Development of CMOS Pixel Sensors for High-Precision Vertexing & Tracking Devices

M. Winter (PICSEL team of IPHC-Strasbourg)

TWEPP-14 – 25th of Septembre 2014

Contents

- Initial motivations & main features of CMOS sensors
- 1st architecture developped state of the art
 - MIMOSA-26 (EUDET chip applications) → MIMOSA-28 (STAR-PXL)
- Extension towards more demanding experiments
 - ALICE-ITS & -MFT
 CBM-MVD
 ILC
- Perspectives & forthcoming challenges
 - read-out speed & rad. tolerance
 architectures & emerging CMOS technologies
- Conclusion

SOURCES : Talks at CPIX-14 + VERTEX-14 + FEE-14 + TWEPP-13/14

SLIDES : M. Deveaux, Ch. Hu-Guo, M. Keil, M. Mager, F. Morel, D. Muenstermann, F. Reidt, I. Peric, W. Snoeys

Motivation for Developing CMOS Sensors

- CPS development triggered by need of very high granularity & low material budget
- Applications exhibit much milder running conditions than pp/LHC
 - \Rightarrow Relax speed & radiation tolerance specifications
- Increasing panel of existing, foreseen or potential application domains :
 - Heavy Ion Collisions : STAR-PXL, ALICE-ITS, CBM-MVD, NA-61, ...
 - **e**⁺**e**⁻ **collisions :** ILC, Super-SVT, BES-3, Belle-2 ?, ...
 - High precision beam telescopes adapted to medium/low energy electron beams :
 - \hookrightarrow few μm resolution achievable on DUT with EUDET-BT (DESY), BTF-BT (Frascati), ...

Quadrature of the

Example of Application : ILC Vertex Detector

- Goal : $\sigma_{sp}\lesssim$ 3 μm in both directions with 0.15 % X $_0$ / layer
- Comparison: σ_{sp} = 3x3 μm^2 & 0.15 % X $_0$ against 14x70 μm^2 & 1.0 % X $_0$

Example of Application : Upgrade of ALICE-ITS

- ALICE Inner Tracking System (ITS) foreseen to be replaced during LS2
 - \rightarrow higher luminosity, improved charm tagging
- Expected improvement in pointing resolution and tracking efficiency

Long Term R&D

- **R&D** activity of CPS initiated in 1999 for future subatomic physics experiments
- First contact for STAR PXL took place in Year 2000 during the workshop Vertex-2000

CMOS Pixel Sensors: Main Features

- Prominent features of CMOS pixel sensors :
 - high granularity \Rightarrow excellent (micronic) spatial resolution
 - $_\circ\,$ signal generated in very thin (15-40 μm) epitaxial layer
 - \hookrightarrow resistivity may be $>\!\!>$ 1 k $\Omega \cdot cm$
 - $_{\circ}$ signal processing μ -circuits integrated on sensor substrate
 - \Rightarrow impact on downstream electronics and syst. integration (\Rightarrow cost)
- CMOS pixel sensor technology has the highest potential :
- ⇒ R&D largely consists in trying to exploit potential at best with accessible industrial processes
 - → manufaturing param. not optimised for part. detection:
 wafer/EPI characteristics, feature size, N(ML), ...
- Read-out architectures :
 - 1st generation : rolling shutter (synchronous) mode with analog pixel output
 - 2nd generation : rolling shutter (synchronous) mode with in-pixel digitisation
 - 3rd generation : data driven (asynchronous) with in-pixel discrimination

Epitaxial Layer P-Substrate P++

CMOS Pixel Sensors (CPS): A Long Term R&D

Ultimate objective: ILC, with staged performances

...

