Topical Workshop on Electronics for Particle Physics Aix En Provence 24/09/2014

Dimitrios-Marios Kolotouros Sophie Baron, Csaba Soos and Francois Vasey

dimitrios.kolotouros@cern.ch

Topical Workshop on Electronics for Particle Physics Aix En Provence 24/09/2014

Dimitrios-Marios Kolotouros Sophie Baron, Csaba Soos and Francois Vasey

dimitrios.kolotouros@cern.ch

- **PON**: Passive Optical Network
- FTTH: Fiber To The Home
- Single fiber 2 directions ٠ ONU #1 FTTH 2 wavelengths (1/direction) Downstream direction (OLT \rightarrow ONUs) ٠ High bandwidth **λ**₁ λ ത്ര ത്ര ONU #2 FTTC OLT 1:N Upstream direction(ONUs \rightarrow OLT) TDMA Shared bandwidth ONU #N FTTB Fiber CERN Copper

***TTC**: Timing, Trigger & Control

*TTC: Timing, Trigger & Control

The 10G TTC-PON demonstrator

YEARS / ANS CERN

The 10G TTC-PON demonstrator

The 10G TTC-PON demonstrator

Downstream path

Broadcast

YEARS / ANS CERN

- LHC Bunch Clock (BC) synchronous
- 11.2Gbps serial link
- 8b/10b encoded, K28.5 comma
- Payload: 216bits (27bytes) per BC
- Latency: 75ns (Comparable to current TTC)

Framing:	FTTx	
Protocol	TDMA	
Hardware	PON Specific ASICs	
Downstream/Upstream clocking	Asynchronous	
Token passed by	OLT	
Burst recovery/alignment	CDR	
Dynamic Range	>25dB	
Guard Time	500ns	
Training Time	500ns	
Payload Data	3-5µs	
Waiting Time for 128 ONUs (Busy)	~0,8 ms	

Princip

Princip'e	Framing:	FTTx
	Protocol	TDMA
	Hardware	PON Specific ASICs
timo	Downstream/Upstream clocking	Asynchronous
oper the	Token passed by	OLT
Not for hour	Burst recovery/alignment	CDR
, sylt se	Dynamic Range	>25dB
pu. u.	Guard Time	500ns
	Training Time	500ns
	Payload Data	3-5μs
	Waiting Time for 128 ONUs (Busy)	~0,8 ms

Framing:	FTTx	TTC-PON
Protocol	TDMA	TDMA
Hardware	PON Specific ASICs	FPGAs
Downstream/Upstream clocking	Asynchronous	Synchronous
Token passed by	OLT	ONUs
Burst recovery/alignment	CDR	Oversampling
Dynamic Range	>25dB	
Guard Time	500ns	
Training Time	500ns	
Payload Data	3-5µs	
Waiting Time for 128 ONUs (Busy)	~0,8 ms	

Principle

Framing:	FTTx	TTC-PON
Protocol	TDMA	TDMA
Hardware	PON Specific ASICs	FPGAs
Downstream/Upstream clocking	Asynchronous	Synchronous
Token passed by	OLT	ONUs
Burst recovery/alignment	CDR	Oversampling
Dynamic Range	>25dB	Small (<6dB)
Guard Time	500ns	
Training Time	500ns	
Payload Data	3-5µs	
Waiting Time for 128 ONUs (Busy)	~0,8 ms	

ONI 12

Upstream traffic

ONU1

Principle

ANS CERN

Framing:	FTTx	TTC-PON
Protocol	TDMA	TDMA
Hardware	PON Specific ASICs	FPGAs
Downstream/Upstream clocking	Asynchronous	Synchronous
Token passed by	OLT	ONUs
Burst recovery/alignment	CDR	Oversampling
Dynamic Range	>25dB	Small (<6dB)
Guard Time	500ns	3,57ns
Training Time	500ns	
Payload Data	3-5µs	
Waiting Time for 128 ONUs (Busy)	~0,8 ms	

Upstream traffic

Framing:	FTTx	TTC-PON
Protocol	TDMA	TDMA
Hardware	PON Specific ASICs	FPGAs
Downstream/Upstream clocking	Asynchronous	Synchronous
Token passed by	OLT	ONUs
Burst recovery/alignment	CDR	Oversampling
Dynamic Range	>25dB	Small (<6dB)
Guard Time	500ns	3,57ns
Training Time	500ns	7,14ns
Payload Data	3-5µs	
Waiting Time for 128 ONUs (Busy)	~0,8 ms	

Framing:	FTTx	TTC-PON
Protocol	TDMA	TDMA
Hardware	PON Specific ASICs	FPGAs
Downstream/Upstream clocking	Asynchronous	Synchronous
Token passed by	OLT	ONUs
Burst recovery/alignment	CDR	Oversampling
Dynamic Range	>25dB	Small (<6dB)
Guard Time	500ns	3,57ns
Training Time	500ns	7,14ns
Payload Data	3-5µs	7,14ns (2Bytes)
Waiting Time for 128 ONUs (Busy)	~0,8 ms	

