

UiO **Content of Physics** University of Oslo

First irradiation tests of the RCU2

Chengxin Zhao

University of Oslo, Norway

On behalf of the ALICE TPC collaboration

University of Oslo

ALICE TPC Detector

- The Time Projection Chamber (TPC) is the main tracking detector in ALICE
- There are about ~600000 detector pads divided between the two endplates.
- The events are controlled and readout by complex readout electronics mounted on the end-plates.
 - 4356 Front End Cards
 - 216 Readout Control Units
- In *Run 2* the event rate and event size will increase:
 - Higher readout speed needed!
 - Better radiation tolerance needed!
- The answer: The RCU2

Low multiplicity event from Run 1 High multiplicity event is completely crowded Run 2 will have even *higher* multiplicity UiO **Department of Physics** University of Oslo

RCU2

TWEPP 2014 - 22-26 September 2014 - Aix en Provence, France

University of Oslo

RCU2 - A «simple» upgrade

- We split a «slow» multidrop parallell bus
 - Doubles the speed!
- We upgrade the Readout Control Unit!
 - SoC FPGA: Microsemi SmartFusion2
 - New technology Faster, bigger and better in radiation!
 - First flash-based FPGA to include high speed SERDES!
 - SEU immune
 - SECDED on interfaces
 - SEU resistant latches
 - ...
- On paper the SmartFusion2 looks promising!
- Still we need to do irradiation campaigns
 - To qualify the SF2
 - To qualify components

University of Oslo

RCU2 Irradiation Campaigns

- Irradiation Campaigns @ TSL Uppsala 170 MeV Protons
 - 5th 8th May 2014, Main objectives:
 - Microsemi Smartfusion 2:
 - Single Event Latchup
 - PLLs
 - Dose tests
 - Single Event Upsets/transients in logic elements
 - TTC interface w/custom CDR
 - DDL2 interface Optical Transceiver and SF2 SERDES
 - 11th 12th June 2014, Main Objectives:
 - Different optical receivers for TTC
 - TTC interface with Analog Devices ADN2814
 - Microsemi Smartfusion 2:
 - Single Event Latchup @ different core voltages
 - Dose tests

- Irradiation Campaigns @ OSL²
 Prototype testing prior to TSL
 25 MeV Protons
 - November, Main objectives:
 - Component testing for RCU2
 - April, Main objectives:
 - Component testing for RCU2
 - Microsemi SmartFusion 2:
 - Internal SRAM tests
- Irradiation Campaigns @ NPI Rez³
 35 MeV Protons
 - 10th 12th Sept. Main Objectives:
 - TTC interface with TTCrx and PDLD Optical Receiver
 - Microsemi Smartfusion 2:
 - Dose tests

¹Theo Svedberg Laboratory ²Oslo Cyclotron Laboratory ³Nuclear Physics Institute

University of Oslo

Irradiation Testing @ TSL

University of Oslo

Irradiation Testing @ TSL

TWEPP 2014 - 22-26 September 2014 - Aix en Provence, France

Test results

- The focus in this presentation are:
 - SmartFusion 2 test results
 - TTC interface and DDL2 interface test results
- Test Results from component testing are not presented
 - However we did not see any major problems with any of the components we tested
- The test results are presented as follows:
 - Cross Section for the different tests have been calculated
 - MTBF (worst case) for run 2 has been calculated:
 - >20MeV Hadrons: 3.4 kHz/cm2 *
 - 216 RCUs

* Preliminary number for Run 2 inner partitions.