7

Section CPS applied to other experiments with intermediate requirements

EUDET 2006/2010

ILC >2020 International Linear Collider

EUDET (R&D for ILC, EU project) STAR (Heavy Ion physics) CBM (Heavy Ion physics) ILC (Particle physics) HadronPhysics2 (generic R&D, EU project) AIDA (generic R&D, EU project) FIRST (Hadron therapy) ALICE/LHC (Heavy Ion physics) EIC (Hadron physics) CUC (Particle physics) BESIII (Particle physics)

Solenoidal Tracker at RHIC

<u>ALICE 2018</u> <u>A Large Ion Collider Experiment</u>

Measured Spatial Resolution

- Several parametres govern the spatial resolution :
 - pixel pitch
 - epitaxial layer thickness and resistivity
 - sensing node geometry & electrical properties
 - signal encoding resolution

 $\Rightarrow \sigma_{sp}$ fct of pitch \oplus SNR \oplus charge sharing \oplus ADCu, ...

Impact of pixel pitch (analog output) :

 $\sigma_{f sp} \sim {f 1} \; \mu{f m}$ (10 μm pitch) $ightarrow \, \lesssim {f 3} \; \mu{f m}$ (40 μm pitch)

Impact of charge encoding resolution :

$$>~~{
m ex.~of~20}~\mu m$$
 pitch $\Rightarrow~~\sigma^{digi}_{sp}$ = pitch/ $\sqrt{12}$ \sim 5.7 μm

Nb of bits	12	3-4	1
Data	measured	reprocessed	measured
σ_{sp}	\lesssim 1.5 μm	\lesssim 2 μm	\lesssim 3.5 μm

Mimosa resolution vs pitch

pitch (microns)

Typical read-Out Chain

- Readout: synchronous (Rolling Shutter) or asynchronous
- Using a twin-well process, the Rolling Shutter readout architecture is the best trade-off between performance, design complexity, pixel dimension, power, ...
 MIMOSA26, MIMOSA28

CMOS Pixel Sensors: Established Architecture

- Main characteristics of MIMOSA-26 sensor equipping EUDET BT : talk at TWEPP-2009
 - $_{\circ}~$ 0.35 μm process with high-resistivity epitaxial layer (coll. with IRFU/Saclay)
 - $_{\odot}\,$ column // architecture with in-pixel amplification (cDS) and end-of-column discrimination, followed by $\ensuremath{\emptyset}\,$
 - binary charge encoding
 - active area: 1152 columns of 576 pixels (21.2 \times 10.6 mm²)
 - $_\circ\,$ pitch: 18.4 $\mu m
 ightarrow\, \sim$ 0.7 million pixels
 - hinspace charge sharing $\Rightarrow~\sigma_{sp}\sim$ 3.-3.5 μm
 - $\mathsf{t}_{r.o.} \lesssim \mathsf{100} \ \mu s$ ($\sim \mathsf{10}^4$ frames/s)
 - \hookrightarrow suited to >10⁶ part./cm²/s
 - JTAG programmable
 - rolling shutter architecture
 - \Rightarrow full sensitive area dissipation \cong 1 row
 - $ho~\sim$ 250 mW/cm 2 power consumption (fct of N $_{col}$)
 - $_\circ~$ thinned to 50 μm (yield \sim 90 %)
 - various appli. : VD demonstr., NA63, NA61, FIRST, oncotherapy, dosimetry, ...

State-of-the-Art: MIMOSA-28 for the STAR-PXL

- Main characteristics of ULTIMATE (\equiv MIMOSA-28):
 - $\circ~$ 0.35 μm process with high-resistivity epitaxial layer
 - o column // architecture with in-pixel cDS & amplification
 - end-of-column discrimination & binary charge encoding
 - on-chip zero-suppression
 - $_{\circ}\,$ active area: 960 colums of 928 pixels (19.9imes19.2 mm 2)
 - pitch: 20.7 μm → ~ 0.9 million pixels
 → charge sharing ⇒ $\sigma_{sp} \gtrsim$ 3.5 μm
 - JTAG programmable
 - t_{r.o.} \lesssim 200 μs (\sim 5×10³ frames/s) \Rightarrow suited to >10⁶ part./cm²/s
 - 2 outputs at 160 MHz
 - $_{\circ}~\lesssim$ 150 mW/cm 2 power consumption
- \vartriangleright \triangleright \triangleright \triangleright Sensors fully evaluated : (50 μm thin)
 - $_{\circ}~$ N \lesssim 15 e^{-} ENC at 30-35 $^{\circ}$ C (as MIMOSA-22AHR)
 - $\circ \ \epsilon_{det}$, fake & σ_{sp} as expected
 - \circ Rad. tol. validated (3.10 12 n $_{eq}$ /cm 2 & 150 kRad at 30 $^{\circ}$ C)
 - All specifications were met \Rightarrow 2 detectors of 40 ladders constructed

