

LHC Injectors Upgrade

LHC Injectors Upgrade

New ion injection system in the SPS T.Kramer B.Balhan, J.Borburgh, L.Ducimetière, B.Goddard, W.Höfle, M.Hourican, L.Jensen, G.Kotzian, K.Li, F.L.Maciariello D.Manglunki, A.Mereghetti, B. Salvant, L.Sermeus, J.Uythoven, F.M.Velotti, C.Zannini

LIU-day 2014, April 11th

Motivation: Higher \mathcal{L} for ions after LS2 by increasing the total bunch number

□ WHY?

- The average bunch brightness is already high (twice nominal).
- Increasing it (if possible) leads to more IBS in SPS and LHC, and also increases \pounds burnoff.

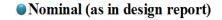
□ HOW?

- Reducing average bunch spacing in the LHC.
- Reducing bunch spacing by batch compression in the PS.
- Decreasing batch spacing in SPS by a shorter injection kicker rise time to get batches closer.
- Implies a new SPS injection system for ions.

Review of early developments

In October 2013 a review took place to condense the various versions studied in the field of:

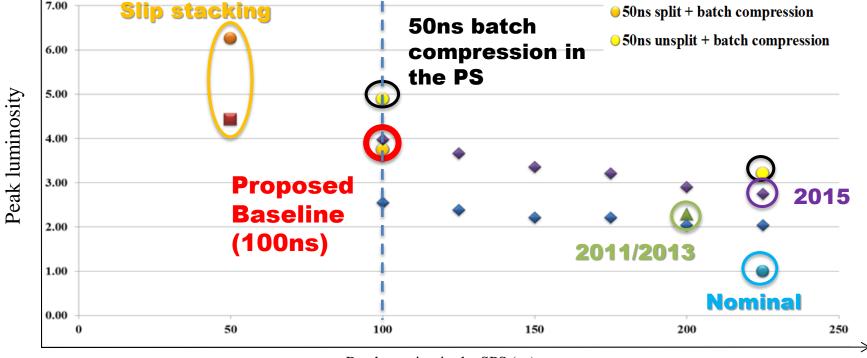
- Injection concept/beam optics
- Fast pulsed magnet systems
- Septum System
- Dump Block feasibility
- Beam Instrumentation
- Transverse Damper
- Failure scenarios
- Impedance considerations


https://indico.cern.ch/event/263338/overview

A clear recommendation was made: "to follow the conservative 100ns approach rather than try to overcome all technical challenges for a faster 50 or 75ns solution."

https://edms.cern.ch/document/1331860/1.0

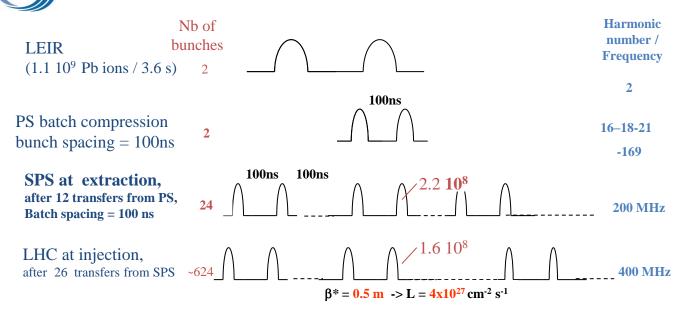
Estimated Peak Luminosity (w.r.t. nominal)



- ▲ 200ns Intermediate beam (performance of 2011)
- ◆100 ns beam unsplit (performance of 2013)
- ◆100ns beam split (140% performance of 2013)

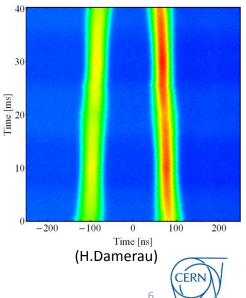
CER

5


- 100 ns beam split w slip stacking
- 100 ns beam unsplit w slip stacking

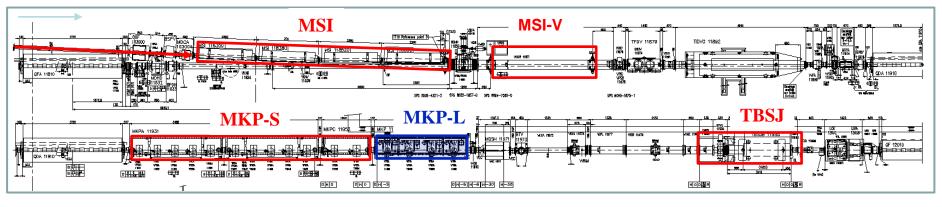
Batch spacing in the SPS (ns)

