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ABSTRACT: The LHCb experiment has proposed an upgrade towards a full 40 MHz readout sys-
tem in order to run between five and ten times its initial design luminosity. The entire Front-End
electronics will be upgraded in order to cope with higher sub-detector occupancy, higher data rate
and to work in a complete trigger-less fashion. In this paper, we describe a novel way to trans-
mit slow control information to the Front-End electronics, by profiting from bidirectional optical
connections and the GBT and GBT-SCA chipset capabilities. The implementation and preliminary
validation tests are shown as well.
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1 The upgrade of the LHCb experiment

The LHCb experiment [1] is a high-precision experiment at the LHC devoted to the search for New
Physics by precisely measuring its effects in CP violation and rare decays. By applying an indirect
approach, LHCb is able to probe effects which are strongly suppressed by the Standard Model,
such as those mediated by loop diagrams and involving flavor changing neutral currents.

In the proton-proton collision mode, the LHC is to a large extent a heavy flavor fac-
tory producing over 100,000 bb-pairs every second at the nominal LHCb design luminosity of
2×1032 cm−2s−1. Given that bb-pairs are predominantly produced in the forward or backward
direction, the LHCb detector was designed as a forward spectrometer with the detector elements
installed along the main LHC beam line, covering a pseudo-rapidity range of 2 < η < 5 well com-
plementing the other LHC detectors ranges.

LHCb proved excellent performance in terms of data taking [2] and detector performance over
the period 2010–2012 accumulating∼3 fb−1 of data and it is foreseen to accumulate other∼5 fb−1

over the period 2015–2018. Due to the foreseen improved performance of the LHC accelerator,
the prospect to augment the physics yield in the LHCb dataset seems very attractive. However,
the LHCb detector is limited by design in terms of data bandwidth — 1 MHz instead of the LHC
bunch crossing frequency of 40 MHz — and physics yield for hadronic channels at the hardware
trigger. Therefore, a Letter Of Intent [3], a Framework TDR [4] and a Trigger and Online TDR [5]
document the plans for an upgraded detector which will enable LHCb to increase its physics yield
in the decays with muon by a factor of 10, the yield for hadronic channels by a factor 20 and to
collect ∼50 fb−1 at a leveled constant luminosity of 1–2×1033 cm−2s−1. This corresponds to ten
times the current design luminosity and increased complexity (pileup) of a factor 5.
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2 The upgrade of the LHCb readout architecture

In order to remove the main design limitations of the current LHCb detector, the strategy for the
upgrade of the LHCb experiment essentially consists of ultimately removing the first-level hard-
ware trigger (L0 trigger) entirely, hence to run the detector fully trigger-less. By removing the L0
trigger, LHC events are recorded and transmitted from the Front-End electronics (FE) to the read-
out network at the full LHC bunch crossing rate of 40 MHz, resulting in a ∼40 Tb/s DAQ network.
All events will therefore be available at the processing farm where a fully flexible software trigger
will perform selection on events, with an overall output of about 20 kHz of events to disk. This will
allow maximizing signal efficiencies at high event rates.

The direct consequences of this approach are that some of the LHCb sub-detectors will need
to be completely redesigned to cope with an average luminosity of 2×1033 cm−2s−1 and the whole
LHCb detector will be equipped with completely new trigger-less FE electronics. In addition, the
entire readout architecture must be redesigned in order to cope with the upgraded multi-Tb/s band-
width and a full 40 MHz dataflow [6]. Figure 1 illustrates the upgraded LHCb readout architecture.
It should be noted that although the final system will ultimately be fully trigger-less, a first-level
hardware trigger based on the current L0 trigger will be maintained in software. This is commonly
referred to as Software LLT and its main purpose is to allow a staging installation of the DAQ net-
work, gradually increasing the readout rate from the current 1 MHz to the full and ultimate 40 MHz.
This however will not change the rate of event recorded at the FE, which will run fully trigger-less
regardless of the DAQ output rate.