$\triangleright \triangleright \triangleright >$ Physics data taking from March to June 2014

Mimosa 28 - epi 20 um - NC

State-of-the-Art : STAR-PXL

Validation of CPS for HEP

Next Challenge : ALICE-ITS Upgrade

- Upgrade of ITS entirely based on CMOS Pixel Sensors (CPS) :
 - Present geometry: 6 layers
 HPS x 2 / Si-drift x 2 / Si-strips x 2
 - ∘ Future geometry : 7 layers \mapsto \mapsto \mapsto \mapsto all with CPS (~ 25-30 · 10³ chips)
 - \Rightarrow 1st large tracker (10 m²) using CPS
 - ITS-TDR approved March 2014 :

Pub. in J.Phys. G41 (2014) 087002

Requirements for ITS inner and outer barrels compared to specifications of STAR-PXL chip :

	σ_{sp}	$t_{r.o.}$	Dose	Fluency	T_{op}	Power	Active area
STAR-PXL	$<$ 4 μm	$<$ 200 μs	150 kRad	$3{\cdot}10^{12}~{ m n}_{eq}/{ m cm}^2$	30-35°C	160 mW/cm 2	$0.15~\mathrm{m}^2$
ITS-in	\lesssim 5 μm	\lesssim 30 μs	700 kRad	1·10 13 n $_{eq}$ /cm 2	30°C	$<$ 300 mW/cm 2	$0.17~\mathrm{m}^2$
ITS-out	\lesssim 10 μm	\lesssim 30 μs	15 kRad	4·10 11 n $_{eq}$ /cm 2	30°C	$<$ 100 mW/cm 2	\sim 10 m 2

 \Rightarrow 0.35 μm CMOS process (STAR-PXL) not suited to read-out speed & radiation tolerance

CMOS Process Transition : STAR-PXL \mapsto **ALICE-ITS**

<u>Twin well process: 0.6-0.35 μm</u>

 Use of PMOS in pixel array is not allowed because any additional N-well used to host PMOS would compete for charge collection with the sensing N-well diode VNH

- here are a strategy by the strategy by the strategy here are an are strategy to the strategy by the strategy strategy are strategy as a strategy strategy are strategy as a strategy strategy are strategy as a stra
- Already demonstrate excellent performances
 - STAR PXL detector: MIMOSA28 are designed in this AMS-0.35 μm process
 - $\checkmark \varepsilon_{eff} > 99.5\%, \sigma < 4 \,\mu m$
 - 1st CPS based VX detector at a collider experiment

- Quadruple well process (deep P-well): 0.18 μm
 - N-well used to host PMOS transistors is shielded by deep P-well
 - 🗞 Both types of transistors can be used

- % Widens choice of readout architecture strategies
 - Ex. ALICE ITS upgrade: 2 sensors R&D in // using TOWER CIS 0.18 μm process (quadruple well)
 - Synchronous Readout R&D:
 - y proven architecture = safety
 - Asynchronous Readout R&D: challenging

Charge Sensing Element \mapsto Optimal SNR

• Influence of sensing diode area

- Optimum sensing diode geometry between
 - the smallest for the sake of C, N, G_{PA}
 - but not too small to preserve CCE (rad. tol.)
- $_{\circ}~$ 10.9 μm^{2} large sensing diode
- $_{\circ}\,$ 8 μm^{2} cross-section sensing diode underneath 10.9 μm^{2} large footprint
 - \hookrightarrow Improves SNR \mapsto Detection efficiency

Synchronous Read-Out Architecture : Rolling Shutter Mode

Design addresses 3 issues:

✤ A to D Conversion: at column-level (MISTRAL)

at pixel-level (ASTRAL)

