SET Detection and Compensation and Its Application in PLL Design

Yang You¹, Jinghong Chen², Datao Gong³, Deping Huang¹, Tiankuan Liu³, Rui Wang¹, Jingbo Ye³

¹Department of Electrical Engineering, Southern Methodist University, Dallas, Texas, 75205

²Department of Electrical Engineering, University of Houston, Houston, Texas, 77004

³Department of Physics, Southern Methodist University, Dallas, Texas, 75205

Introduction

- The single event transient (SET) in PLLs disturbs analog signals at critical nodes and degrades PLL jitter performance.
- Research has proven that the output of charge-pump (V_{CP}) is the most SET sensitive node in a PLL [1]-[4].
- Mitigating SET effect at V_{CP} can significantly reduce the PLL sensitivity to SET.
- This poster presents a new SET-induced charge detection and compensation technique to desensitize the PLL from SET at V_{CP}.
- This solution does not affect original PLL design.
- It improves both SET-induced VCO control voltage perturbation and recovery time.
- A control block is included to avoid the conflict between charge compensation and normal PLL phase correction.

• The principle of CCC is to monitor two incidents: input phase error and Vcp disturbance. If Vcp disturbance

(d) phase noise

Summar	y of the	Prop	osed	PLL	Performance
--------	----------	------	------	-----	-------------

Process	0.13 µm LP CMOS			
Architecture	Type II Analog Ring VCO PLL			
Area	0.66×0.83 mm ²			
Supply Voltage	1.5 V			
Power Consumption	21.5 mW			
Tuning Range	12.5 MHz ~ 500 MHz			
RJ _{RMS}	4.7 pS			
SEE Solution	CC, DICE, CC-RVCO, 3th order LP			
CC Area	0.22×0.13 mm ²			
CC Power Consumption	4.5 mW			
Device	Nominal VT transistor, Unsalicided P+			
	poly resistor			

• (a) SET strikes V_{CP} w/ and w/o CC when V_{VCO} is around 350mV; CC can improve the voltage perturbation by a factor of 4 and reduce the recovery time by a factor of 3. • (b) A 172° phase error step is introduced by multi-node ion strikes in the feedback divider w/ and w/o CCC; CCC successfully disable CC so that PLL can relock normally and faster • (c) SET strikes the output of CMP_N; the V_{VCO} disturbance is much less than that induced by SET at V_{CP}, meaning CC does not introduce more SET sensitive node to the PLL • (d) Phase noise and integrated jitter; 4.9ps integrated jitter is achieved.

Reference

• [1] A.V. Kauppila et al., RADECS 2009, pp. 201–206. • [2] S. Sondon *et al.*, *LATW 2013,* pp. 1–5. • [3] D. Matsuura *et al.*, *RADECS 2011* pp. 150–155. • [4] H. H. Chung et al., IEEE Trans. Nucl. Sci., vol. 53, no. 6, pp. 3539–3543, Dec. 2006.

HOUSTON