In order to keep synchronicity across the readout system, to control the FE electronics and
to distribute clock and synchronous information to the whole readout system, a centralized Tim-
ing and Fast Control system (TFC, highlighted in figure 1) has been envisaged, as an upgrade of
the current TFC system [7]. The upgraded TFC system will then be interfaced to all elements in
the readout architecture by heavily profiting from the bidirectional capability of optical links and
FPGA transceivers and a high level of interconnectivity. In particular, the TFC system will heavily
profit from the capabilities of the GigaBit Transceiver chipset (GBT) [8] currently being devel-
oped at CERN for its communication to the FE electronics. In addition, the TFC system will also
be responsible to transmit slow control (ECS) information to the FE, by means of FPGA-based
electronics cards interfaced to the global LHCb ECS.

3 Fast and slow control to FE via the TFC system

Figure 2 illustrates in detail the logical architecture of the upgraded TFC system. A pool of Read-
out Supervisors (commonly referred to as S-ODIN) centrally manage the readout of events, by
generating synchronous and asynchronous commands, by distributing the LHC clock and by man-
aging the dispatching of events. Each S-ODIN is associated with a sub-detector partition which
effectively is a cluster of Readout Boards (TELL40) and Interface Boards (SOL40). While the
TELL40s are dedicated to read out fragments of events from the FE and send them to the DAQ for
software processing, the SOL40 boards are dedicated to distribute fast and slow control to the FE,
by relaying timing information and clock onto the optical link to the FE, and by appending ECS
information onto the same data frame. By profiting from the characteristics of the GBT chipset [8],
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Figure 1. The upgraded LHCb readout architecture.

fast commands, clock and slow control are therefore transmitted on the same bidirectional optical
link. This is a major novelty with respect to the current LHCb experiment where fast control and
slow control are sent over different networks.

At the FE, the synchronous fast control information are decoded and fanned out by a GBT
Master per FE board, also responsible to recover and distribute the clock in a deterministic way.
The slow control information is relayed to the GBT-SCA chipsets via the GBT Master. The GBT-
SCA chipset is capable of efficiently distribute ECS configuration data to the FE chips by means
of a complete set of buses and interfaces, in a generic way [9]. Monitoring data is sent back on the
uplink of the same optical link by following the return path, from the GBT-SCA to the Master GBT
to the corresponding SOL40.

The hardware backbone of the entire readout architecture is a PCIe Gen3 electronics card
hosted in a commercial PC. The same hardware is used for the TELL40, the SOL40 and the S-
ODIN boards, only the different firmware changes the flavor of the board. The board will be
equipped with up to 48 bidirectional optical link, an Altera Arria X FPGA and a 16x PCIe Gen3
bus interfaced to a multi-core PC.

Figure 3 shows schematically the implementation of the merging of fast and slow control
information on the same optical link to the FE electronics [10] in the firmware at the SOL40 board.

A TFC Relay and Alignment block extracts at maximum 24 bits out of the full TFC word
which was transmitted by S-ODIN encoding the fast commands, timing information and various
resets. These 24 bits are then relayed onto the GBT link to be transmitted to the FE. The word is
generated at 40 MHz and transmitted with constant latency. The TFC word from S-ODIN is used
to reconstruct the clock locally in the FPGA to then be used to drive the logic in the firmware.

– 3 –
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Figure 2. Logical architecture of the upgraded TFC system.

Figure 3. Schematic view of the algorithm to merge TFC and ECS information on the GBT link towards the
FE electronics in the SOL40 firmware.

Regarding the slow control part, LHCb has developed a firmware core, commonly referred
to as SOL40-SCA, in order to generically drive each GBT-SCA chip at the FE, covering all of its
functionality and protocols. Its location within the SOL40 firmware is highlighted in figure 3. This
is achieved by developing the firmware in a completely configurable way, i.e. the chosen SCA
protocol can be selected in real-time via commands issued by the LHCb ECS system [11] together
with the configuration data. The destination of such data can be selected via a configurable mask.
The core is designed to cover a full GBT link with up to 16 GBT-SCAs connected to it. It can then
be replicated as many times as needed to cover all GBT links connected to a SOL40 boards. In
total, the same firmware will allow driving generically the entire LHCb upgraded FE electronics
over a total of ∼2500 duplex optical links and ∼90 SOL40 boards. It is technology independent,
developed in HDL language, it does not make us of any technology specific element and it is
completely agnostic of the content of the data field. It is basically a generic SCA driver via optical
links for the BE electronics at the LHC.
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4 The SOL40-SCA core

