Transverse beam dynamics issues in the PS

on behalf of PS-LIU team
Outline

I. Transverse challenges
II. Space Charge at injection
III. Injection oscillations
IV. Transverse damper and feedback
V. Flat-top challenges
VI. Transition instabilities
VII. Summary and Conclusions
Transverse Challenges in the PS

Acceleration:
- Transition crossing

Flat top:
- Electron cloud
- Transverse instabilities

Injection flat bottom:
- Injection oscillations
- Space charge
- Headtail instability

Graphs with timelines, magnetic field, intensity, and other parameters are shown, along with annotations for specific time intervals and intensity values.
Space Charge at injection

- Current injection energy: 1.4 GeV

- Typical tune-spread of current operational beam \sim (-0.2 ; -0.28)

- LHC double batch injection:
 Long flat bottom: 1.2s

- LIU Budgets: 5% beam loss,
 5% emittance growth

- Requests @2GeV:
 LIU \Rightarrow $\Delta Q \sim$ (-0.19 ; -0.31)
 HL-LHC \Rightarrow $\Delta Q \sim$ (-0.18 ; -0.30)
• The beam tune-spread is trapped between the $4q_y=1$ and the integer resonances.
 ➔ The choice of the working point is a compromise between losses and emittance blow-up

• To respect the LIU budgets of beam loss and emittance growth, $\Delta Q_{\text{max}} \approx -0.31$
Space Charge at injection

Vertical tune scan

-> Successful implementation of a resonance compensation scheme

R. Wasef, LIU Day 11/04/2014
The resonance compensation would empty larger area for the working area, but the $4Q_y=25$ resonance is still limiting this area.

- Solutions under investigation for $4Q_y$ resonance (to be studied in 2014):
 - Simulation study with the change of the integer for the vertical tune shows promising results to avoid the $4Q_y$ resonance
 - Changing the optics: larger horizontal dispersion & larger vertical dispersion
 - Longitudinally hollow bunches
Injection Oscillations

- At injection of high intensity beams, intra-bunch oscillations were observed.

- No unstable behavior observed associated to losses.

- A study revealed that the cause of these oscillations is indirect space charge.

- The effect of these oscillations on the emittance of future beams (HL-LHC: 32.5 10^{11} ppb, LIU :28 10^{11} ppb) has to be studied.

- TFB damp it effectively. Effect on the emittance to be studied.
Transverse Damper and Feedback

- The TFB was designed to damp injection orbit errors of 3mm (peak to peak) within 50 µs, to limit the caused emittance growth:

\[
n = r \frac{x^2 + \left(\frac{x'}{2} \right)^2}{r} + \left(\frac{a}{b} \right)^2
\]

- It also has been used as feedback to dump Headtail instabilities at injection. (Chromaticity should be controlled at 2GeV)

Injection oscillation

\[
\text{Oasis Viewer}
\]

R. Wasef, LIU Day 11/04/2014
Transverse Damper and Feedback

- Upgrade of the TFB (2015): new amplifiers to dump injection oscillations at 2GeV

<table>
<thead>
<tr>
<th></th>
<th>Current Amplifier</th>
<th>New Amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Power [kW]</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>CW Power [kW]</td>
<td>0.8</td>
<td>5</td>
</tr>
<tr>
<td>-3dB Bandwidth [MHz]</td>
<td>23</td>
<td>100</td>
</tr>
</tbody>
</table>

- We will probably need to control the chromaticity at 2 GeV to avoid high order headtail mode not accessible by the damper depending if no linear coupling will be used.
Flat-top challenges

- **Up to now e-cloud in the PS has never been a limitation** for the production of the 25 ns LHC type beams but **transverse instabilities** are observed when “storing” 25 ns beams at 26 GeV (new transverse feedback proved to help)

- **40 MHz RF Voltage program** can be tailored to mitigate e-cloud effects without affecting beam quality at extraction (tested in MD)

- To predict the e-cloud behavior at higher intensities **PyECLoud modules** have been developed for the simulation of combined function magnets

- Extensive simulation studies have been performed for the main chamber profiles installed in the main magnets and in the straight sections

Pycloud simulations for combined function magnets established to predict future operation
Flat-top challenges

- **TFB** able to delay the observed instability by ~10ms

- A main magnet has been equipped for e-cloud detection during LS1 (shielded pickup and optical window)

- Measurement campaign planned after LS1 to characterize the e-cloud formation in the PS main magnets (for different beam conditions, possibly up to LIU bunch intensity)

R. Wasef, LIU Day 11/04/2014
Instabilities at Transition

- Instabilities at transition are not a limitation for the LHC beams and they are not expected to be for future beams. Study ongoing to confirm this assumption based on non-LHC high-intensity beams studies.

- The PS impedance model is being improved to have a better understanding of the source of these instabilities.

- About 70% of the measured impedance has been explained.

- A measurement campaign is planned at the restart of the machine.
Summary and conclusions

• Injection flat-bottom:
 1. Injection oscillations: \(\rightarrow \) TFB, effect on the emittance?
 2. Space charge: \(\rightarrow \) 2GeV injection upgrade, Resonance compensation, studies on going (change of vertical integer, new optics, hollow bunches… etc)
 3. Headtail instability: \(\rightarrow \) TFB

• Transition instabilities: No limitation expected

• Flat-top:
 1. Electron Cloud / Transverse instabilities: \(\rightarrow \) TFB
THANK YOU FOR YOUR ATTENTION!

LHC Injectors Upgrade
Backup slides
BCMS scheme (48 bunches / PS batch)

LIU upgrades
- SPS 200 MHz upgrade
- SPS e-cloud mitigation
- PSB-PS transfer at 2 GeV

Limitations BCMS scheme
- SPS: longitudinal instabilities + beam loading
- PS: space charge
- SPS: space charge

Performance reach
- $2.0 \times 10^{11} \text{ p/b in } 1.37 \mu \text{m (@ 450GeV)}$
- $1.9 \times 10^{11} \text{ p/b in } 1.65 \mu \text{m (in collision)}$
max. tune shift in this simulation is approx. 0.01 larger than in the measurement

→ effect very sensitive to the longitudinal distribution
The 4th order resonance seems to be excited by space charge

Horizontal tune fixed at 6.23
Vertical tune: 6.24->6.3->6.24

Maximum detuning due to space charge:
Beam 1 : (-.22 ; -.4)
Beam 2 : (-.18 ; -.37)
Beam 3 : (-.08 ; -.07)
Beam 4 : (-.01 ; .01)
Resonance compensation

2Qx+Qy compensation

3Qy compensation

Horizontal tune scan

R. Wasef, LIU Day 11/04/2014