Sero suppression (SUZE) at chip edge level

Window of 4x5 pixels

- Power vs speed:
 - ✤ Power: only the selected rows (N=1, 2, ...) to be read out
 - Speed: N rows of pixels are read out in //
 - Integration time = frame readout time

$$t_{\rm int} = \frac{\left(Row \ readout \ time\right) \times \left(No. \ of \ Rows\right)}{N}$$

MISTRAL & ASTRAL : Schematics & Layouts

• MISTRAL : rolling shutter with 2-row read-out & end-of column discriminators

• **ASTRAL** : rolling shutter with 2-row read-out (\equiv MISTRAL) & in-pixel discriminators

• 1st Full Scale Building Blocks (FSBB) fabricated in Spring 2014

MISTRAL Architecture Validation

- 1st step : Separate validation of each element composing signal sensing & processing chain :
 - Pixel array with 1-row read-out (1 discri./column)
 - Pixel array with 2-row read-out (2 discri./column)
 - Zero suppression circuitry with output buffers
- 2nd step : FSBB \cong 1/3 of MISTRAL :

 \mapsto

Efficiency (%) 86 001

96

94

hre	eshold	fake ra	ate
	4 mV	11870	1.4 10e-5
	5 mV	3584	4.35 10e-6
	6 mV	1092	1.32 10e-6
	7 mV	406	4.96 10e-7
	8 mV	236	2.86 10e-7

Asynchronous Read-Out Architecture : ALPIDE (Alice Plxel DEtector)

- Design concept similar to hybrid pixel readout architecture thanks to availability of Tower CIS quadruple well process: both N & P MOS can be used in a pixel
- Each pixel features a continuously power active:
 - Low power consumption analogue front end (Power < 50 nW/pixel) based on a single stage amplifier with shaping / current comparator
 - High gain ~100
 - Shaping time few μs
 - Dynamic Memory Cell, ~80 fF storage capacitor which is discharged by an NMOS controlled by the Front-End
- Data driven readout of the pixel matrix, only zerosuppressed data are transferred to the periphery

Asynchronous Read-Out Architecture : ALPIDE

Courtesy of W. Snoeys / TWEPP-2013

ALPIDE Architecture Validation

- **1st step : pALPIDE to validate fast pixel read-out**
 - pALPIDE : 64 columns of 512 pixels (22 $\mu m \times$ 22 μm) 0
 - Analog output of one pixel tested with 55 Fe source
 - \hookrightarrow expected time resolution confirmed
- 2nd step : Full scale ALPIDE
 - Final sensor dimensions : 15 mm \times 30 mm
 - About 0.5 M pixels of 28 $\mu m imes$ 28 μm 0
 - 4 different sensing node geometries
 - Possibility of reverse biasing the substrate 0

0

200

180

Tolerance to Ionising Radiation

Tolerance to Non-Ionising Radiation

- Main parametres governing the tolerance to NI radiation :
 - epitaxial layer : thickness and resistivity
 - sensing node : density, geometry, capacitance, depletion voltage
 - operating temperature
 - read-out integration time
- Most measurements performed with chips manufactured in two CMOS processes :
 - $\circ~$ 0.35 μm with low & high resistivity epitaxy
 - $_{\circ}~$ 0.18 μm with high & resistivity epitaxy (mainly 18 & 20 μm thick)

 $Pitch_{eff}$ [µm] = Sqrt(pixel surface)

- Clear improvement with 0.18 μm process w.r.t. 0.35 μm process
 - ALICE-ITS requirement seems fulfiled : 700 kRad & $10^{13} n_{eq}/cm^2$ at T = +30°C
 - $_{\rm o}\,$ Fluences in excess of 10 $^{14}{\rm n}_{eq}/{\rm cm}^2$ seem within reach
 - \Rightarrow requires global optimisation of design & running parametres

Forthcoming Challenges

How to reach the bottom right corner of the "Quadrature"?

