A Low-Latency and Low-Overhead Encoder ASIC for the Serial Data Transmission in the ATLAS LAr Calorimeter Readout Upgrade

Binwei Deng,^{a,b} Xiaoting Li,^{b,f} Jinghong Chen,^{d,g} Datao Gong,^b Di Guo,^{b,e} Deping Huang,^{d,g} Guangming Huang,^f Suen Hou,^c Chonghan Liu,^b Tiankuan Liu,^{b,} Xiangming Sun^h, Ping-Kun Teng,^c Annie C. Xiang,^b Yang You,^d Jingbo Ye,^b Xiandong Zhao^b ^a Hubei Polytechnic University, Huangshi, Hubei 435003, P. R. China ^b Department of Physics, Southern Methodist University, Dallas, TX 75275, USA ^c Institute of Physics, Academia Sinica, Nangang 11529, Taipei, Taiwan ^d Department of Electrical Engineering, Southern Methodist University, Dallas, TX 75275, USA ^e State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei Anhui 230026, China ^f Department of Physics, Central China Normal University, Wuhan, Hubei 430079, P.R. China ⁹ Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, USA * dtgong@mail.smu.edu

Introduction

- The ATLAS Liquid Argon calorimeter (LAr) Phase-I trigger upgrade calls for a data transmission rate of 204.8 Gbps for each frontend board (LTDB) [1].
- An interface chip, named as LOCic, is needed to encode the ADC data for following serializer.

Data Frame Definition

- An low-latency and low-overhead data frame is proposed and verified.
- Implemented the encoder ASIC based on a 0.25-µm commercial Silicon-on-Sapphire CMOS technology for radiation-tolerance.
- Each encoder ASIC encodes 8 channel ADC at 40 MSPS.
- The latency of encoder is estimated to be less than 7 ns.
- The power consumption of the encoder ASIC is about 100 mW.
- The matched decoder firmware is implemented in an FGPA and used to test the ASIC.
- The current design is for TI ADS 5272 only [2].

Encoder ASIC (LOCic) design

_	D6 Channel 0-7	D5 Channel 0-7	D4 Channel 0-7	D3 Channel 0-7	D2 Channel 0-7	D1 Channel 0-7	D0 Channel 0-7	8-Bit CRC

- The frame length is 128 bits, include 112 bits user data, 8 bits frame header and 8 bits CRC code.
- Frame header identifier comprises of "0101" fixed code and 4-bit PRBS code.
- 4-bit PRBS code also carries 12-bit BCID information (period 3564), formed by 2-bit 2⁵-1 and 2-bit 2⁷-1 PRBS code
- 8-bit CRC code with the polynomial $x^8+x^5+x^3+x^2+x+1$ is attached to detect possible data corruption in the data transmission.
- The ADC data, not including the frame header and CRC code, is scrambled with a scrambler defined by the polynomial $1+x^{39}+x^{58}$ to keep DC-balance in serial data transmission [3].

	8B/10B	64B/66B	LOCic
Overhead	25%+framing	3.125%+framing	6.25%
Framing included	No	No	Yes
BCID included	No	No	Yes
Latency of encoder (LHC clock cycle)	2.5	2 (+gearbox)	2
Decoder latency (LHC clock cycle)	4.5	4 (+gearbox)	4
Serial bit # needed to re-sync	30	4224 (min)	136

Decoder and Test Firmware

Encoder ASIC (LOCic) diagram

- The main components in the LOCic are driven by a 640 MHz clock. An Integrated Clock Gating (ICG) technique is used to align data and save power.
- A synchronous FIFO is implemented to receive the 8-channel ADC data at 480 MSPS per channel
- A PRBS generator is implemented to generate 4-bit code for each data frame period, 25 ns.
- The scrambler executes 14 times for 16 640-MHZ clock periods to scramble ADC data plus two 8bit dummy data.
- without latency penalty.

- Full 12-bit BCID information is recovered from the received PRBS code in the frame header.
- Link status are generated for further process.

		Latency (ns)			
Fu	Inction block	Kintex-7	ASIC + Kintex-7		
	FIFO	3.1-6.3	1.6-3.1		
	Scrambler & CRC gen	3.1	1.6		
TΧ	Frame Builder	3.1	1.6		
	Serializer	14.4	4.7		
	Total	23.8-26.9	9.4-10.9		
	Deserializer	28.5-31.4			
	Data Extractor	9.4			
RX	Descrambler	3.1			