University of Oslo

SF2 SERDES loopback

- Tested radiation tolerance of DDL2 link
- Irradiated SF2 and Optical transceiver
- Test: Xilinx IBERT 7 bit PRBS @ 2.125 Gbps was looped
- Three categories of errors:
 - (1) Bit errors, < 10⁵
 - (2) Link down, self recover (typically after 2-5 seconds)
 - (3) Link down, power cycle needed
- Pause and recover scheme will handle situations when the link is down

	Smartfusion 2 irradiated	SFP irradiated
Total fluence	3.2E+11	3.6E+11
Total time	130 mins	45 mins
Cross-section (1)	5.0E-11 cm ² 4 errors	1.1E-11 cm ² 3 errors
MTBF Run 2 (1)	8 hrs	35 hrs
Cross-section (2)	1.6E-10 cm ² 13 errors	3.6E-12 cm ² 1 error
MTBF Run 2 (2)	2 hrs	106 hrs
Cross-section (3)	2.5E-11 cm ² 2 errors	7.2E-12 cm ² 2 errors
MTBF Run 2 (3)	15 hrs	53 hrs

UiO **Department of Physics** University of Oslo

TTC interface Test

- Irradiated Optical Receiver, CDR and RCU2 Smartfusion2
- Tested three different solutions for Clock and Data Recovery (CDR)
 - (1) Custom CDR solution in FPGA¹
 - (2) Analog Devices ADN2814
 - (3) TTCrx IC
- The input signal was generated by a Local Trigger Unit (LTU). Trigger rate 1Hz, 1kHz, 10kHz.

UiO **Contemportation** Department of Physics

University of Oslo

TTC interface Test Results

- Following values were monitored:
 - Single/double hamming errors
 - TTC signal is hamming encoded
 - Errors in TTC data signal
 - Number of times the PLL that is clocked by the recovered TTC clock loses lock.
 - Other PLLs with different clocks monitored as references
- The most interesting was found to be the TTC PLL loss of lock.
 - The other errors were related to:
 - Number of times the clock was lost
 - Trigger rate (more data -- > more errors)
 - Very low number of data errors as long as the clock was OK.
 - Lead to system instability self recover

The oscilloscope shot shows a typical irradiation effect on the optical reciever in the TTC chain.

Several optical receivers (Avago HFBR-2316TZ, Truelight TRR-1B43-000, Ficer FTPDA-R155-ST, PD/LD PLD-2317TM) were tested in beam to find the most suitable one:

- PD/LD PLD2321 (CERNpinout) eventually selected
- Radiation sensitivity approx. the same best signal quality.

University of Oslo

TTC interface Testresults

	Custom CDR – SF2 irradiated	Custom CDR – OR irradiated	ADN2814 CDR – ADN irradiated	ADN2814 CDR – OR irradiated	ADN2814 CDR – both ADN and OR irradiated
Fluence	1,92E+11	1,00E+11	2,43E+10	2,35E+10	1,66E+11
Time	~126 mins	~73 mins	21 mins	138 mins	109 mins
Cross section TTC PLL Loss of Lock	1,04E-10 (20 errors)	6,07E-09 (607 errors)	3,70E-10 (9 errors)	2,55E-09 (60 errors)	3,24E-09 (538 errors)
MTBF Run2	3.6 hrs	0.06 hrs	1.0 hrs	0.15 hrs	0.12 hrs

- The results from the custom CDR solution as well as from the commercial CDR (ADN2814) was not satisfying
 - Neither of the solutions would behave well in radiation
- Only recently an existing batch of TTCrx ICs came to our attention:
 - Previously qualified and designed for radiation tolerance*
 - We immediately redesigned the trigger part for the RCU2 with the TTCrx
 - These were tested in Rez mid September**
 - No errors were seen @ 35 MeV protons (*tests are inconclusive*)

*Toifl et al:. Measurements of Radiation Effects on the Timing, Trigger and Control Receiver (TTCrx) ASIC

**Special thanks to Jozef Ferencei and co. at Rez – your help was really appreciated.

TWEPP 2014 - 22-26 September 2014 - Aix en Provence, France

University of Oslo

SF2 Single Event Latch-up Test

- Current consumption of SF2 core supply voltage monitored during irradiation
- Detected current jumps are most likely Single Event Latch-ups.
 - Removed by a power cycle
 - Current jumps also experienced by Microsemi and said to be nondestructive
- Reduced core voltage => reduced rate of current jumps.
- Problem with 1.0V core voltage:
 - Timing properties change in design

Note: The single event latchups tolerance will be improved by Microsemi in their next batch. Expected by the end of the year.

