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I. SciFi Detector: LHCb upgrade 

• Almost every physics measurement in LHCb is limited by statistical 
uncertainties, not systematic: increase luminosity ! 

• Replace 1 MHz hardware trigger → 40MHz software trigger, all front- end 
electronics to 40 MHz 

• 10 times smaller uncertainties after 10 years 
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LHCb upgraded spectrometer 



I. SciFi Detector 

The SciFi tracker 
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I. SciFi Detector 
The SciFi tracker 
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• 3 stations x 4 detector planes 
• 12 modules per plane 
• 16 SiPMs per module 
• Fibers read out at top and 

bottom 
• Mirror in the middle to improve 

light yield (radiation) 
 
 
 
 
 
 
 

• SiPM, FE electronics and 
services in a ReadOut Box 

• 560k channels  
– 4352 SiPM 

 



I. SciFi Detector 

The SciFi tracker: basic principle 
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II. SciFi Electronics: SiPMs 

• Demanding SiPM requirements 
• High PDE 
• Low x-talk 
• Support the radiation environment 
• Small temperature dependence 
• Small dead regions 
• Thin entrance window!   
• Right now only two producers can 

provide suitable SiPMs 
– Hamamatsu 
– Ketek 

• Long capton interconnection 
– Transmission line model 
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SiPM Flex Cable 



II. SciFi Electronics: Read Out Box 

• FE Box consists of 3 boards 
– Analog board 

 Pacific chip (one or two) 
 Connectors to SiPMs and FPGA 

– Clusterization board 
 Microsemi FPGA(s) and eventually GBT(s) 
 Connectors to PACIFIC and Master 

– Master board 
 Concentrator FPGA under discussion 
 Master GBT 
 SCA 
 Power 
 Optical links(e.g.  Versatile link) 
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ADC data 
64x2b @ 
40 MHz 



II. SciFi Electronics: the signal 
• Two providers and different prototypes: signal shape not fully defined  

 
 
 
 
 
 
 
 

• Low photo-statistics: signal dominated by large statistical fluctuations 
– Radiation damage will worsen the problem 

• Signal shape depends on the interaction point 

11 

Single cell signal (measurement versus simulation) 

Monte Carlo simulation as function of interaction point 

Mirror 
effect 
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III. PACIFIC ASIC: Analog Signal Processing 

• Current conveyor with very low impedance input (≈ 30Ω) 
– Adjustable gain / dynamic range 
– Input voltage adjustment 

• Fast tunable shaper 
– Pole-zero cancellation  to cancel slow SIPM time constant 
– A FWHM of 5 ns is achieved for single-cell signal 

• Dual interleaved 25ns gated integrator  
– Almost no dead time 
– Average photo-statistical fluctuations 
– Maximize charge collection (25 ns integration) 

• 2 bits 40MS/s  flash non-linear ADC 
• Power consumption < 8mW/channel @ 1.2 V 
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III. PACIFIC ASIC 

• 130 nm CMOS technology 
– PACIFIC1 (1 Ch) and PACIFIC2 (8 Ch) in IBM 
– PACIFIC3 will be in TSMC, with 64 Ch 

• Serialization at 160 MHz 
– Single ended versus differential output to clustering FPGAs 

• Bandgap references and I2C interface based on CERN design 
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III. PACIFIC ASIC 
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• Analog signal processing simulation 
– Signal: 1, 5 and 15 cells 
– Threshold 1 is set to detect single cell (higher value in data taking) 

Input current 

Output of input stage 

Fast PZ shaper output 

Dual integrator output 

S&H output 

Comparator 
Th1 

Comparator 
Th2 

Comparator 
Th3 
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IV. Input stage 
• Low voltage current mode preamplifier with the 

current flowing from the SiPM anode to the 
circuit: 

– High bandwidth (> 250MHz). 
– Low power (< 1mW, maximum of 8mW/channel 

including all ASIC). 
– Low input impedance (30Ω < Zin < 40Ω). 
– DC voltage controllable at input node (≈ 0.5V range). 
– Good single cell resolution for calibration. 

• The HF feedback path that keeps this input 
impedance constant ( @ signal BW).  

