

Front End Electronics for SOI Monolithic Pixel Sensor

<u>T. Miyoshi</u>, Y. Arai, Y. Fujita, K. Hara¹, S. Honda¹, Y. Ikegami, Y. Ikemoto, I. Kurachi, S. Mitsui, A. Takeda², K. Tauchi, T. Tsuboyama, M. Yamada

High Energy Accelerator Research Organization (KEK) ¹Univ. of Tsukuba ²Kyoto University

23/9/2014 (Tuesday) 11:35 - 12:00 ASICs

Outlines

Introduction

Progress of SOI sensors

Sensor layout Pixel layout and circuit

Current issues and solutions

Future plan and summary

SOI Wafer for monolithic sensor

Smart cutTM by Soitec

High Resistivity Silicon: Two choices N-type Czochralski, NCZ, 700 Ohm-cm, 300 μ m-thick N-type Float Zone, NFZ, 2-7k Ohm-cm, 500 μ m-thick

SOI Monolithic pixel sensor

<u>Targets</u> High-Energy Physics X-ray astronomy Material science Non-Destructive inspection Medical application

The features of SOI monolithic pixel sensor

•No mechanical bump bonding. Fabricated with semiconductor process only

• Fully depleted (thick & thin) sensing region

with low sense node capacitance (~10 fF@17 μ m pixel) \rightarrow high sensor gain

- •SOI-CMOS; Analog and digital circuit can be closer \rightarrow smaller pixel size
- Wide temperature range (1-570K)
- Low single event cross section
- Technology based on industry standards; cost benefit

Process Summary

- KEK organizes MPW runs twice a year
- Mask is shared to reduce cost of a design
- Including pixel detector chip and SOI-CMOS circuit chip

Process	0.2µm Low-Leakage Fully-Depleted (FD) SOI CMOS
(Lapis Semiconductor Co. Ltd.)	1 Poly, 5 Metal layers (MIM Capacitor and DMOS option) Core (I/O) voltage : 1.8 (3.3) V
SOI wafer (200 mm ¢ =8 inch)	Top Si : Cz, ~18 Ω -cm, p-type, ~40 nm thick Buried Oxide: 200 nm thick Handle wafer thickness: 725 μ m \rightarrow thinned up to 300 μ m (Lapis) or ~50 μ m (commercial process) Handle wafer type: NCZ, NFZ, PFZ, double SOI
Backside process (2011~)	Mechanical Grind \rightarrow Chemical Etching \rightarrow Back side Implant \rightarrow Laser Annealing \rightarrow Al plating

An example of Sensor layout (1)

7/25

HV ring (p+)

An example of Sensor layout (2)

INTPIX7 (MPW FY13-1)

Pixel array Raw Address (RA) decoder Column Address (CA) decoder Column buffer, analog buffer, Bias circuit

IO pad array

Pixel layout and circuit (1) INTPIX7

10/25

Pixel layout and circuit (2) FPIX

Min. distance between sense node and transistor ~ $1\mu m$

Current issues and solutions

BPW process : effective to analog circuit in a pixel
 Double SOI wafer : effective to digital circuit in a pixel

Dope density [/cm³]

Geometry of TCAD simulation for BPW effectiveness study

HyENEXSS (TAC, Japan)

Simulation result for BPW effectiveness study

Back gate effect with p dose

"Vth>0.4V" @ back bias > 100 V \rightarrow p dose > 5e16 Increase of maximum voltage in which tr. works

Crosstalk study (TCAD Simulation) Transition analysis

Crosstalk increase by BPW

16/25An example of crosstalk observation (XRPIX2/2b,3/3b) **TIPP2014** X-ray cosmic ray hard soft A. Takeda field of view (non-X-ray BG) (Kyoto Univ.) For X-ray astronomy **XRPIX** Event-driven R/O circuit **Comparator in pixel** active shield TRIG_COL (SR) TRIG_ROW (SR) 30µm pixel TRIGOUT (OR) **CSA Pixel Circuit** Trigger Info. Output # CSA # + CDS + Trigger Circuit Anti-coincidence (NXB rej.) VTH I TRIGGER Hit-pattern (NXB rej.) H/L OUT Direct pixel access (X-ray RO) Comparator GND **Normal Pixel Circuit** VDD18 ROW_READ VB SF COL_READ VDD18-SF VB CSA-VB SF SF -d[STORE CDS Cap. STORE Sense-node COL_AMP OUT_BUF PD_RST Cap. Feedback Cap. PD Column Readout **RST** Sample Sense-node Sample G PD ď GND GND **CSA** 16 PD_RSTV CDS RSTV

17/25

An example of crosstalk

A. Takeda, PIXEL2014

XRPIX2/2b (Kyoto Univ.)

- The waveform of an oscilloscope when X-rays enter (¹⁰⁹Cd : 22.2 keV).

TIPP2014 @ Amsterdam, The Netherlands - A.Takeda - Jun. 5, 2014

18/25

Double SOI pixel sensor

Shield the back gate effect Compensate effect of box charge Shield the sensor to circuit crosstalk

Geometry of TCAD simulation For double SOI effectiveness study

Dope density [/cm³]

20/25

Crosstalk (TCAD Simulation)

Crosstalk can be suppressed in double SOI sensor

Development of double SOI pixel sensors

2012 The first prototype → breakdown study
2013 The second prototype → pixel sensor, rad. hard study
(TIPP2014, VERTEX2014, IEEE-NSS 2014)
2014 The third prototype
→ Still under fabrication! → chips will be delivered in October

Shaper output of beta-ray signal (PIXOR) Double SOI (d-SOI) : The second prototype Tohoku Univ.