Framing:	FTTx	TTC-PON
Protocol	TDMA	TDMA
Hardware	PON Specific ASICs	FPGAs
Downstream/Upstream clocking	Asynchronous	Synchronous
Token passed by	OLT	ONUs
Burst recovery/alignment	CDR	Oversampling
Dynamic Range	>25dB	Small (<6dB)
Guard Time	500ns	3,57ns
Training Time	500ns	7,14ns
Payload Data	3-5µs	7,14ns (2Bytes)
Waiting Time for 128 ONUs (Busy)	~0,8 ms	3,2 μs

Framing:	FTTx	TTC-PON
Protocol	TDMA	TDMA
Hardware	PON Specific ASICs	FPGAs
Downstream/Upstream clocking	Asynchronous	Synchronous
Token passed by	OLT	ONUs
Burst recovery/alignment	CDR	Oversampling
Dynamic Range	>25dB	Small (<6dB)
Guard Time	500ns	3,57ns
Training Time	500ns	7,14ns
Payload Data	3-5µs	7,14ns (2Bytes)
Waiting Time for 128 ONUs (Busy)	~0,8 ms	3,2 μs

- Link Synchronization
 - Clock recovery
 - Reuse for Upstream path
- Calibration
 - Response time measurement
 - Transmission time adjustment
- Very fast fine phase alignement
 - Changing for each ONU
 - No CDR
 - Blind Oversampling scheme

- CDR not working with short bursts
- Exploitation of Downstream/Upstream synchronization
- Blindly Oversample x4

CERN

Very fast fine phase alignment

Very fast fine phase alignment

VHDL design: Csaba Soos 23

Very fast fine phase alignment

Results: Upstream

95% stable operation!

Results: Upstream

5% unstable operation...

- Phase not always detected and/or
- not correctly chosen

Results: Upstream

Still 5% of unstable cases. Possible solutions:

- Different initialisation procedure,
- Precise calibration procedure,
- Logic tweaking
- PHY tweaking
- Higher oversampling rate

Results: Downstream

Typical continuous serial stream @11.2Gbps Power Budget: ~25dB → 1:128 splitting ratio

28

Conclusions

- Proposed upgrade of two systems: TTC & "Busy"
- Major improvements over the current system:
 - Low & deterministic latency
 - High quality recovered clock
 - High capacity
- Upstream path introduced
- Scalability + dynamic Software partitioning ability
- Backwards compatible (TTC only, not busy/throttle link)

What's next?

- Reach 100% of good BER plots
- Reduce further the gap and training pattern
- Properly characterize
- Go on the field!
 - Feasibility study for LHCb LS2 (poster session, Federico Alessio's poster)

References

- <u>Clock and Timing Distribution in the LHCb Upgraded Detector and Readout System</u>, Federico Alessio, Poster Session, TWEPP 2014
- TTC-PON, migrating from 1G to 10G, BE-Students/Fellows Seminar, 2014
- TTC Upgrade plans, <u>The TTC-PON project</u>, ACES 2014
- Metrics and Methods for TTC-PON System Characterization, D. Kolotouros, TWEPP 2013, Perugia
- <u>TTC-PON, an upgrade proposal for off-detector TTC</u>, DAQ@LHC 2013
- <u>Distribution of Timing, Trigger and Control signals based on Passive Optical Networks</u> BE-Students/Fellows Seminar
- <u>A Fully Bidirectional Optical Network with Latency Monitoring Capability for the Distribution of</u> <u>Timing-Trigger and Control Signals in High-Energy Physics Experiments</u>, I. Papakonstantinou et al., IEEE Transactions on Nuclear Science, 58 (4 PART 1) 1628 - 1640. 10.1109/TNS.2011.2154364.
- Introduction to the <u>TTC-PON concept</u>@ACES 2011
- <u>Passive Optical Networks in Particle Physics Experiments</u>, I. Papakonstantinou, 24th November 2009, PH-ESE Seminar

THANK YOU

BACKUP SLIDES

Separated clock domains

YEARS / ANS CERN

34

Datarate selection

ONU output @6.4Gbps

CERN

Link synchronization (Externally)

CERN

Link synchronization (Internally)

CERN

YEARS / ANS CERN

Why calibration is needed (1/3)

Why calibration is needed (2/3)

Why calibration is needed (3/3)

Downstream Latency

Α

D

B

Downstream latency =A + B + C + D = 73ns

Blind Oversampler testing

0 bits

30 bits

PRBS (random gap)

Blind Oversampler testing

PRBS (random gap)

Very fast fine phase alignment (block diagram)

CERN

YEARS / ANS CERN

Very fast fine phase alignment (more detailed)

CERN

YEARS /ANS CERN

46

Look Up Table in detail

Very fast fine phase alignment

.... x20

BER vs BBER

CERN

Results

Downstream path: ~25dB → 1:128 splitting ratio Upstream path: ~27dB → 1:128 splitting ratio

5% unstable operation