The core provides a way to control with high parallelism and flexibility many FE chips via the
GBT-SCA interfaces through GBT links. Its main functionalities can be listed as follows:

• Provide a generic hardware interface (FPGA) between the ECS system and the FE electronics

• Build and encode/decode GBT-SCA compliant packets

• Serialize and de-serialize command packets in the command word sent to the FE electronics
according to GBT-SCA specifications

• Support for all GBT-SCA protocols (SPI, I2C, JTAG, GPIO and ADC+DAC)

• Support for all GBT-SCA commands and channels

• Support for many GBT-SCAs per GBT link and many GBT links per FPGA

• Possibility of re-transmission of packets and transmission monitoring

• Modularity, i.e. components can be removed if not needed

• Robustness, reliability, programmability, flexibility.

Figure 4. Top view of the SOL40-SCA core architecture.

The core is essentially composed of a series of layers as it is illustrates in figure 4. Their main
roles are to:

• store the ECS configuration packets and decode them as commands and viceversa in the ECS
Interface and ECS Packets Buffers Layers

• build the corresponding GBT-SCA packets with the selected protocol in the Protocol Layer

• encode it in the specified communication protocol (HDLC [12]) in the MAC Layer

• serialize and route the packets to the selected GBT-SCA connected to a GBT at the FE in the
Link Layer.

– 5 –
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In practice, the ECS generates a command which is transmitted to the FPGA via the PCIe bus.
This commands contains an extended addressing scheme to tell the core where and how to route
the configuration packet and a command code scheme which tells the core what actions to perform
(i.e. read/write or wait for response/do not wait). In addition, it may contain the configuration data
to be sent to the FE in case of a write operation. In the FPGA, the command is stored in a buffer in
order to be picked up by the Protocol Layer when not busy. The ECS command is then decoded and
the SCA specific protocol packets are built accordingly. The information about which protocol to
be built is in the ECS command and it is completely generic, that is the core is able to build run-time
any SCA packet simply based on the content of the command. Finally, the packet is encapsulated
in the HDLC protocol to then be routed to the corresponding bit field in the GBT word to be sent
through the optical link to the corresponding Master GBT at the FE. The corresponding bit field
is selected based on the connections at the FE. In order to be as generic as possible, this is also
a configurable parameter so that the core can be used with any FE configuration. The core also
features the possibility of packet retransmission in case a particular transaction failed.

4.1 ECS Interface Layer

In order to access the PC through a PCIe bus, the SOL40 board internally uses an Altera Avalon
MM bus, which is mapped onto one of the PCIe BARs (bar 0). Hence, an Avalon MM Slave
Interface is used in the ECS Interface Layer to perform read and write operations to and from the
control PC.

Figure 5. Current ECS command format as transmitted through the Avalon MM Bus.

Figure 5 illustrates the structure of the generic ECS command which is built by the control
system via dedicated graphical interfaces and scripts. This command is transmitted to the firmware
core and contains all the relevant information so that the core can generically and flexibly build
GBT-SCA compliant packets. In the first field, an extended addressing scheme is implemented: the
addresses of the GBT link, of the GBT-SCA and its channels are included. In addition, there is an
ECS Command field dedicated to specific commands from the ECS (for ex, Read or Write). In the
second field, the length of the ECS command in number of bytes for frame boundary definitions
and a protocol specific field are inserted. This is followed by Data packets if a write operation is
requested. All fields are 32-bit aligned so that the ECS system can transmit a full command as a
32-bit words table.

The same ECS command is generated by the firmware core in response to a polling by the ECS.

– 6 –
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4.2 ECS packets buffers layer

The ECS commands are then stored in a FIFO. This is because the clock frequency used by the
Avalon MM Slave Interface is 40 MHz with a fixed data size of 32 bits. However, the output band-
width per GBT-SCA is 80 Mb/s, i.e. two bits every 40 MHz. Considering that an ECS command
can span over various 32 bit words, the ECS command must be buffered and stored in order to
allow building the corresponding SCA packets and transmit them via the corresponding pair of bits
through the GBT link.