• The LF feedback controls the dc voltage of the 
input node by virtual short circuit with LF OTA. 
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Input voltage range for 1.2 
and 1.5 V supply voltages 

Frequency response 
for different input 

capacitances 
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IV. Input stage 

• The HF feedback path that keeps this input impedance constant ( @ signal BW).  
• The LF feedback controls the dc voltage of the input node by virtual short circuit with 

LF OTA. 
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IV. Input stage 
• SiPM current signal is converted to a voltage signal for further processing 
• Closed loop transimpedance stage for: 

1. Current to voltage conversion 
2. Control of conveyor output voltage: linearity ! 

• A high speed OTA is required 
– GBW > 250 MHz with 80 º phase margin 
– Low power (700 uA, < 1 mW) 

 Class AB operation to cope with 5mA peak currents 
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High speed OTA parameters 

Accurate control of drain voltage 
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IV. Input stage 

• To deal with different SiPM and different 
operating conditions the gain of the current 
conveyor is tunable by a factor 4 

– Gain of current mirror is changed 
• Maximum range (about 5 mA) is achieved for 

smallest gain  
• Higher gain is intended for single cell 

calibration (“single photoelectron”) 
– Good resolution: SNR > 5 after gated integrator 
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Linearity and dynamic 
range for different 

current mirror gains  

Transient noise 
simulation with single 

cell signal (HPKK) 
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V. Shaping 
• Two steps: 

– Pole zero cancellation for slow SiPM time constant supression 
– Gated integration for optimal light collection and average statistical fluctuations  

 
 
 
 
 

• Pole-zero cancellation is a well known technique 
– For instance ion-tail cancellation in gaseous detectors 
– Main goal is to cancel slower SiPM time constant (τ2) 
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V. Shaping 
• Double pole-zero cancellation.  

– First time constant cancels the slowest time constant of SiPM response, the one associated to 
internal SiPM capacitances and quenching resistor.  

– The second one cancels the fastest one, related to parasitic interconnect capacitance and input 
impedance of the preamplifier.   

• Closed loop shaper based on the same OTA used for the transimpedance 
amplifier of the input stage. 

• The poles and zeroes are tunable, and they have been calculated to be able to 
operate with very different time constants of Ketek and Hamamatsu SiPMs 

• A DC feedback loop is used to control the quiescent output voltage 
– Critical as next stage is a gated integrator 
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V. Shaping 
• Double pole-zero cancellation adapted for both SiPM pulse shapes 

– Normalized input current ("Ii_norm") 
– Input stage output ("VoInputStage_norm") 
– First pole zero cancellation output ("VmSh_norm")  
– Final shaper output ("VoSh_norm")  
– The integral of these signals is also shown. 

• Final integral rise time is faster than 10 ns even if time constants are very 
different (particularly τ2) 
 

 
Hamamatsu 

Transient simulation Simulated output of gasted 
integrator (5 BX) 
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V. Shaping 
• Double pole-zero cancellation adapted for both SiPM pulse shapes 

– Normalized input current ("Ii_norm") 
– Input stage output ("VoInputStage_norm") 
– First pole zero cancellation output ("VmSh_norm")  
– Final shaper output ("VoSh_norm")  
– The integral of these signals is also shown. 

• Final integral rise time is faster than 10 ns even if time constants are very 
different (particularly τ2) 
 

 
Ketek 

Transient simulation Simulated output of gasted 
integrator (5 BX) 
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V. Shaping 

• Classic integration architecture 
• To avoid any dead time during the 

acquisition, it has been decided to 
interleave two gated integrator 

• Digitization must be synchronized with 
gated integrator 

• A classic Miller OTA is used for the 
integrator 

– 200 MHz GBW with 58º phase margin 
– 300 uA supply current  
 Integrator linearity 
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VI. Digitization 

• A sample and hold circuit is required to store 
analog value at the end of integration period 

• For first PACIFIC versions it was a simple 
capacitor & switch designs 

– Sampling errors 
– Charge sharing 
– Load depending 

 
 

• Evolution to a Miller S&H 
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VI. Digitization 

• Comparator with hystheresis 
– About 10 mV  

• 45 uW power consumption 
– 135 uW per channel 

• Range: 20mV to 850mV 
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• Simple barycenter computation with 3 
thresholds: 
– Seed threshold:  Candidate for a cluster 
– Neighbour threshold:  With a seed, included  

in a Cluster 
– High threshold: Cluster, no others conditions 
– Cluster sum threshold:  Confirm a cluster 
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VII. Test results 
• Several submissions using IBM technology: 

– PACIFIC0 (May 2013): Current conveyor 
 First version, fixed gain 

– PACIFIC1 (November 2013) : Full analog front end 
– PACIFIC2 (May 2014) 8 channels prototype with 

digitization.  
 PACIFIC2 has a design problem in the digital I/O ring 
 A second version has been submitted in August. 

• Next prototype in TSMC (PACIFIC3):  
– 64 channels with digitization 

 
 

PACIFIC1 

PACIFIC2 

PACIFIC0 
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VII. Test results: PACIFIC1 
• Test set-up based on 2 PCBs 

– References, I2C, integrator clocks, etc 
 
 
 
 
 
 

• Gain control and parameters tuned for default shapes: 
– Plotted CC (Current Conveyour output) and SH (Shaper Output) 
– For the 4 possible gains. 