Perspectives : HV-CPS

- Principle :
 - use widespread EPILESS wafers (typical resistivity : O(10) $\Omega \cdot cm$)
 - deep N-well sensing electrode used to deplete the substrate (\lesssim 15 μm depth)
 - signal processing circuitry embedded in deep N-Well
 - both transistors types available : genuine in-pixel CMOS
- Initial motivation \sim 2005
 - lack of processes providing adequate epitaxial layer properties (thickness, resistivity)
 - \Rightarrow deplete substrate using HV option of commercial processes
 - \hookrightarrow aim for large SNR, fast charge colelction, radiation hardness
- Since \lesssim 2010
 - $_\circ~$ commercial processes with high resistivity & 15 \mapsto 40 μm thick EPI available
 - BUT feature size tends to stay \gtrsim 180 nm
 - \Rightarrow remaining advantage of HV-CPS: access to VDSM processes (e.g. 130/65 nm) without EPI option today !

Perspectives : 2-Tier HV-CPS

- Attractive possible evolution : 2-tier chips
 - signal sensing & processing functionnalities distributed
 over 2 tiers interconnected at pixel level (capa. coupling)
 - combine 2 different CMOS processes if advantageous :
 1 optimal for sensing, 1 optimal for signal processing
 - o benefit : small pixel → resolution, fast response, data compression, robustness ?
 - challenge : interconnection technology (reliability, cost, ...)
- On-going R&D : ATLAS upgrade for HL-LHC
 - HV2FEI4 chip \equiv sensitive HV-CPS tier (180 nm process) interconnected to FEI4 ROC (130 nm process)
 - o radiation tolerance test results encouraging, threshold dispersion ?
 - promising perspective : high-resistivity EPI (\cong ALICE-ITS)
- Other applications envisaged/foreseen :
 - ATLAS strip like read-out
 CLIC vertex detector
 - Mu3e experiment : analog pixel read-out with remote signal processing circuitry

CONCLUSION

 \mapsto

- CPS have demonstrated that they can provide the expected resolution and material budget
- CPS \equiv standard for vertex and tracking detectors ?
 - Step 0 : EUDET Beam Telescope and spin-offs
 - Step 1 : STAR-PXI and spin-offs
 - Step 2 : ALICE-ITS (\mapsto CBM-MVD)
 - Numerous perspectives : ILC, HL-LHC ?, ...
- CPS performances are still too limited :
 - Limitations originate essentialy from manufacturing parametres rather than from intrinsic features → obstacles
 - Foundries have presently appropriate market orientations and tend to be open to HEP requirements ...
- Do CPS fit to YOUR favourite application ? (e.g. $10^{15} n_{eq}/cm^2$, 10 ns, ...)
 - 2-tier chip composed of sensitive CMOS layer interconnected at pixel level with signal processing layer ?
 - \Rightarrow Global effort in this direction may lead to the expected outcome (?)

Boundaries of the CPS Development

- New fabrication process :
 - Expected to be radiation tolerant enough
 - Expected to allow for fast enough read-out
 - $_{\circ}\,$ Larger reticule (\lesssim 25 mm \times 32 mm)
- Drawbacks of smaller feature size
 - 1.8 V operating voltage (instead of 3.3 V)
 - ⇒ reduced dynamics in signal processing circuitry and epitaxy depletion voltage
 - increased risk of Random Telegraph Signal (RTS) noise
- Consequences of the large surface to cover
 - good fabrication yield required \Rightarrow sensor design robustness
 - mitigate noisy pixels (data transmission band width)
 - sensor operation should be stable along 1.5 m ladder (voltage drop !)
 - minimal connections to outside world (material budget)
 - \Rightarrow impacts sensor periphery (slow control, steering parametres, ...)

