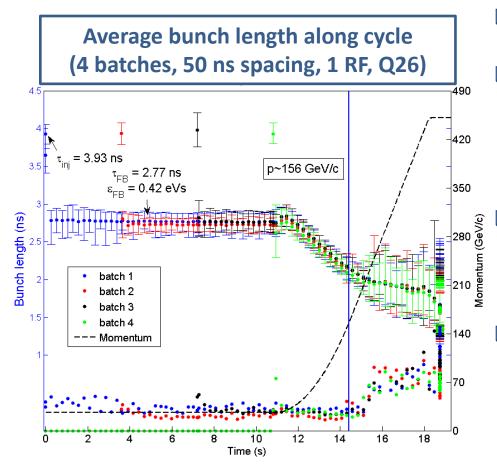
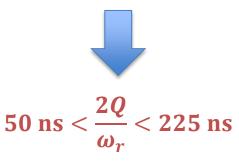


LHC Injectors Upgrade

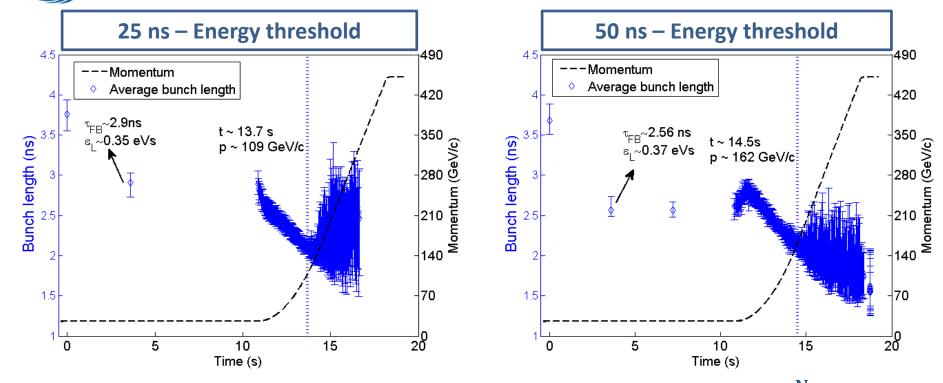
LHC Injectors Upgrade


SPS: Instabilities and impedance model in the longitudinal plane

Jose E. Varela on behalf of: T. Argyropoulos, T. Bohl, F. Caspers, A. Lasheen, B. Salvant, E. Shaposhnikova, H. Timko, C. Zannini

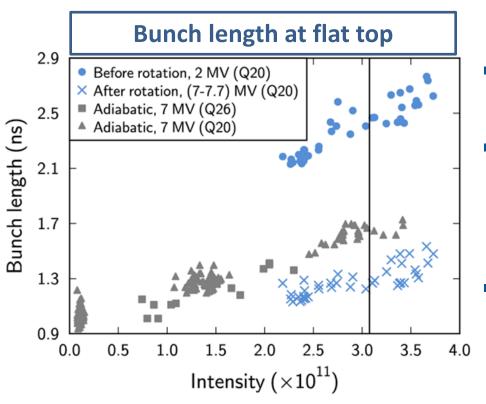


Multi-bunch instabilities (I)



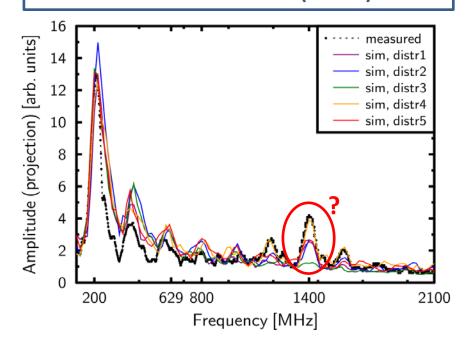
- Instability threshold N_{th}~ 1/energy
- Multi-bunch instability threshold during the ramp for bunches spaced at t_b = 25 & 50 ns is much lower than for a single bunch
 - Similar N_{th} for 1, 2, 3 or 4 batches
 - No interactions between batches spaced by $T_B = 225 \text{ ns}$
- Wake decay time (Q-factor) $t_b < t_{wake} < T_B$

Multi-bunch instabilities (II)


] Energy threshold approximately scales with total current as $^{1}/_{E_{th}} \sim ^{N_{b}}/_{T_{b}}$

\Box Emittance at flat top scales with bunch intensity \rightarrow (+ single bunch effect ?)

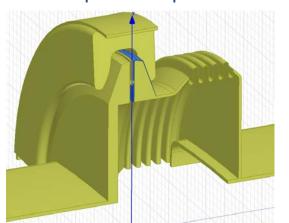
- ▶ 50 ns : $\epsilon_l = 0.46 \text{ eVs}$ with $N_b = 1.6 \cdot 10^{11}$, $N_b/T_b \approx 0.51 \text{ A}$
- ▶ 25 ns : $\epsilon_l = 0.47$ eVs with $N_b = 1.35 \cdot 10^{11}$, $N_b/T_b \approx 0.86$ A



- Bunch lengthening with intensity
- To explain this bunch lengthening by potential well distortion one needs Im(Z)/n = 12 - 15Ω
- Microwave instability due to some high frequency impedances?