Λ

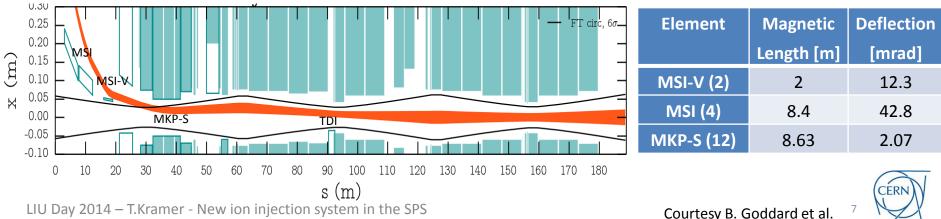

100ns Baseline scheme and parameters

Modified RF gymnastics in PS (demonstrated end 2012)

- Batch compression $(h = 16 18 21) \rightarrow 2$ bunches spaced by 100 ns
- □ 12 (t.b.c./optimized) injections into SPS spaced by 100 ns
 - 2.3 µs trains of 24 bunches spaced by 100 ns
- 26 injections/ring into LHC
 - 624 bunches/ring (factor ~1.74)
 - >25' filling time per ring on paper


 $\Box Expected Pb-Pb \pounds_{peak} = 4.0x10^{27} \text{ cm}^{-2} \text{s}^{-1} \ (\beta^* = 0.5 \text{ m})$

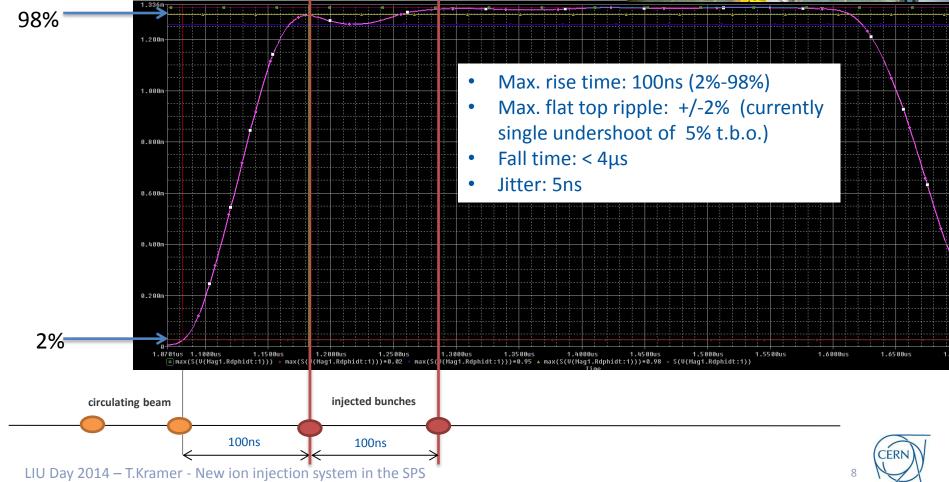
Courtesy D. Manglunki


New SPS Injection Layout for Ions (100ns)

SPS LSS1

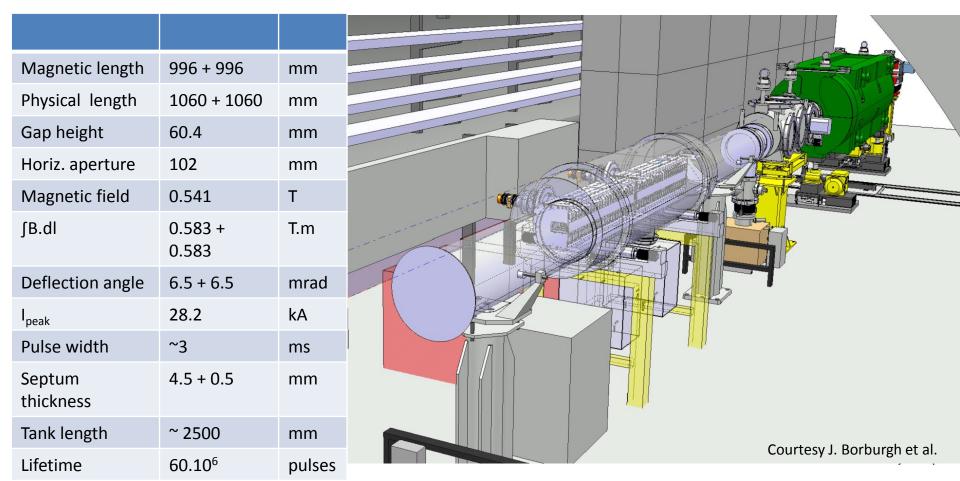
- Use existing (fast) MKP-S kicker with additional PFL.
- Additional septa (MSI-V) needed.
- Requires ion injection dump upstream QD12110.

