Dream: a 64-channel Front-end Chip with Analog Trigger Latency Buffer for the Micromegas Tracker of the **CLAS12 Experiment**

<u>C. Flouzat</u>, P. Baron, D. Besin, E. Delagnes, F. Guilloux, F. Lugiez, I. Mandjavidze, E. Monmarthe, S. Aune, S. Procureur, F. Sabatie

IRFU, CEA Saclay, 91191, Gif-sur-Yvette, France

Architecture and Principles

Clas12 Micromegas Vertex Tracker

Principle of the FE: analog sampling in a deadtime free SCA

The Dream Frontend ASIC

DREAM overview

Dead-timeless Read-out Electronics ASIC for Micromegas

- CMOS AMS 0.35µm technology (cheap, blocks reuse)
- Derived from the previous AGET chip
- 64 channels with each:
 - A CSA optimized for large C_{Det}
 - 4 gain ranges: 50fC, 100fC, 200fC, 600fC
 - 16 peaking times: from 50 ns to 1 μs
 - **512-cell SCA (1 to 40 MHz sampling rate)**
 - Analog multiplexed output @20 (40 MHz)
 - **Requires an external ADC**
 - **1** *discriminator* (*common threshold*) Injection /test system

Very Front End Part

• Very Standard analog chain using Pole zero cancellation and complex-poles 2nd order Sallen-Key Filter

- Main parameters programmable
- **CSA** or (CSA + filter) can be bypassed, CSA can be disabled channel/channel
- **Deadtime-free operation of the analog memory** On-chip scalable logic driven by 5 signals * Init: initializing all the sequencers * WCk: sampling clock, 9bit (A=B) * Trig: synchronous fix-latency trigger Gray * Read: Event Read request counter Rck: sequences the read operation (inc hannel multiplexing. 9 bit Event Mainly Organized in 512 columns DFFQ Init each generating the counter channels for the cells corresponding to each time bucket Two 9-bit Gray code counters used or write and read event numbers (driven by Trig & Read),

Performances

Test Bench Measurements (prototype of the FEU board)

DREAM behaves as expected :

- Several hours of operation in the CLAS12 conditions (20 kHz trigger rate, randomly distributed, 4 samples/event 20MHz write and read clock) without any deadtime or error,
- Self triggering capabilities demonstrated,
- All analog parameters matching simulation results in all the various modes of the chip
- 10mW/channel power consumption (3.3V power supply)

Measurements with detectors

] va	Dream response to a ~70fC charge for various programmed peaking time (200fC range) : the riation of amplitude is expected from the design	Very small variation of the gain as a function of the input capacitance: Open-Loop Gain > 20 00 (200fC range)	Gain uniformity within a chip is better than 0.6% RMS

100fC mode and 5µs decay time of the CSA.

As targeted, the ENC is lower than 2500 e- RMS for tp< 200ns and CDET< 230pF and fulfill the CLAS12 requirements

The symbols are for measurements and the line are results of a fit based on the standard parametrization of front-ends

All the values are consistent with our expectations, excepted a 25% excess for serie noise

- a noise voltage density of only $e_n = 0.7 \text{ nV/Hz}^{1/2}$
- Or an equivalent noise resistor of 30 Ohm

This noise is only 10% higher than those of an ideal BJT biased with the same current.

This validates our new CSA design

CLAS12 forward Detector under test inside the Saclay cosmic ray telescope. Note the 2m cables connecting the detector to the FE electronics crate

2D efficieny plot for the prototype of forward detector. The efficiency is ~97%. The holes on the plots are due to lack of statistics

Conclusion & Perspective

- The DREAM ASIC has been manufactured, tested and validated for its use in Micromegas tracker of CLAS12,
- A production batch has been delivered in sept 2014 for CLAS12,
- Its versality, the unprecedented depth of its buffer and its new features make it a good alternative to the APV chip, especially for detectors with large capacitances
- It is already used or planned for several other experiments/setup using Micromegas detectors (ASACUSA, GBAR, muon tomography)

TWEPP 2014 - Topical Workshop on Electronics for Particle Physics

christophe.flouzat@cea.fr