

First operation of the Level-0 Trigger of the NA62 Liquid Krypton Electromagnetic Calorimeter

Nico De Simone INFN & University of Rome "Tor Vergata"

for the NA62 LKr L0 Trigger Working Group

The NA62 experiment at CERN SPS

The NA62 experiment at CERN SPS

NA62

Main backgrounds: $K^+ \rightarrow \mu^+ \nu \bar{\nu}$ (~63 %) $K^+ \rightarrow \pi^+ \pi^0$ (~22 %) \longrightarrow Hermeticity for photons up to 50 mrad. LKr (1-8.5 mrad) gets 80% of the photons.

The NA48 Liquid Krypton electromagnetic calorimeter

 $K^+ \rightarrow \pi^+ \pi^0$ VETO

13248 channels.

anodes

- 27 X₀.
- •Inefficiency: $< 10^{-5}$ for $E_{v} > 10$ GeV.
- • σ_t = 800 ps (10 GeV photon).

12 sub-detectors, ~ 80000 channels, 25 GB/s raw data (LKr 22 GB/s)

NA62 LKr CREAM Readout (414 boards)

TWEPP 2014 – Aix en Provence

(from F. Hahn)

The motherboard: TEL62

Trigger ELectronics for NA62

Update from TELL1, general purpose data acquisition board developed at EPFL for the LHCb experiment:

- 8x computational power
- 20x buffer memory
- Higher connectivity

Developed ar INFN Pisa:

- 9U Eurocard size
 - 4+1 Altera Stratix III FPGAs
 - 2-4 input mezzanine cards
 - 1 output mezzanine (e.g. Ethernet)
 - PCI bridge to on-board PC.

TWEPP 2014 – Aix en Provence

LKr L0 Trigger: performance requirements in the worst case scenario

- From simulation:
 - max avg instantaneous hit rate = 30 MHz
 - 3 times higher in calorimeter center \rightarrow 90 MHz
- Worst case:
 - each hit produces a cluster;
 - each cluster is large (256-cells).
 - Max Peak Rate on each FE FPGA = **4.2 MHz**.

Worst-case bandwidth requirement FE \rightarrow concentrator:

1.4 Gbps (3.7 Gpbs available)

TELDES: Firmware

EPP 2014 – Aix en Provence

- 40 MHz 1:16 Derializer \rightarrow 640 Mbps.
- •Embedded clock (1 start + 1 stop bits).

ROUT 16

RCLK

- Deserializer recovers clock (RCLK) and data (ROUT).
- Firmware monitors deserializer lock, clock, equalizer rxon signals.

aclr

lock*

MONITOR FIFO

NA62 TELDES: testing

CREAM

TELDES on TEL62

Data sent from CREAM to TEL62, checking signal lock and data values.

Unshielded cables easily pickup EMI noise \rightarrow lock loss.

Good quality SFTP Cat. 6 cables are needed for a stable link.

Internal Transmission links

- •24 bit double edge inputs (48 bits per clock cycle).
- •Serialization over 8 LVDS streams.
- •Clock transmitted in parallel over a 9th LVDS link.
- •66 MHz to 133 MHz input clock \rightarrow 3.2 to 6.4 Gbps.
- •Optional DC balancing and pre-emphasis.

TI DS90CR485

- 2 links, 2 DS90CR485.
- Stratix II for chip control, data buffering and DDR output.
- One external reference clock per each serializer:
 - Latches DDR data at serializer
 - input. Clocks transmission logic in the Stratix II.

Eye diagram at 100 MHz (PRBS23) at serializer input

TWEPP 2014 – Aix en Provence TEL62 data

NA62 The Rx mezzanine

- 4 links, 4 DS90CR486.
- Link quality (BER) dependent on:
 - Clock frequency.
 - Deskew quality (not constant).
 - Cable, connectors, soldering quality.
- Firmware:
 - Checks deskew.
 - Implements ECC.

Aix en Provence

ational modes: a) deskew – at power up / reset; b) normal – for trigger; c) Bit Error Rate Test – periodically. TWEPP 2014 – Aix en Provence

TWEPP 2014 – Aix en Provence

c) Bit Error Rate Test – periodically.

Internal Transmission: BERT

Test result:

1) Up to 85 MHz:

BER < 10^{-15} (no error)

with <u>no error correction</u> from ECC.

2) At 100 MHz:

BER < 10^{-15} (no error)

with single error corrections (\sim 10/s) and no double error detection.

The Test Run in October will start with 70 MHz.

Front-End layer: PP FPGA Firmware

FPGA Resources Utilization (Front-End PP)

	U NIUS	8 NIUS
Device	EP3SL200F1152C4	EP3SL200F1152C4
Timing Models	Final	Final
Logic utilization	22 %	42 %
Combinational ALUTs	15,313 / 159,120 (10 %)	41,085 / 159,120(26 %)
Memory ALUTs	2,072 / 79,560(3 %)	2,072 / 79,560 (3 %)
Dedicated logic registers	28,660 / 159,120(18 %)	48,579 / 159,120 (31 %)
Total registers	28660	48579
Total pins	581 / 744(78 %)	581 / 744 (78 %)
Total virtual pins	0	0
Total block memory bits	1,370,266 / 9,621,504 (14 %)	1,840,154 / 9,621,504 (19 %)
DSP block 18-bit elements	0 / 576 (0 %)	32 / 576 (6 %)
Total PLLs	2 / 8 (25 %)	2/8(25%)
Total DLLs	0/4(0%)	0/4(0%)

Per each NIOS core:

- 2.5 % logic
- 0.6 % block memory
- 4 DSP

Test primitives (Wireshark capture)

7 o			Ca	apturing 1	from eth1 (on	lkrpn2.cern	.ch)			↑ _ ♂ ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> apture <u>A</u> nalyze <u>S</u> tatistics Telephony <u>T</u> ools <u>I</u> nternals <u>H</u> elp										
En En En En X 2 En 9, 4 - 4 - 7 L En En 9, 4 - 5 - 7 L En En 9, 9, 9, 10 En 10 % En 10 10 10 10 10 10 10 10 10 10 10 10 10										
Filter: Expression Clear Apply Save										
No.	Time	Source	Destination	Protocol	Info				New Column	
60	0.000000	10.0.0.10	10.0.0.30	UDP	Source	port:	54818	Desti		1
60	0.000006	10.0.0.10	10.0.0.30	UDP	Source	port:	54818	Desti		2

Conclusions

- •LKR L0 hardware tested and ready for commissioning.
- •We have good preliminary estimations of finetime and energy resolution of the system.
- •Test run goals:
 - commisioning and test of all detector components;
 - aiming at stable data taking.