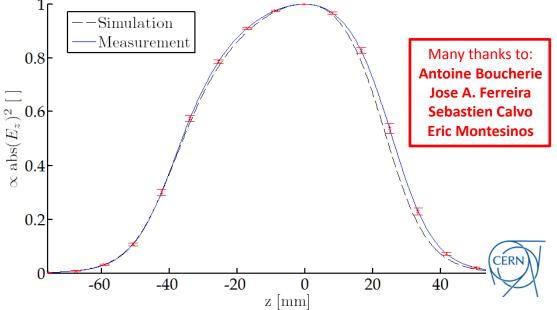
 $\begin{array}{l} \mbox{Measured and simulated} \\ \mbox{unstable spectrum of 25 ns long bunches} \\ \mbox{with } \mbox{N} = 1 \cdot 10^{11} \mbox{ (RF off)} \end{array}$

Amplitude peaks correspond to SPS resonant impedances (on the top of 200 MHz harmonics)


Strong peak at **1.4 GHz** for $N_b > 8 \cdot 10^{10}$ (observed also in 2001)

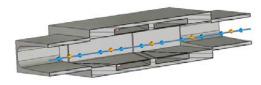
Reproduced in simulations with SPS impedance model impedances with high R/Q and Q in wide range

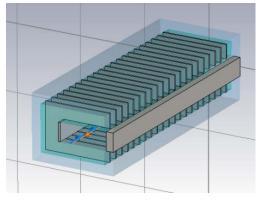
Vacuum flanges simulations and measurements


The vacuum flanges have been identified as sources of the **1.4GHz** impedance peak

		Damping Resistor	fres [GHz]	Q		R/Q [Ω]
MBA – QF	Sim.	No	1.415	1800		82
Non enamelled	Meas.	No	1.401	1100	≈ 5.5	85 ± 2.5%
	Meas.	Short	1.395	200	~ 5.5	81 ± 2.5%
MBA – MBA Enamelled	Sim.	No	1.410	285		75
	Meas.	No	1.415	270	≈ 3.5	79 ± 5%
	Meas.	Short	1.415	75	~ 3.5	65 ± 5%

A layout survey was carried out to count and classify vacuum flanges in the SPS.



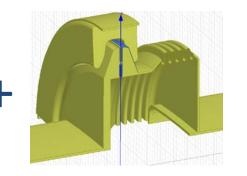

The longitudinal impedance model (I)

Travelling Wave Cavities

BPM - B. Salvant

Kickers - C. Zannini

Element	Number	f [MHz]	Z [kΩ]	Q	2Q/ωr [ns]	R/Q [kΩ]	lm(Ζ)/n [Ω]
Serigraphy	18	44	26	11	80	2.4	
200 TWC – 54 cell	2	200	2860	230	366	12.6	2.72
200 TWC – 43 cell	2	200	1752	180	286	14.6	2.18
200 TWC - HOM	4	630	388	500	252	0.8	0.11
800 TWC	2	800	1936	300	120	6.5	0.35
Kickers	18	810	20.5	1	0.4	20.5	
Vac. Flanges	129	1200	1130	250	65	4.5	-
Vac. Flanges	123	1400	1875	200	45	9.3	0.97
Kickers	18	1500	12	1	0.2	12	
Vac. Flanges	59	1600	630	395	79	1.6	-
BPM - H	106	1600	597.5	686	136	0.9	0.16