An ECS Command FIFO is dedicated to store ECS command packets. A single FIFO struc-
ture per GBT link was chosen as the ECS data stream comes as a single thread of many commands.
However, they are dispatched asynchronously to their associated channels and GBT-SCAs. It is
therefore a simple way to create back-pressure control and avoid congestion while building packets
and transmitting them. This also means that the ECS can send a table of commands in one contin-
uous write operations and the firmware will take care of reading and decoding the commands on a
per-channel basis.

An ECS Reply Memory is dedicated to store the replies to a specific ECS command. It is
designed as a RAM structure rather than a FIFO so that the software can access the memory fol-
lowing a mapping of the extended addressing scheme. The ECS can therefore poll a spcific reply
based on the previously generated command.

4.3 Protocol Layer

The GBT-SCA chipset supports a large variety of buses that can be interfaced to FE chips. In the
Protocol Layer, each ECS command is transformed into an SCA command where the right protocol
for a particular SCA channel is built. This allows the user to flexibly select whichever bus they need
to drive by simply indicating it in the command code scheme as shown in figure 5. In this way the
same firmware can be used for all possible combinations at the FE without being dependent on the
sub-detectors’ choices at the FE.

In addition, an additional important feature is that the Protocol Layer keeps information re-
garding the SCA command generated for packet retransmission, manages the reading of ECS com-
mands from the ECS command FIFO based on a busy state or a non-functional state (i.e. when the
wrong SCA was selected for example) and when the packet is ready, it transmits it to the MAC
Layer. This is managed by two arbiter modules, one dedicated to arbitrate the reading/writing of
ECS commands and one dedicated to arbitrate the transmission/reception of SCA commands. Fig-
ure 6 shows an example of an operation on the protocol layer, where the ECS PC sends I2C write
command to a certain I2C device on the FE.

4.4 MAC Layer

The MAC Layer is mostly responsible to encapsulate the SCA payload packet into the HDLC
protocol [12] and to serialize it in pair of bits, to be then slotted in on each GBT word on the
optical link. In addition, it de-serializes the data stream and extract the payload when a reply is
received. It also features link reset, connection and test operations and error detection capabilities.

The heart of the MAC Layer is a block called FPGA E-Port. This is based on the original
E-Port IP Core [9] but with some key differences. The block is made in a device independent way,
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Figure 6. Example of I2C write operation as managed in the Protocol Layer.

it does not a backup connection and it is designed without Triple Modular Redundancy as it is to
be used in a safe radiation environment.

An additional feature is the possibility of retransmitting a packet if the transmission of a pre-
vious command failed. This is done in the MAC Layer as the full protocol included the commu-
nication protocol is already done at that stage. A programmable expiration time is used to wait
for the response from the corresponding SCA and programmable bit transmitted within the ECS
command is used to tell the core whether to re-transmit a packet or instead simply signal a flag to
the ECS without re-transmitting the packet. This can be done on a per-command basis at run-time.

Another additional feature is the possibility of waiting for a response from the corresponding
GBT-SCA. Another specific bit in the ECS command is used to tell the core whether to wait for
the GBT-SCA to acknowledge the response or simply send the packet a programmable time after,
without caring about the acknowledge. It is however necessary to wait a minimum time before
transmitting the following packet because the GBT-SCA must receive the previous packet in its
entirety. This can be done on a per-command basis at run-time as well.

4.5 Link Layer

Finally, the last layer between the core and the GBT link is the Link Layer. It is a simple layer
whose only purpose is to provide a generic and programmable logical routing so that the SCA
packet can reach the right GBT-SCA over the corresponding GBT link. This is done by an E-Link
router whose configuration is a matrix loaded in a configurable register, changeable at runtime.

– 8 –
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5 Conclusion

Within its upgrade, the LHCb experiment has developed a generic firmware core to drive any
GBT-SCA within the upgrade of the experiment. This is achieved by implement an HDL-based
code, capable of driving any protocol of any GBT-SCA over any GBT link, programmable at run-
time. The core is so generic that can be used in any FE environment featuring the presence of the
GBT chipset.

The firmware core will be ready by the beginning of 2015 in time for allowing its usage by
sub-detectors in test-benches, test-beams and in order to commission the FE electronics for the
upgrade of the LHCb. A heavy testing campaign together with the very first GBT-SCA chips will
be performed in order to test robustness, reliability and compatibility issues.
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