  
 
 

Ketek Hamamatsu 
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VII. Test results: PACIFIC1 
• Good dynamic and linearity for different conveyor gains 
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VII. Test results: PACIFIC1 
• Charge resolution for an individual SiPM (S10362) 

– Using fast shaper (pole-zero) output through on-chip buffer (gain x1) 
– Resolution limited by  set-up noise 

 

  
 
 

Dark 

1 cell 

10 cell 
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VII. Test results: PACIFIC1 

• Charge resolution for Hamamatsu array 
– Tested with flex cable: no oscilation 
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VII. Test results: PACIFIC1 

• Charge resolution for Ketek array 
– Tested with flex cable: no oscilation 
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VII. Test results: PACIFIC1 
• Dual gated integrator response for typical Hamamatsu pulse as 

function of delay with respect to the system clock (10 cells signals) 
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VII. Test results: PACIFIC2 
• Test set-up based on 2 PCBs 

– References, I2C, integrator clocks, etc 
 
 
 
 
 
 

 
• After correct digital initialization voltages are set 

– Default parameters are set 
 Register hardware presets 

– Voltage references work as expected 
• Power consumption  as expected on simulations; 

– Consumption around 5mW/channel 
• However a mistake in the connection of digital IO pad makes impossible 

change register values 
– PACIFIC2 has been resubmitted on August (1 week after receiving the proto) 

• Despite this… 
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VII. Test results: PACIFIC2 

• PACIFIC2 reacts to input signal as expected for nominal parameters 
– For mid and high threshold bits 
– Lower threshold bit is stuck to 1 

 Default threshold was very low, and cannot be changed 
– Serialization works 
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VIII. Outlook 

• PACIFIC is an ASIC designed for fast scintillating fiber 
trackers 
– Fast shaping time 
– Gated integrator to deal with statistical fluctuations of the signal 
– Pole-zero cancellation to suppress long tails in SiPM signals 
– High degree of tunability of amplifier and shaper parameters: 

 Several SiPM companies 
 Different pulse shape 
 Different operating points 
 Fiber radiation degradation 

• Basic analog signal processing is validated 
• Detailed performance analysis with digitization requires 

corrected PACIFIC2 design 
• We have started migration to TSMC 

– First designs look very good 
– Main problem will be that MIM capacitance is 4 times smaller 

 Problem for the PZ shaper 
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I. SciFi Detector 
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Current LHCb detector 



I. SciFi Detector 

• Almost every physics measurement 
in LHCb is limited by statistical 
uncertainties, not systematic 
 

• LHCb collision rate is tuned to 
manage data rate (can be 
increased), but... 
 

• Statistics are limited by the 1MHz 
hardware trigger rate and then 
detector occupancy 
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Why LHCb upgrade ? 



II. SciFi Electronics: SiPMs 
• Demanding SiPM requirements 
• High PDE:  

– The 2.5m long fibres and the radiation damage of the fibres in the 
center of the detector, reduce the light output. 

• Low x-talk:  
– The noise cluster rate increases exponentially with x-talk. With the 

high DCR after irradiation, the noise cluster rate exceeds the 
acceptable level. 

• Support the radiation environment:  
– DCR increases with neutron fluence. 

• Small temperature dependence:  
– The operation temperature of the detector is set to -40°C. 

Temperature non- uniformity is expected for different regions of the 
detector. 

• Small dead regions: 
– Dead regions at the edges between adjacent SiPM arrays reduce the 

overall hit detection efficiency. 
• Thin entrance window!   

– The entrance window  defuses the light and therefore the thick 
window increases the cluster size and makes the spatial resolution 
worse. 

• Right now only two producers can provide suitable SiPMs 
– Hamamatsu 
– Ketek 
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SiPM Flex Cable 



Back-up: why 64 channels? 

• Starting goal was 128 channels chip, but: 
– SiPMs form factor is 64 channels dies. 
– SiPMs HV will probably be different from die to die. 
– PACIFIC packaging with 128 channels seems difficult. 
– Die size and yeld could be a problem. 

• In conclusion 64 channels seems a more natural and easy to 
handle number for this application. 

• Staggered vs standard: 
– Staggered input presents smaller pitch, but... 
– Standard pitch is easily bondable on board by labs or companies. 
– Die rectangular shape does not seem a problem for bonding (for 64 

channels). 
– Some isolation (shielding) can be introduced in 80µm pitch to avoid 

coupled crosstalk. 
– Testing on die would be easier. 

• In conclusion standard 80µm pitch input pads seems to be the 
preferred solution. 
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Back-up: why 64 channels? 

• Initial 128 ch floorplan (40 um channel pitch) 
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Back-up: why 64 channels? 

• Current 64 ch floorplan (80 um channel pitch) 
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Input impedance measurement 

• Preliminary 
• Discrepancy related to process variation on resistors 

– Happens also at low frequency 
– “Vertical” offset (about 5 Ω) wrt to simulations 
– And contributions of PCB parasitics at higher frequency (> 200 MHz) 
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