* Approximated by resonant impedances

3000

14.5

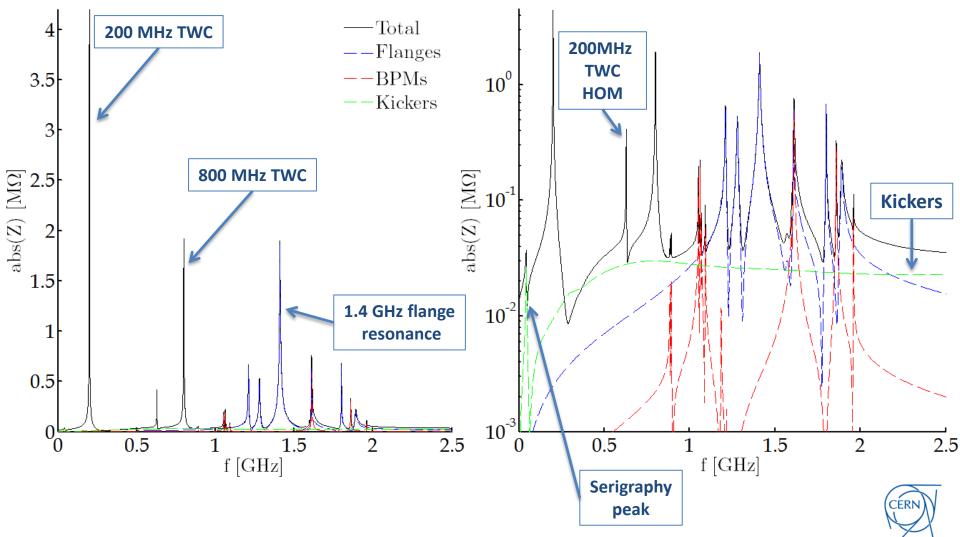
1

18

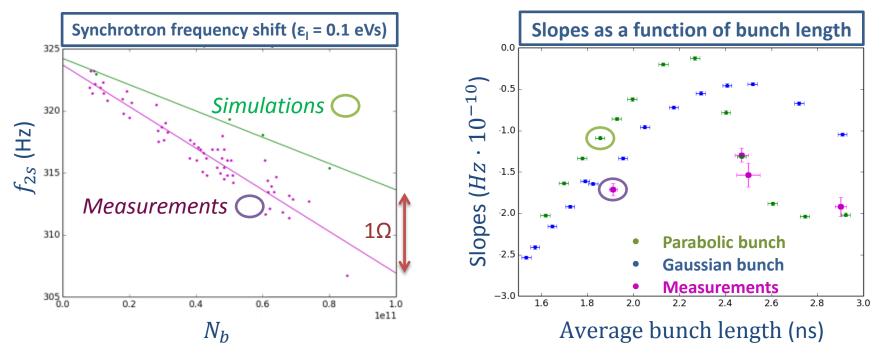
Kickers

0.1

14.5


More details on the current longitudinal impedance model can be found in [LIU-SPS BD WG, 27/03/2014 meeting]

Main known longitudinal impedance sources in the SPS*


The longitudinal impedance model (II)

Current longitudinal impedance model in linear and logarithmic scale

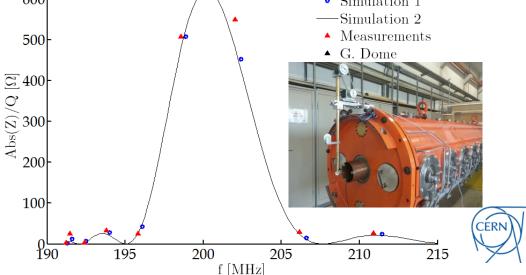
Estimation of the inductive impedance (measurements and simulations)

- Quadrupole synchrotron frequency f_{2s} was measured from bunch length oscillations after injection of a single bunch into mismatched voltage.
 - Reduction of impedance observed with serigraphed MKEs (slope was reduced from $-4Hz \cdot 10^{-10}$ for 2.2 ns)

- Estimation of effective Im(Z)/n by comparison with simulations (based on SPS model)
- There is a strong dependence on bunch length => at 2.2 ns?
- Still missing some impedance (-1.5Ω for space charge)
 - Measurements at higher energies.

□ Instabilities are limiting the SPS performance

- □ Impedance reduction would help to reach *HL-LHC goals*
- More simulations and beam measurements to confirm the guilty impedance sources


□ From beam measurements, current impedance model is not complete

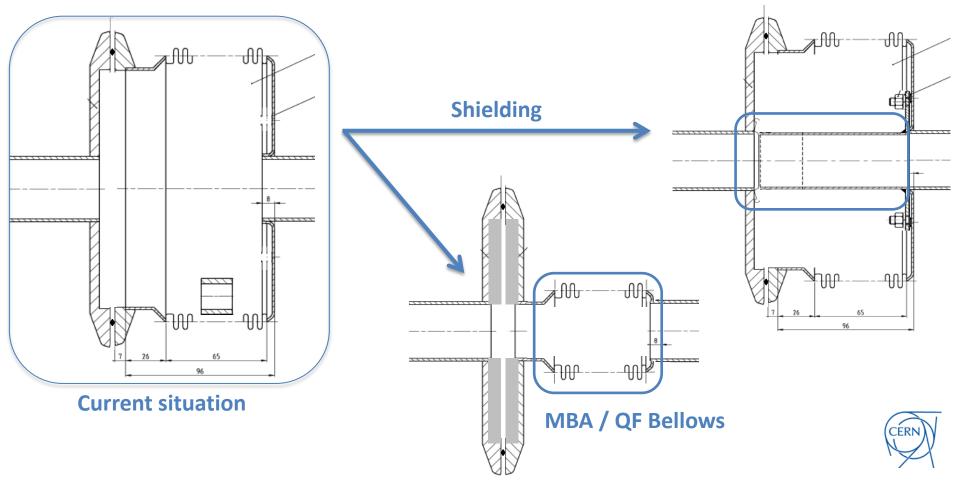
- Travelling wave cavities Measurements of the fundamental and higher order modes.

 200MHz SPS Cavity - One Shortcircuited Tank

 600

 • Simulation 1
- Other elements:
 - vacuum valves
 - unshielded pumping ports

LHC Injectors Upgrade


THANK YOU FOR YOUR ATTENTION!

First thoughts on 1.4 GHz impedance reduction

Damping the resonances **does not help for single bunch instabilities** since R/Q remains approximately constant.

Any R/Q reduction strategy will imply opening **450** vacuum flanges...