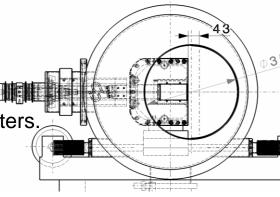
- 17 GeV/c/u PB⁸²⁺
- 100 ns rise time
- Q20 compatible
- Low impedance impact



Fast injection kicker system

Use MKP-S magnets with new PFL (MKP-L too slow).


- No layout or equipment change in the tunnel!
- No change to p⁺ inj. System (except switch).
- Needs transverse damper to limit blow up.



Ion injection septum (MSI-V)

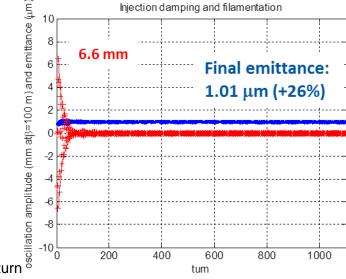
- Under vacuum pulsed magnet, powered by 2 MegaDiscap converters,
- Newly to build vacuum vessel.
- 2 magnets re-used from PSB to PS TL.
- Outstanding challenges: radiation hardness, reliability and integration in the existing (crowded) area.

Possible Impact On/From the SPS Transverse Damper

 \Box Large kick angle of injection kicker: 2.07mrad @ avg. β =45.4m

for given specs (100ns, 2%-98%, 5ns jitter, steering error 0.5mm) worst case: 6.6mm @ β_{ref} =100m

Estimation of emittance blow-up

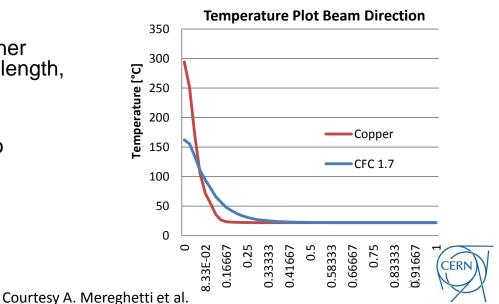

- based on numerical simulations (MATLAB)
- assuming amplitude detuning of 5e-5 m⁻²
- Damper gain 0.1 or damping time 20 turns
- Expected final emittance: 1.01 µm (26 % blow-up)
- Damper kick strength for ions (horizontal plane)

$$\delta_{\rm ions} = \delta_{\rm protons} \frac{\beta \gamma_{\rm protons}}{\beta \gamma_{\rm ions}} \frac{82}{208} = 1.5 \ \delta_{\rm protons}$$

- for damping time 20 turns gain of 0.1 needed, requires at max. 10% reduction/turn 0.49 mm/turn is sufficient to damp 4.9 mm with 20 turns \rightarrow
- \rightarrow

Transverse damper vital to limit emittance blow up. (Estimated 200% emittance blow up without damper!)

Ion specific Low-Level needed due to the frequency modulation of the RF: 4 different clocks from RF (BA3) to damper (BA2) with frequency modulation shifted to correct azimuthal position for pick-ups and kickers.



FLUKA simulations were run to estimate levels of energy deposition and escaping neutrons for a 1m-long absorber protecting QD.12110;