	1.2V	1.1V	1.0V
Cross section [cm^2]	4.5e-10	8.2e-11	8.2e-12 *
MTBF run 2	0.8 hrs	4.6 hrs	46 hrs

* Improvement of ~50x compared to 1.2V

University of Oslo

SF2 dose tests

- Single event effects are a minor problem in flash based devices
 - Configuration elements are SEE immune
- Total Ionizing Dose (TID) is however of concern.
- At TSL, 4 SF2 FPGAs were irradiated up to several 10's of kRad and still fully functional.
- However, it was not possible to reprogram the FPGA after irradiation
- One SF2 FPGA was irradiated in steps of ~0.5 kRad and reprogramming failed after only **2.5 kRad**.

Sample	RCU2 – A	RCU2 – B	SK 1	SK 2
Dose [kRad]	38	19	14	18

- University of Oslo
- Smartfusion2 has two types of SRAM memory
 - Micro SRAM (~65kbits bits)
 - Large SRAM (~ 1.1 Mbits)
- Test were performed by:
 - a state machine reading/writing a checkboard pattern on the SRAM memories
 - Counting bitflips

	Large SRAM	Small SRAM
Cross section [cm^2/bit]	1.9 *10 ⁻¹⁴	1.2 *10 ⁻¹⁴
MTB SEU run 2	64 s	1731 s

SF2 SRAM Tests

University of Oslo

- Monitored the PLL lock signal during irradation.
 - Dedicated tests on starterkits
- A total of 345 loss of lock experienced for a total fluence of 1.6 x 10¹² p/cm².
 - The PLLs always regained lock after some microseconds
 - The clock output of PLL is still present without lock – but unstable/high jitter
- CS: 2.2x 10⁻¹⁰ cm²
- This is concerning
 - Special precautions must be taken during design (i.e. avoid PLL usage unless absolutely needed)

SF2 PLL tests

	Fabric PLL
Cross section [cm ²]	2.2 *10 ⁻¹⁰
MTBF run 2 (using 1 PLL/RCU2)	1.7 hrs

UiO **Department of Physics** University of Oslo

Conclusions

- Several irradiation campaigns have been set up for the RCU2
- They have revealed several problem areas on the RCU2 design
 - All of the radiation related problems have so far been dealt with
 - However, it has caused delays in the project
- The SmartFusion2 shows some unexpected limitations
 - Single Event Latch-ups
 - Reported to be corrected in next batch of SmartFusion2 devices
 - Fairly low dose before programming fails
 - PLLs fail at a discomforting high rate
- However None of the issues above are regarded as a high reliability problem for the RCU2
 - Given that the PLL failure rate is compensated for during design

UiO **Contemport of Physics**

University of Oslo

Thanks for Listening

RCU2 people (in no particular order): • Chengxin Zhao (chengxin.zhao@fys.uio.no) – University of Oslo, Norway Johan Alme – Bergen University College, Norway Lars Bratrud, Jørgen Lien, Rune Langøy – Vestfold University College, Norway Ketil Røed – University of Oslo, Norway Attiq Ur Rehman, Kjetil Ullaland, Dieter Röhrich, Shiming Yang, Arild Velure, Inge Nikolai Torsvik, Christian Torgersen – University of Bergen, Norway Jo Schambach – The University of Texas, Austin, USA Tivadar Kiss, Ernö David – Cerntech, Budapest, Hungary Christian Lippman– GSI Darmstadt, Germany Anders Oskarsson, Lennart Osterman – University of Lund, Sweden Harald Appelshäuser, Torsten Alt – Goethe University Frankfurt, Germany Fillipo Costa – CERN, Switzerland Taku Gunji – University of Tokyo, Japan