STAR-PXL	ALICE-ITS	added-value
0.35 μm	0.18 μm	speed, TID, power
4 ML	6 ML	speed. power
twin-well	quadruple-well	speed, power
EPI 14/20 μm	EPI 18/40 μm	SNR
EPI \gtrsim 0.4 k $\Omega \cdot cm$	EPI \sim 1 - 8 k $\Omega \cdot cm$	SNR, NITD

Sensing Node & VFEE Optimisation

- General remarks on sensing diode :
 - $_{\circ}$ should be small because : V $_{signal}$ = Q $_{coll}$ /C ; Noise \sim C ; G $_{PA}$ \sim 1/C
 - $_{\circ}\,$ BUT should not be too small since Q $_{coll} \sim$ CCE (important against NI irradiation)
- General remarks on pre-amplifier connected to sensing diode :
 - should offer high enough gain to mitigate downstream noise contributions
 - should feature input transistor with minimal noise (incl. RTS)
 - should be very close to sensing diode (minimise line C)
- General remarks on depletion voltage :
 - $\circ\,$ apply highest possible voltage on sensing diode preserving charge sharing $\mapsto \sigma_{sv}$
 - alternative : backside biasing

⇒ Multiparametric trade-off to be found, based on exploratory prototypes rather than on simulations

Outcome of 2012 Exploration of the 0.18 μm Process

- STEPS VALIDATED IN 2012 :
 - * Several in-pixel amplifier variants lead to satisfactory SNR & det. eff. $(20 \times 20 \ \mu m^2)$ incl. after 1 MRad & $10^{13} n_{eq}/cm^2$ at $30^{\circ}C$
 - * Results pres. at VCI-2013 (J. Baudot)
- CALL FOR IMPROVEMENT :
 - Pixel circuitry noise : tail due few noisy pixels
 - \hookrightarrow attributed to RTS noise

Established knowledge on radiation tolerance

Sensors: IPHC Strasbourg M. Deveaux, D. Doering, S. Strohauer, CBM/IKF Frankfurt

34

31

Large Pixels for Outer Layers ?

• Motivation for LARGE pixels : reduced power (& read-out time) in case of alleviated spatial resolution requirement

 \hookrightarrow adequate for L3-6 (also required rad. tol. alleviated)

• Difficulty : keep high CCE (all over the pixel) without substantial (capacitive) noise increase and gain loss

- Results : tests with 4.4 GeV electrons, no in-pixel CDS
 - * SNR(MPV) \simeq 42.1 \pm 0.7 \Rightarrow $\epsilon_{det} \simeq$ 100 %
 - * cluster multiplicity (22×66) \simeq cluster multiplicity (22×33) \simeq 3 (mean)

Depleting the sensitive layer

DC coupling

•Negative voltage on the anode of the collecting diode

•Transistors have negative PWELL

AC coupling

•Anode side grounded

Amp

•Cathode side on +HV

•Vd ≈ 15-20V

Synchronous Read-Out Architecture : In-Pixel Discrimination

To provide adequate performance within small pixel

- & Structure selection: speed & power & offset mitigation vs area
 - Differential structure: preferable in mixed signal design
 - Two auto-zero amplifying stages + dynamic latch
 - OOS (Out Offset Storage) for the first stage and IOS (Input Offset Storage) for the second
 - Gain and power optimized amplifier
- ✤ Very careful layout design to mitigate cross coupling effects
- 🤟 Conversion time: 100 ns; current: ~14 μA/discriminator
- Test results of in-pixel discriminator:
 - Discriminators alone: TN ~ 0.29 mV, FPN ~ 0.19 mV
 - Discriminators + FEE: TN ~ 0.94 mV, FPN ~ 0.23 mV

Asynchronous Read-Out Architecture : ALPIDE

- Hierarchiral readout : 1 encoder per double column (2¹⁰ pixels)
- 4 inputs basic block repeated to create a larger encoder
- 1 pixel read per clock cycle
- Forward path (address encoder)
- Feed-back path (pixel reset)
- Asynchronous (combinatorial) logic
- Clock only to periphery, synchronous select only to hit pixels

Asynchronous Read-Out Architecture : ALPIDE Beam Tests

- Beam tests at CERN-PS :
- \hookrightarrow Detection performance versus discri. threshold
 - Detection efficiency and noisy pixel rate ("fakes")
 - Sensitivity of detection efficiency to sensing node geometry and back-bias voltage (-3V)
 - Cluster mutliplicity and spatial resolution (residues)

 \Rightarrow Satisfactory detection efficiency and spatial resolution observed