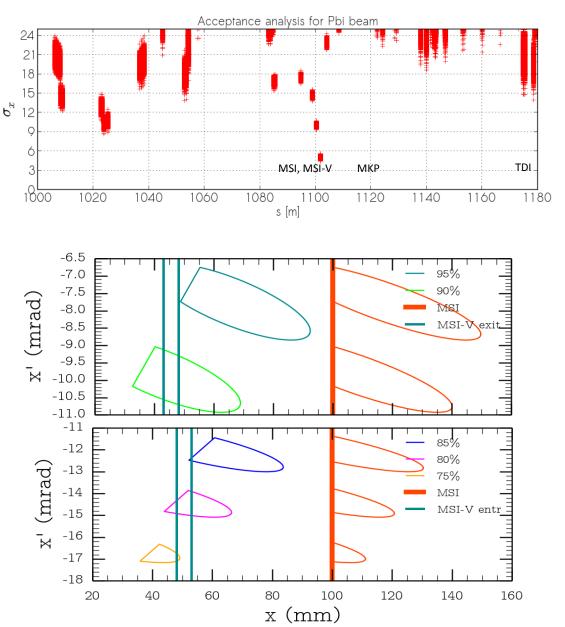
□ Full impact case of the SPS ²⁰⁸Pb⁸²⁺ ion beam (50ns, 4 bunches) at inj. energy was studied;

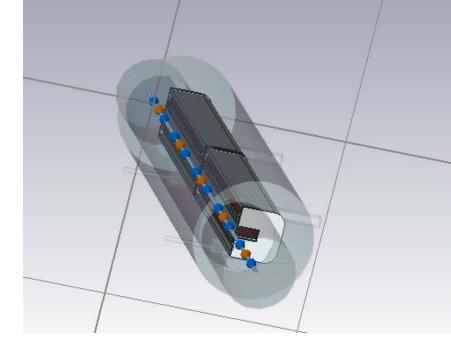
Two materials considered: Cu and CfC:

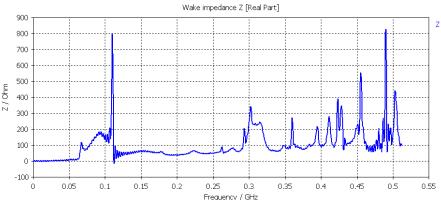
- Energy deposition: CfC is generally featured by values lower than those of Cu;
- Cu absorbs more beam energy (60% vs 20%) and generates more populated but softer spectra of escaping neutrons;
- With respect to CfC, Cu generates more populated but softer neutron spectra; with CfC, a more intense high energy neutron component can start particle showers in the downstream device(s);
- for both material, activation of the surroundings is expected (actual estimation only possible at a more advanced stage of design);
- The dump block is feasible, however further optimisations must be done in terms of length, activation, escaping neutrons etc...
- Material characteristics to be adjusted to match the requirements.

- Existing beam instrumentation (TT10 and RING) can be used.
- Additional BTV to be integrated on new dump. (radiation-hard "Vidicon"camera)
- BLMs to be specified and placed for new injection septum and dump
- New BPM electronics expected to bring new functionalities for injection oscillation and covering long cycles
- □ Fast kicker synchronization to be done as for protons (BCT)

Next steps:


- Choice of screen materials to be reviewed
- Review of BTV tank impedance


- Failure cases considered:
 - Injection kicker, MKP, not firing;
 - Main magnet failures in the transfer line PS to SPS;
 - MSI-V failures;
 - Proton injection septum, MSI, failures.
- Ion operation with 2 bunches not critical
- Proton operation needs MSI current to be monitored and interlocked to protect MSI-V.



- Studies for the impedance impact of a dedicated 50 ns ion kicker have been made and yield a significant contribution to long. and transv. impedance.
- Significant reason for the review committee recommendation (100ns upgrade) was to not add additional impedance for kicker systems.
- Preliminary studies for MSI-V done. Further optimization envisaged.
- Check for BTV and dump to be done.

Various designs have been elaborated in 2013.

Review concluded on a clear **recommendation** for a **100ns upgrade**.

Feasible and cost effective solution:

- New PFL system on MKP-S allows to not change the kicker infrastructure in the tunnel. No dose taken by FPS-personal (next to TIDVG). Further development ongoing.
- No new ion kicker magnets thus no additional impedance for kickers added.
- Additional MSI-V Septa will make use of recovered PSB2PS septa magnets. Impedance to be checked.
- Most existing beam instrumentation can be used.
- Transvers damper vital to keep emittance blow up small.
- New ion dump feasible. Requirements to be defined-> Further detailed studies needed.
- SPS amplitude detuning needs to be evaluated.
- Emittance blow up budget for ion injection activities needs to be defined.

- 2013 Review of variants – Decision for 100ns upgrade.
- 2014 Specifications, start of technical design.
- 2015-2017Prototypes, production.
- 2018-2019 (LS2) Installation.

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

