

UiO Department of Physics University of Oslo

David Cameron, University of Oslo, ATLAS Experiment and NorduGrid Collaboration

Grid Computing

The Changing Scale of Particle Physics

A discovery in 1930s

- ~2 scientists in 1 country
- pen-and-paper

A discovery in 1970s

- ~200 scientists in ~10 countries
- mainframes

A discovery today

- ~2000 scientists in ~100 countries
- <u>Distributed Computing</u>

Event Collection in ATLAS

Proton-Proton

2835 bunch/beam

Protons/bunch 10¹¹

7 TeV (7x10¹² eV)

Beam energy Luminosity

10³⁴ cm⁻² s⁻¹

Crossing rate 40 MHz

Collisions rate ≈ 10⁷ - 10⁹Hz

New physics rate ≈ .00001 Hz

Event selection: 1 in 10,000,000,000,000

Graphic by CERN

What is the data?

- C++ objects representing tracks, parts of detector etc, saved in files. Some geometry information in databases
- Data is reconstructed and reduced
 - RAW -> ESD -> AOD -> NTUP
- Also simulation, reprocessing, user analysis...

Figure from http://cerncourier.com/cws/article/cnl/34054

Big Data?

Illustration by Sandbox Studio, Chicago
Taken from http://www.symmetrymagazine.org/image/august-2012-big-data

WIRED.com © 2014 Condé Nast. Taken from http://www.wired.com/2013/04/bigdata/

Do everything at CERN?

- All this requires (just for ATLAS)
 - 150,000 CPU constantly processing data
 - Storing 10s of PetaBytes (million GB) of data per year
- CERN cannot physically handle this

Grid Computing

- Like the electricity Grid
- Grid is a technology that enables optimized and secure access to widely distributed heterogeneous computing and storage facilities of different ownership

From WWWeb to WWGrid

Characteristics of a generic Grid system

The (Worldwide) LHC Computing Grid

- 1 Tier 0: CERN
 - Data processing
- 11 Tier 1s
 - Simulation
 - Reprocessing
- ~130 Tier 2s
 - Simulation
 - User Analysis
- Total storage space: 238,345,566 GB
- Total processors available: 501,294

WLCG Sites

How to make a Grid

- The "Grid middleware" exposes resources to the Grid
 - Computing Elements give access to CPUs
 - Storage Elements give access to data
 - Information systems describe the Grid
- How to allow access to resources?
 - Cannot give usernames and passwords for hundreds of sites to thousands of people!
 - Fundamental basis is X509-based cryptography

Grid Middleware

Grid Security Infrastructure

Figure © 2014 Microsoft Taken from http://msdn.microsoft.com/en-us/library/ff647097.aspx

Virtual Organisations

Computing Element in more detail

Storage Element in more detail

NorduGrid

- Conceived in 2001 as Scandinavian Grid
 - UiO heavily involved in coordination and development
- Now 81 sites in 13 countries
- Software: Advanced Resource Connector (ARC)
 - Computing Element
 - (Basic) Storage Element
 - Information System
- Scandinavian design principles: clean and simple!

NorduGrid Monitor

Sites: 81 Running jobs: 23893

ATLAS Computing Model

The ATLAS Grid(s)

- ATLAS has its own systems on top of the Grids
 - PanDA (Production and Data Analysis) for job management
 - DQ2 (Don Quijote 2) for data management

DQ2

- A data management system to implement the ATLAS computing model
 - A dataset catalog and transfer system, and more
 - deletion, quota management, consistency, accounting, monitoring, end-user tools, ...

Total GRID space usage according to DQ2

It's a lot of data

Max Telenor broadband speed: 6MB/s Average ATLAS traffic: 10GB/s

Maximum: 155,716 , Minimum: 0.00 , Average: 128,052 , Current: 155,233

Grid job management

Classic "push" model

Pilot "pull" model

UiO • Department of Physics

University of Oslo

UiO * Department of Physics

University of Oslo

Maximum: 12,070,624 , Minimum: 0.00 , Average: 9,622,462 , Current: 358,241

Future prospects

- Many software components getting upgraded after Run 1 experience
- Completely new data management system to replace DQ2
- New version of system for managing tasks
- New trends in data management
 - Network is "cheap"
 - Break the model of send jobs to data
 - Remote data access over wide area network

Future Prospects

- Need more CPU and disk but with flat budget
- Looking to opportunistic resources
 - Volunteer Computing (Boinc)
 - High Performance Computing (supercomputers)
- NorduGrid/ARC is an critical part of both these activities

Why not just use "the cloud"?

- Historical reasons
 - Grid infrastructure has developed and stabilised over many years
- Funding
 - Research agencies prefer to pay for in-house expertise
- Sustainability
 - LHC will be taking data for the next 20+ years, data must be kept for even longer than that...
- Cost
 - Data-intensive computing 5-10 times more expensive using commercial cloud providers

Summary

Grid computing is a vital part of LHC physics

- For the average user it is really like the Electric Grid
- UiO plays a strong part at many levels of Grid computing work
- Many interesting challenges ahead

Global Effort → Global Success

Results today only possible due to extraordinary performance of accelerators – experiments - Grid computing

Observation of a new particle consistent with a Higgs Boson (but which one...?)

Historic Milestone but only the beginning

Global Implications for the future

Slide by Rolf Heuer, 4 July 2012