑀𝑅/𝑀𝑃) ≈ �𝑞𝑓 where 𝑓 is 
equal to 2 for (d,p), 2/3 for (d,t) and 1/2 for (p,d), being simply the ratio of masses and 𝑞 is given by 
𝑞 = 1 + (𝑄𝑡𝑜𝑡𝑎𝑙/𝐸𝐶𝑀) where 𝑄𝑡𝑜𝑡𝑎𝑙 is the reaction Q-value taking into account the excitation 
energy. Now 𝐸𝐶𝑀is related to the beam energy in the laboratory frame, as usual, by the simple 
relationship 𝐸𝐶𝑀 = 𝐸𝑙𝑎𝑏 × (𝑀𝑇/[𝑀𝑇 + 𝑀𝑃]) and [𝑀𝑇 + 𝑀𝑃] ≈ 𝑀𝑃 for a light target, so we can 
write 𝐸𝐶𝑀 ≈  (𝐸/𝐴)𝑏𝑒𝑎𝑚 × 𝑀𝑇 where (𝐸/𝐴)𝑏𝑒𝑎𝑚 means the energy per nucleon of the beam. Thus, 
𝑞 ≈ 1 in the cases where the beam energy per nucleon (𝐸/𝐴)𝑏𝑒𝑎𝑚 is large compared to the Q-value 
of the reaction, for example a Q-value of 1 or 2 MeV and a beam energy of order 10 MeV/nucleon. 

Then, the ratio of vector lengths is given approximately by the very simple expression 𝑣𝑒/𝑣𝐶𝑀 ≈ �𝑓 
which depends just on the type of reaction and not on any other details. This is why the kinematical 
diagrams all look so similar. If the Q-value becomes significantly negative and/or the beam energy is 
very low, etc., then the form of the vector diagrams will be different, but the approximations that 
give 𝑞 ≈ 1 are appropriate for a wide range of examples.] 

[Note also that the scale of the vector diagram, given by 𝑣𝑢𝑛𝑖𝑡 in the figure, is proportional to �𝐸𝐶𝑀 

when 𝑞 ≈ 1, which means to say that it is approximately proportional to �(𝐸/𝐴)𝑏𝑒𝑎𝑚. If the 
velocities scale approximately in this fashion, then the kinetic energies of the observed particles 
(being the proportional to the square of the velocities, classically) will scale approximately as the 
energy per nucleon of the beam, (𝐸/𝐴)𝑏𝑒𝑎𝑚.] 

In summary, the classical vector addition diagrams can be a useful aide memoire to help you to 
visualize how the kinematical diagrams should look, for transfer reactions in inverse kinematics. 

QUESTION FOUR 

4(a) 

This question concerns the production, in a two-body reaction, of a nucleus that then sequentially 
breaks up. Consider first the excitation energy at which 26Na becomes unbound to neutron emission. 
Determine this from the Calculator page in catkin, using the section for separation energy. 

4(b) 

Now calculate the kinematics for the reaction d(25Na,p)26Na at 5.0 MeV/nucleon, to a hypothetical 
unbound state at 6.5 MeV excitation energy in 26Na. For reactions corresponding to zero degrees in 
the centre of mass frame (as defined for example in Question 3), determine the energy of the 26Na 
nucleus prior to sequential breakup via neutron decay (this recoil emerges from the reaction at zero 
degrees in the laboratory frame). Now use the Calculator page in catkin to determine the angular 
size of the cone into which the 25Na decay products of the sequential neutron decay are focussed. 
Why will the mean kinetic energy of these 25Na nuclei be given by (25/26) times the energy of the 
26Na that you calculated? 

4(c) 

The 25Na nuclei originating from sequential decay of this 6.5 MeV state in 26Na will all be focussed 
forward of some limiting angle, relative to the beam direction. Estimate this angle, taking into 
account the maximum angle of the 26Na relative to the beam direction (from the two-body 



kinematics for all scattering angles) and the cone size for sequential neutron emission that you 
already calculated. Compare this with the size of the cone (around the beam direction) that will 
contain all of the 25Na nuclei arising from elastic scattering from the deuteron target. Also, how will 
the kinetic energy of the most intense of the elastically scattered 25Na nuclei (i.e. small centre of 
mass scattering angles) compare to the mean energies of the 25Na nuclei from sequential breakup, 
mentioned earlier? 

Ultimately, a complex detection scenario such as this should be modelled in a proper simulation, but 
the type of simple calculations discussed above can help to give a physical insight into what to 
expect. 

4(d) 

For something rather different, suppose the target is replaced by 9Be and the neutron transfer 
reaction is achieved via (9Be,8Be) in inverse kinematics, with the same beam energy for 25Na as 
before. For reactions populating the ground state of 26Na, what is the energy of 8Be particles 
emerging at 90° in the laboratory frame (𝜃𝑐𝑚 = 29°)? 

4(e) 

Since 8Be is unbound to decay in two alpha particles, the 8Be emitted at 90° in the laboratory 
immediately decays into two alpha particles contained within a cone with a  size determined by the 
energy released in the breakup and the kinetic energy of the 8Be. Use the Calculator page of catkin 
to calculate the size of that breakup cone. 

 

NOTE ON LISE++ 

This programme is available from a download site at MSU (google LISE++ download). It runs under 
Microsoft Windows. On the web site you can see “latest updates” to determine the latest official 
version, and then go to “download” to get the executable programme. The programme was 
originally developed to calculate the expected secondary radioactive beams produced via 
fragmentation reactions in the mass-achromatic spectrometer LISE at GANIL. Conceptually similar 
spectrometers are in use at MSU (A1900), GSI (FRS) and RIKEN (BigRIPS) and LISE is now upgraded to 
LISE3. However, for present purposes, the really interesting part of LISE++ is the “PHYSICAL 
CALCULATOR” which is located in the task bar at the top, with a blue P (plus calculator) symbol. You 
can specify an ion by A and Z, and its energy via TKE (total kinetic energy), and then compute its 
energy loss in layers of any material and in particular silicon. The top left section defines the particle, 
the top right gives the energy loss in a thickness of silicon (you can change the angle of incidence 
with the “after/into” option), the bottom right will give the range in silicon, and the bottom left 
allows for very flexible calculations for particles with multiple layers of different materials. 
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