22/25

beta-ray signals were observed successfully from Pre-amp.&shaper cir. with d-SOI Discriminator output is not confirmed yet.

^{23/25} Future plan; Counting-type pixel (double SOI) Under development

Future plan; Counting-type pixel (double SOI)

Under development

25/25

Summary

Several SOI pixel sensors have successfully been fabricated

3 issues; the back-gate effect, radiation hardness, sensor-circuit crosstalk1. The back-gate effectIntegration-type pixel sensors works thanks to BPW process

2. Sensor-circuit crosstalk can be suppressed by applying double SOI

3. Radiation hardness(is not mentioned in this talk)

Double SOI pixel sensors: The 1st trial 2012 The 2nd trial 2013 The 3rd trial 2014 Chips will be delivered in October. optimize pixel design with <u>p-type</u> DSOI sensors

http://rd.kek.jp/project/soi/

Supplement

Various Implantation Options in Sensor part

CPIX14

Y.Arai

Requirements to the Pixel Detectors

Hadron colliders:

- High total integrated dose and neutron flux LHC ATLAS inner Pixel detector: ~160 kGy and 10¹⁵ n_{eq}/cm² (x10 for HL-LHC)
- Immunity to Single Event Effects
- Very high event pile-up

Linear colliders:

- High granularity
- Complex readout scheme

Mean Number of Interactions per Crossing

 \rightarrow SOI pixel detector fulfill these requirements.

M. Yamada, PIXEL2014

ATLAS Luminosity Public Results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L uminosityPublicResults

2014/09/01

PIXEL2014

Cancelling the TID effects

Compensation of TID effect

Threshold of transistor shifts negatively due to positive potential from BOX . → Applied negative potential to SOI2 (VSOI2).

Test samples (NMOS and PMOS)

- several L and W of Tr
- low, normal and high threshold V
- Three kinds of body connections

Several types of transistors are used for readout circuit. We evaluated the radiation damage of transistors processed on double SOI.

Irradiation: ⁶⁰Co γ -ray from 3 kGy up to 2 MGy

at Takasaki Advanced Radiation Research Institute, JAEA
(http://www.taka.jaea.go.jp/index_e.html)

 $I_{\rm D}$ - $V_{\rm G}$ after Irradiation with VSOI2

 $I_{\rm D}$ - $V_{\rm G}$ curves with VSOI2 to cancel positive potential from BOX after irradiation of **200 kGy**.

PIXEL2014

18

20

16

VSensor Bias (VV)

V_RST(preirrad)=550mV

V_RST(100kGy)=950mV

14

INT_TIME=120ns

12

M. Yamada, PIXEL2014 **Double SOI**

Row Adr 188

186

184

182

180

178 176

174

172

170

Response to infrared laser of 1064 nm wavelength and 10 n pulse duration.

The average ADC count as function of the square root of the bias voltage for sensor. →Obtained similar linearity and sensitivity to pre-irradiation with VSOI2=-10 V.

Column Adr The pixel images after 100 kGy could not obtain but recovered with VSOI2=-10V.

Row Adr

Pre-irrad

2000

1000

PIXEL2014

'n

2

6

8

10

K. Hara, VERTEX2014

TID: Target Radiation Levels

TID: Total Ionization Damage is rather complicated ...

Wide dose range of applications:

LHC pixel ~ 500 kGy, $10^{15}n_{eq}/cm^2@ATLAS$ (x10 for HL-LHC) Belle-II ~ 10 kGy/y, $2x10^{12}n_{eq}/cm^2/y$ ILC (e.g., ILD @ r=15 mm) ~ 1 kGy/y, ~ $10^{11}n_{eq}/cm^2/y$ X-ray imaging: kGy/y ~MGy/y

Radiation damage studies done so far:

proton irradiation to 10¹⁶ n_{eq}/cm² ⁶⁰Co γ irradiation to 5 MGy for DOUBLE-SOI: ⁶⁰Co γ irradiation to 2MGy K. Hara, VERTEX2014, Macha Lake, Czech

Sep.16-19

PIXOR

Digital part

It manages holding of binary data from discriminator and timing comparison of hit and trigger.

Generally a trigger decision takes several micro seconds from the actual event time in high energy experiment (trigger latency).

Evaluated the overall circuit of digital part with a test-pulse.

Digital circuit could store the hit information of the signal during the trigger latency and sent a binary hit information as expected.

> Y. Ono et al., NIMA 731 (2013) 266-269 N. Shinoda, Master thesis, March, 2013

100ns

∎+▼296.000ns

5.00 V 2.00 V 27.0mV

OUT

2.50GS/s

10k points

M. Yamada, PIXEL2014

We are aiming PIXOR is installed as 1st layer of SVD for Belle II upgrade.

M.Friedl et al., "The Silicon Vertex Detector of Belle II", VERTEX2011, 19-24 June 2011, Rust, Lake Neusiedel, Austria

PIXEL2014